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Invoking and identifying
task-oriented interlocutor
confusion in human-robot
interaction

Na Li* and Robert Ross

School of Computer Science, Technological University, Dublin, Ireland

Successful conversational interaction with a social robot requires not only
an assessment of a user’s contribution to an interaction, but also awareness
of their emotional and attitudinal states as the interaction unfolds. To this
end, our research aims to systematically trigger, but then interpret human
behaviors to track different states of potential user confusion in interaction
so that systems can be primed to adjust their policies in light of users
entering confusion states. In this paper, we present a detailed human-robot
interaction study to prompt, investigate, and eventually detect confusion states
in users. The study itself employs a Wizard-of-Oz (WoZ) style design with
a Pepper robot to prompt confusion states for task-oriented dialogues in a
well-defined manner. The data collected from 81 participants includes audio
and visual data, from both the robot’s perspective and the environment, as
well as participant survey data. From these data, we evaluated the correlations
of induced confusion conditions with multimodal data, including eye gaze
estimation, head pose estimation, facial emotion detection, silence duration
time, and user speech analysis—including emotion and pitch analysis. Analysis
shows significant differences of participants’ behaviors in states of confusion
based on these signals, as well as a strong correlation between confusion
conditions and participants own self-reported confusion scores. The paper
establishes strong correlations between confusion levels and these observable
features, and lays the ground or a more complete social and affect oriented
strategy for task-oriented human-robot interaction. The contributions of
this paper include the methodology applied, dataset, and our systematic
analysis.

KEYWORDS

confusiondetection,multimodalmodeling, user engagement, situateddialogue,wizard-
of-oz, social robot

1 Introduction

Socially interactive robotic agents have been applied to assisting people in many
different areas in the last 10 years, e.g., language learning (Saeki et al., 2022), tour guides
(Duchetto et al., 2019), helping children with autism therapy (Zhanatkyzy et al., 2023a), to
name but a few. In such social human-robot interaction (HRI) scenarios, the autonomous
social robot must assess and maintain the engagement of the interlocutor in terms
of determining the context of interaction and inference of the meaning of any social
interactive signals. Moreover, in the ideal case, not only should the robotic system observe
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and model the user, but it should be able to alter its own actions in
response to the user affect state, and predict the effects of its own
behaviors (Lugrin et al., 2022, chapter 16.3).

Many different branches of computational linguistics and
human-computer interaction (HCI) have been applied in the pursuit
of effective human-robot interaction (HRI). Early work focused
invariably on the analysis of the structure of language itself, and the
various levels at which there were interactions between language, the
task competence and actions of the robotic agent, and its perception
of the environment including the user. Such work, which is based on
disciplines such as conversational analysis and dialogue modeling,
often straddled a boundary between linguistics, epistemology, and
engineering (Lugrin et al., 2022, chapter 15).

In recent times, the HCI and HRI communities have also
explored the richness of audio and visual data to estimate
emotion and other cues of communicative function. This work
recognizes that social communication is mediated not only by pure
ideational language, but by a range ofmodalities and communicative
functions, including facial expression, body language, and emotional
intonation in speech. In much of this work, there is an assumption
that designing an engaged conversational HRI is critical. However,
while some studies have examined emotion estimation in HRI that
can promote user engagement (Busso et al., 2008; Celiktutan et al.,
2017); there is relatively little research to date on comprehensive
user engagement estimation in either situated conversational HRI
or spontaneous conversation, e.g., Ben Youssef et al. (2017), and
Benlamine and Frasson (2021).

While emotion estimation and engagement studies in general
are essential for effective HRI, our work is focused on a particular
aspect of the mechanisms for successful engagement and task
completion in practical HRI tasks. In particular, we are focused on
the notion of confusion, and more specifically, what it means for a
user to be confused in a joint task and how that confusion state can
be both modeled and mitigated. Confusion has relationships with,
but does not always correlate with, more traditional transientmental
states such as engagement or emotion. For example, a user can be
engaged with both a task and confused, but often confusion will in
time lead to a reduction in engagement and ultimately satisfaction.
Turning to the general concept of emotion, confusion in its worst
case might be associated with anger, but in fact confusion may also
correlate with a neutral emotion or even despondency—depending
on the relationship between the confused, the interlocutor and
the nature of the task at hand (D’Mello et al., 2014). Given these
qualities, to date, there have been a number of models proposed
that attempt to structure the modes of confusion. For example,
some researchers in learning have suggested that confusion can be
a phenomenon with multiple levels, or even with four classes from
very high to very low (Arguel and Lane, 2015; Samani and Goyal,
2021). Taking a similar approach, Lodge et al. (2018) proposed two
states of confusion, i.e., productive confusion and unproductive
confusion in learning.

Due to its role in accounting for disengagement and even task
success, the identification of confusion and its mitigation have value
both in the HCI and HRI communities. While some work has been
conducted on the modeling of confusion, as just discussed, and
on the in-situ study of confusion, much of that work has typically
been focused on pedagogy or androgogy, e.g., language learning
(Saeki et al., 2022). Specific studies in the area of confusion, e.g.,

Grafsgaard et al. (2011), Zhou et al. (2019) and Kumar et al. (2019)
have generally focused on online learning in specific environments
such as AutoTutor, ITS (Intelligent Tutoring Systems), MOOCs
(Massive Open Online Courses), or serious games.

To address this gap in empirical studies and the modeling of
confusion in general, and specifically in the case of human-robot
interaction, our research is focused on the systematic triggering of
confusion in task-oriented interactions, observing and analyzing
the user in such interactions, and building models to both detect
user confusion states and feed these into policies to mitigate the
confusion. Building on an earlier pilot study (Li and Ross, 2023),
the work presented in this paper has been constructed to elicit
different confusion states in a user participating in a collaborative
task in order to determine if confusion is a simple binary state, or
if it is in fact a multifaceted state associated with different levels
of engagement and task completion rates. The hypothesis of this
work is user confusion does produce physical and behavioral
manifestations and that these manifestations can be identified
and learned.

To be more concrete, in this paper we set out a model of
confusion as a two-tier mental state (productive confusion and
unproductive confusion), and built out a deeper HRI study to
attempt to elicit and then detect these different levels of confusion.
To approach this study, a Wizard-of-Oz (WoZ) experiment was
designed, which improved upon some limitations of our pilot study,
and subsequently analyzed multimodal data against self-reported
states and task conditions. The contributions of this work are thus:
1) a multilevel framework for modeling confusion states in HRI; 2)
a WoZ HRI study design for different states of confusion analysis; 3)
an analysis of correlation between measured features and confusion
states; and 4) our feature data and user speech transcripts that are
made public to promote further research on confusion and mental
state perception in the field of HRI1. We also briefly outline the
approach we are taking to mitigate confusion through a structured
interaction policy.

2 Related work

The study of the concept of confusion and being able to estimate
a user’s confusion state during interactions straddles disciplines
including pedagogy, linguistic pragmatics, HCI and HRI. The
study and modeling of confusion itself also have overlaps with
related topics such as emotion and engagement estimation. To
explore the concepts and work which underpin our studies we will
first delve into existing work related to confusion modeling and
estimation, and then provide a brief overview of the state-of-the-
art research in the related domains of emotion and engagement
estimation.

2.1 Confusion definitions and detection

Unlike other mental concepts such as personality that have well-
understood conceptualizations, specific models and definitions for

1 https://github.com/nalibjchn/SituatedHRITrackConfusion
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confusion are more fluid—though with clear trends. For a simple
definition-based understanding, confusion can simply mean “lack
of clarity” (Gordon, 2006). However, as argued by D’Mello and
Graesser (2014), the meaning of confusion can actually be much
more complex, and has in different fields been described as a
bonafide emotion, a knowledge emotion, an epistemic emotion,
an affective state or a mere cognitive state. When confusion is
defined as an epistemic emotion (Lodge et al., 2018), it is associated
with blockages or impasses in a learning process. Gordon (2006)
claimed that in education, confusion, or uncertainty, drives people
to explore more, question previous beliefs, or even create a new
perspective, because, as the authors pointed out, people generally
will lack passion to clarify something that they already know and
understand. Confusion as a state is also associated with the notion of
cognitive disequilibrium. Yang et al. (2015) explained that cognitive
disequilibrium is a state in which a user encounters obstacles in
the normal flow of the learning process, making the user feel
confused when encountering contradictory information that leads
to uncertainties.

It should be noted that confusion can be equated with a
form of uncertainty in educational contexts (Cumbal et al., 2020).
Specifically, within the domains of social science and psychology,
such uncertainty is related to the concept of “metaignorance state”,
representing a state where individuals are conscious of their lack
of knowledge (Smithson, 2012; Anderson et al., 2019). In such
studies of metaignorance, there are said to be three sources of
uncertainty: The first source is probability, caused by the inherent
randomness or indeterminacy of future events; the second source
is ambiguity, stemming from limitations in the reliability, credibility
or sufficiency of available probability, linked to risk assessment and
information quality; and the third source is complexity, resulting
from intricate features within available information that are difficult
to understand, e.g., diverse potential causes or results (Han et al.,
2011). As such it can be seen that confusion and this specific notion
of uncertainty are clearly related to each other; however, it can
be argued that the confusion concept is less grounded in specific
epistemological or pedagogical concerns, and can also be accounted
for by the interaction context and lack of clarity in the part of an
interlocutor.

In terms of concrete models of confusion, the state-of-the-
art is limited in detail but sets a clear framework. Arguel and
Lane (2015) proposed two key thresholds (T_a and T_b) for
the levels of confusion in learning. Productive confusion occurs
between these two thresholds, indicating that the learners are
engaged in solving their confused state. When the level of
confusion is greater than T_b (persistent confusion), the cognitive
states of the learners can move to a state of frustration or
even boredom. However, if the level of confusion is less than
T_a, then the learners continue to participate in their learning.
Similarly, Lodge et al. (2018) proposed a zone of optimal confusion
and suboptimal confusion. Optimal confusion is a productive
confusion, indicating that learners are still engaged in overcoming
the confused state. However, suboptimal confusion is associated
with persistent confusion in which learners could not resolve their
disequilibrium, which in turn can lead to possible frustration or
boredom. Furthermore, D’Mello and Graesser (2014) proposed
a transition-oriented model where confusion can be seen as a

part of the emotional transition within the bilateral orientation of
engagement/flow and frustration/boredom.

The concept of confusion also has a relationship to the related
term “disequilibrium state” and associated concept “cognitive
disequilibrium”. Specifically disequilibrium state is a state that arises
when individuals encounter obstacles to their goals, interruptions
in organized action sequences, contradictions, anomalous events,
dissonance, incongruities, unexpected feedback, uncertainty,
deviations from norms, and novelty (Graesser et al., 2005; D’Mello
and Graesser, 2012; Lehman et al., 2012a). Thus, in many ways a
disequilibrium state can be thought of as a state that arises due
to a range of obstructing phenomena. The concrete relationship
between confusion and disequilibrium, with Lehman et al. (2012a)
noting that confusion can be construed as an affective component
of cognitive disequilibrium.

Another related concept is that of “metacognitive awareness”.
In the education field, metacognitive awareness has been defined
as the ability of learners to know when and how to apply
knowledge and strategies. Meanwhile, this ability is said to allow
individuals to reflect on their self-thinking to develop and apply
practical problem solving skills for learning difficulties (Joseph,
2009; Negretti, 2012). In general, Flavell (1979) argued that
metacognition is an exclusive human capacity involving self-
reflection, monitoring and the governance of one’s own knowledge
and thoughts. Metacognitive awareness encompasses three aspects
that Negretti (2012) summarized: 1) Declarative knowledge, being
aware that specific solutions and concepts are significant relating to a
specific task; 2) procedural knowledge, pertaining to understanding
how to employ concepts and strategies, essentially the “how” of
task execution; and 3) conditional knowledge, which relates to
recognizing when and the reason to utilize specific knowledge
and strategies, focusing on “when” and “why” aspects of their
application. In that study, “metacognitive awareness” is defined as
a mental process in which a user becomes aware of the user’s
mental state, such as confusion, and subsequently takes action or
understands the underlying cause.

Based on the above approaches, and our own earlier attempts
to define confusion as something which can be operationalized
(Li et al., 2021), we adapt two confusion state definitions on top of
which studies can be predicated. We define productive confusion
as the first stage of confusion. Here, an impasse in the flow
of interaction has been generated due to a disequilibrium state.
In such a case, a person has reached metacognitive awareness
of the confusion, and will generally be involved in solving this
disequilibrium. Meanwhile, unproductive confusion is the second
stage of confusion in which the disequilibrium state is persistent
and the impasse cannot be solved directly during the interaction.
Here, the interlocutor may become disengaged and may cease
interacting with others and may experience negative emotion states
(for example, frustration and boredom).

The transition from productive to unproductive confusion is
by its nature a change of mental process. When an individual
enters productive confusion, they typically attempt to overcome
confusion states, but these attempts can of course fail. Reasons
for such failure might be because solving this task is beyond the
users’ metacognitive awareness and, or, they cannot get any further
external help to answer the question, assimilate knowledge, or
perform the task in question. At this point, the user may then
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enter an unproductive confusion state. It is worth noting that the
process of solving productive confusion in the aforementioned
zone of optimal confusion is closely related to the scaffolding
process in the related zone of proximal development (ZPD). Here, a
scaffolding process supports the learning environment according to
the adaptation of the controlled level that is exercised by a tutor in
supporting learners’ understanding (Wood, 2001). The scaffolding
support lies in the ZPD, and the ZPD concretely represents the
distance between the actual level of the learners and their potential
level from Vygosky’s sociocultural theory in educational contexts
(Wood et al., 1976; Bruner, 1984).

While the frameworks above provide useful frameworks to
anchor an understanding of what confusion is, and how it has
been thought about to date in the pedagogy and social science
communities, the practical consideration in the context of human-
robot interaction must be on manifestations of confusion and their
mitigation. In practical interactions with robots in social settings,
there is a significant likelihood of confusion, and that any such
confusion is at best a negative experience for users, and at worse can
be a safety critical challenge. Consequently, there have been some
useful trends in research aimed at deliberately inducing confusion
states in order to investigate the mechanisms and characteristics
linked to confusion.

While there have been no concrete studies in the HRI literature
aimed at analyzing the challenge of confusion induction, in the
literature, we can identify four patterns of confusion induction (also
called confusion cause) and their corresponding non-confusion
correlates (Silvia, 2010; Lehman et al., 2012b) which are useful
in informing our understanding of confusion in practical task-
oriented interactions. The first of these, we refer to as information
complexity, which has associated stimuli complex information or
simple information. Complex information learning is an experience
full of emotions that occurs when learners are exposed to
complex material, difficult issues, or indecisive decisions, leading
to stimulating their confusion between positive and negative
emotions (Lehman et al., 2012b; Arguel et al., 2017). The second
pattern is information consistency. Here users might be exposed
to contradictory or consistent information where contradictory
content is typically associated with participant uncertainty and
confusion (Lehman et al., 2013). We refer to the third pattern as
information sufficiency. Here participants might be exposed to
either sufficient or insufficient levels of information and, based
on this, may not be able to understand a concept or perform a
task (Silvia, 2010). The final pattern that we identify is incorrect
feedback; rather than being focused on the direct ideational content
of language as is the case in the first three patterns, this pattern is
focused on the interaction and the fact that an interlocutor might
provide invalid feedback with respect to expectations following
the participant themselves contributing to the interaction. In
this pattern, Lehman et al. (2012b) designed a feedback matrix
of feedback states that distinguishes between correct feedback,
which comprises correct positive conditions and incorrect negative
conditions, and false feedback, which includes correct negative
and incorrect positive conditions. From their experiment, it was
witnessed that the presentation of correct-negative feedback, i.e.,
when learners responded correctly but received inaccurate or
negative feedback was an effective manipulation to stimulate
confusion.

2.2 Emotion recognition

While studies of confusion directly in the HCI and HRI
communities have been limited, there have however been many
studies of related phenomena which while not directly capturing
confusion, capture phenomena which we argue are closely
associated with confusion. The first of these is emotion.

Emotion is a fundamental factor in HRI that affects people’s
attitudes and influences their decisions, actions, learning,
communication, and situation awareness (Poria et al., 2017;
Demutti et al., 2022). If a person has a strong ability to observe
others’ emotions and manage their own emotions, they are likely
to contribute more successfully to the interaction with others
(Poria et al., 2017). Similarly, a social robot is arguably expected
to possess human-like capabilities to observe and subsequently
interpret human emotions. Building on this idea, Spezialetti et al.
(2020) identified three broad sets of tasks that are required to equip
robots with emotional capabilities: a) designing emotional states for
robots in existing cognitive architectures or emotional models; b)
formulating rich emotional expressions for robots through facial
expression, gesture, voice, etc.,; and c) detecting and inferring
human emotions. The first two areas are pure robotics-oriented
research, while the last area may be considered a more general
HCI consideration which must be tailored to the physically situated
nature of the HRI relationship.

While the general principle of identifying and modeling a
user’s emotional state seems somewhat straightforward, it should
be noted that this is by no means always true. Cohn (2007) argues,
for example, that human emotions cannot be observable directly
because emotion is a cognitive state whichmay ormay not be related
either to physiological and neuromuscular change. Therefore, in
practice, an emotionmight be explained only through an interaction
context and asserted through a user survey. Therefore, to recognize
emotions and build emotionmodels, it is necessary to design specific
experiments to trigger a participant’s different emotions from a
multimodal learning perspective.

As might be expected, facial features are a very frequently
studied modality of emotional expression. Important early work
includes the facial action coding system (FACS) with facial action
units which is a part-based method that is well known in facial
behavior research for the analysis of facial expressions (Cohn,
2007; Menne and Lugrin, 2017). More recently, Canal et al. (2022)
summarized two distinct groups of classification algorithms for
facial emotion recognition on facial images: classic methods and
neural network-based approaches. Classic methods use classical
artificial intelligence and image processing such as hand-crafted
feature design processing, wherein human experts engineer feature
selection to extract a set of features for training the facial emotion
recognition model. In contrast to this, the neural approaches focus
on the application of Convolutional Neural Networks (CNNs) and
generic image processing backbones to build often much more
robust emotion detection algorithms. For several years, CNNs have
been shown to provide highly accurate results in image analysis in
emotion recognition (Refat and Azlan, 2019).

Beyond direct facial expression, image processing has also been
used to assess emotion based on other visual features such as
head pose Murphy-Chutorian and Trivedi (2009), eye tracking
(Mavridis, 2015), and eye gaze (Zhang et al., 2020). Justification
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for such approaches is exemplified by the work of Emery (2000)
who explains that eye gaze is a component of facial expression
that is used as a cue to demonstrate the attention of the person to
another individual, an event, or an object. In their work, they proved
that eye gaze as a special cognitive stimuli is “hard-wired” in the
human brain. Moreover, in psychophysiology field, Bagherzadeh-
Azbari et al. (2023) showed that the emotion expressions with
different gaze direction (including averted gaze and direct gaze) are
significant social singles in human interactions.

Emotion recognition is not limited to image-based methods.
Speech emotion recognition (SER) has wide real-life applications,
including, for example, call centers (Wani et al., 2021), online
learning (Cen et al., 2016), spoken dialogue system (Yeh et al.,
2019), pain recognition (Özseven, 2019), depression diagnosis
(Singh and Goel, 2022), etc. Emotion states are identified in a typical
SER system from the speech signal without linguistic knowledge
(Altun and Polat, 2009). Unfortunately, there are still no common
approaches to extract the speech features to a consistent set of
specific emotion categories (Singh and Goel, 2022). Nevertheless,
Wani et al. (2021) outlines the classes of audio features relevant to
emotion analysis, i.e., spectral features, prosodic features, the teager
energy operator, and voice-quality features. In recent years, deep
learning has also become the dominant field, with architectures such
as CNNs, RNNs, LSTMs, and transformers, etc., all being used to
automatically learn speech features (Singh and Goel, 2022).

Beyond individual modalities, various recurrent and ensemble
network architectures have been built to analyze multimodal
datasets, including speech (audio) data, text-based data and video
data, and to estimate emotional states (Hazarika et al., 2018; Tripathi
and Beigi, 2018). It can be seen that the use ofmultimodal data offers
valuable insight into the domain of emotion recognition within
dialogues for both HCI and HRI.

2.3 Engagement estimation

While the emotional state of a user is inmanyways fundamental,
it can often be more beneficial from an HRI perspective to
model the user’s engagement. Such research is motivated by the
underlying need to ensure that users are motivated to engage and
continuously communicatewith the robot or systemover non-trivial
periods. Engagement in social and cognitive psychology is often
expressed through one of three aspects: social connection, mental
state, or motivated and captivated phenomena (Sidner et al., 2004;
Jaimes et al., 2011; Doherty and Doherty, 2018). Of these, probably
the most relevant for the HRI perspective is the social connection
aspect, where engagement is a process in which participants start
to establish a connection, try to maintain this connection, and
eventually complete their connection (Sidner et al., 2004; Doherty
and Doherty, 2018). Meanwhile for the motivated and captivated
phenomena, engagement may not apply to a single interaction but
may instead measure a long-term relationship. This is particularly
true when engaging with a social platform, although interaction
with robotic platforms over time is certainly a long-term desire
(Jaimes et al., 2011).

Engagement has been studied with a range of experimental
modalities, both within the field of HRI and beyond. In one notable
study, Ben Youssef et al. (2017) studied spontaneous conversation

with a humanoid robot (a Pepper robot) in a public institute
setting. Through four designed conversational interaction sessions,
multimodal user data was collected to analyze user engagement
against the results of post-study surveys. In another experimental
setting, Tapus et al. (2012) looked at four single-subject experiments
on social engagement between children with autism and the
humanoid Nao robot. This study made use of a wizard-of-oz
methodology where two rooms were set up, one for the child and
the robot, and one for the operator who controlled the robot’s
movements. Even recently, Zhanatkyzy et al. (2023b) designed and
empirically investigated 24 robot activities with different levels of
social mediation in a rehabilitation setting that included children
with different autistic traits.This study was notable in that it used the
Nao robot platform to investigate the types of social robot activities
that could improve social behaviors for those children with autism.

Regarding the specific detection of engagement,
Ben Youssef et al. (2017) presented an analysis of self-reported
engagement levels with respect to posture tracking and facial
expression analysis. Turning to Tran et al. (2020)’s study in the
pedagogy space, the authors measured task precision, reaction
time, perceived mental workload, and perceived communicative
effectiveness as measures to detect user engagement. Moreover,
free initiation in children and robot experiments concerned the
gross motor actions that the child performed without prompt while
looking at the robot or human interaction (Tapus et al., 2012). Gaze
shifting then referred to the occasions spent moving gaze between
the robot and the human. While these studies are interesting in
that they consider various factors associated with engagement
estimation, it is notable that the settings for these studies are often
heavily oriented toward pedagogical factors. Few studies within the
field of HRI have concentrated on measuring user engagement by
combining multiple social behaviors exhibited during dialogues
between a human and a robot. This points to a gap in the
existing research, emphasizing the need for more comprehensive
investigations into the complex dynamics of engagement in HRI.

In this section, while the above studies do indicate that there
have been some advances with respect to defining confusion states
and the sets of circumstances which can give rise to those states,
there has, beyond our own previous research, as of yet, been little
done in the way of modeling confusion detection, although there is
some work for modeling confusion detection recently in learning,
e.g., Atapattu et al. (2020), but not in the field of situated HRI; thus,
our studies aim to fill this gap.

3 Study design

Below we lay out the overall aims and structure of a new user
study which we performed to elicit confusion states in task-oriented
HRI. Whereas in an earlier study (Li and Ross, 2023), we induced
user confusion and non-confusion states with a range of task types,
in this extended study we have narrowed the scope of investigation
by focusing on one verbal task type. Moreover, whereas the earlier
study considered only the existence of confused and non-confused
states, the present study recognizes the proposed existence of three
distinct mental states, i.e., productive and unproductive confusion
states, as well as the non-confusion state.
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3.1 Study overview

The general pattern of this study follows our earlier work
in Li and Ross (2023) as well as other examples of WoZ style
user state analysis studies exemplified by Ben Youssef et al. (2017).
Specifically, we again use a controlled methodology where users
interact with a humanoid robot platform to perform a series of
tasks where some task instances are designed to elicit confusion
while others are not. In that pilot study we exposed participants
to three different task types, i.e., logical problems, math questions,
and word problems. While this was sufficient for demonstrating the
detectability of confusion states, this extra dimension of analysis
reduces the controllability of the study and makes it impossible
in practice to analyze confusion states at a more fine-grained
level. In light of this and some other experimental considerations,
we redesigned our study to focus on one task type only, i.e.,
word problem, and redesigned several additional aspects of the
study to provide more control and experimental clarity. We
also upgraded our experimental devices to collect higher quality
multimodal data which we believe will be of higher value to the
community.

Specifically, for this study we again used the Pepper robot
platform. The Pepper robot includes customizable social behaviors
including natural and expressive movements using 20 degrees
of freedom, speech recognition in multiple languages, which we
configured to English for the current study. Beyond the speech
modality, the Pepper platform can observe and interact with a
person who is close to it through 2D and 3D cameras onboard,
touch sensors, and LEDs for multimodal interactions. For our
experiments, we made use of the Naoqi framework, which provides
a fully open programmable platform for us to manually control the
Pepper robot and design its animated speech and multi-interactive
behaviors programmatically and interactively.

The experimental design is based on a semi-spontaneous
physical face-to-face conversation in English between the Pepper
robot and each participant. Following registration, a comprehensive
introduction of the experiment was shared first with each
participant, before consent forms were signed, and the experiment
itself began. Each participant was then guided into an experiment
room where they were left in front of the Pepper robot. In addition
to the robot, the roomwas equippedwith a number of other cameras
and microphones to provide extra pickups on the interaction. Since
this was a fully WoZ driven study, an experimental controller was
set up in a second adjacent room where views of the feeds from
the experimental room were available, as well as the controls for
the robot itself. Figure 1 presents an overview of this experimental
layout, two rooms are isolated, including the experiment room
where the participants and the Pepper robot interacted and the
wizard room where the researcher controlled the pepper robot
and monitored the experiment room. The additional recording
equipment included three high-definition webcams. Webcam 1 was
placed behind the Pepper robot and oriented toward the participant’s
face to clearly monitor their facial expression. Webcam 2 was placed
right beside the robot to observe the participant’s body gestures.
Finally, Webcam 3 was placed close to Webcam 1, but oriented so
that the wizard could monitor the whole process of the experiment
from the wizard’s room. Participants were required to wear a lapel
microphone and stand along a line that was approximately 80 cm

in front of the robot to ensure that they were safe but still in the
interactive zone.The equipment and the Pepper robot in both rooms
are interconnected through the private experimental network.
The picture to the left of Figure 1 shows the actual scene of the
experimental setting.

Each interactive session with the Pepper robot had two distinct
conversations. The first conversation was a free talk of around
5 min, where participants adapted to interaction with the Pepper
robot and the general principles of HRI interaction. For this, the
Pepper robot was in full autonomous mode; and during the free
talk, a researcher assisted and encouraged participants to engage
with the Pepper robot in the experiment room. Moreover, we
suggested 11 simple short conversational tasks for participants
to engage in interactively with the robot. These included asking
the robot, “Who are you?“, “Can we shake hands?“, “Show your
left hand.“, etc. The second conversation was the experimental
task-oriented dialogue session, which took approximately 20 min.
During this period, the Pepper was changed to be fully controlled
by the researcher, and the researcher themselves stayed in the
wizard room leaving the participant alone with the Pepper robot
in the experiment room. This experimental conversation included
eight crafted dialogues based on a verbal problem task (detailed in
Section 3.2). After each of the eight dialogues in this conversational
interaction, the participants were asked to rate their level of
confusion during a 1-min break. Once completed this second
conversational session, the researcher returned to the experiment
room again and the participants were asked to complete a post-study
survey which included a number of statements referenced against
a 5-point Likert score. This survey included questions on general
experimental HRI experiences, as well as the PARH (Perceived
Awareness of the Research Hypothesis) scale (Rubin, 2016) that
allow researchers to assess the potential influence of demand
characteristics (i.e., “users’ confusion levels”) in this study. Finally,
a 3-min oral interview was conducted to collect more feedback on
the interaction.

Participants in this study were recruited across a metropolitan
university. In total there were 81 individuals (female: 36, male:
44, non-binary: 1) who were each over 18 years of age, and with
21 nationalities represented. Of these, 38 participants were in the
18− 24 age group, 31 participants were in the 25− 44 age group,
while the 45− 59 age group had 8 people, and 4 people over 60
years of age. In terms of social profile, 61 people were students
at colleges, 14 people worked in academia, and 6 people worked
in industry. Participants were not required to have English as a
first language, although 45 people were native English speakers. It
should be mentioned that only 1 of 81 participants had experience
interacting with a humanoid robot. The 81 participants agreed to
make their data available for analysis and publication for research
purposes.

3.2 Task-oriented dialogue design

As indicated, the second part of themain interaction consisted of
eight individual dialogueswhichwere broken up by 1 minute breaks.
Each of these dialogues was used to express one single experimental
condition. In total we had three experimental conditions, or
rather stimuli classes, and these correspond to the levels of
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FIGURE 1
Wizard-of-oz experiment setup (left: the actual experiment room; right: the schematic experiment room and wizard room).

non-confusion, productive confusion, and unproductive confusion
previously introduced. Each individual task was indicated on the
basis of a word problem. For notation purposes, the three conditions
are referenced as follows, Condition A1 = productive confusion;
Condition A2 = unproductive confusion; while Condition B is
referred to stimuli which are in principle non-confusing.

In order to limit the potential of confusion persistence and
intermingling between experimental conditions, we adopted a cross
participant approach to the experimental design, where participants
were grouped into either productive or unproductive confusion
experimental groups. For the productive confusion experimental
group (A1), each participant was first exposed to 4 instances of
non-confusion stimuli, before being exposed to a sequence of
4 productive confusion stimuli. Similarly, for the unproductive
confusion experimental group (A2), participants were first exposed
to 4 instances of non-confusion stimuli, before being exposed
to a sequence of 4 unproductive confusion stimuli. Thus, the
sequence of eight dialogues for each participant is either “B-B-B-
B-A1-A1-A1-A1” or “B-B-B-B-A2-A2-A2-A2” depending on the
experimental group to which they were assigned. We refer to these
two experimental groups as either Condition BA1 or Condition
BA2 as appropriate; (see Table 1).

In previous work, we have used alternative designs which
were based on an interleaving of confusing and non-confusing
stimuli. While it is likely that our current design introduces its
own challenges, we feel that this design strikes the right balance

on control with a smaller chance of confusion states, or rather
behavioral indicators of confusion states, leaking into states where
no confusion should be present. Finally, it should be noted that
the non-confusing dialogues, i.e., those labeled Condition B, were
identical regardless of being used for either Condition B_A1 in the
productive confusion experimental group or Condition B_A2 in
another experimental group.

Beyond the three main conditions of non-confusion (B),
productive confusion (A1) and unproductive confusion (A2),
one further conditional subclassification was introduced into the
experimental design, and this relates purely to Condition A1.
Namely, the dialogues of Condition A1 were designed to include
assistance provided by the Pepper robot to help participants
overcome their confusion state. Being more specific, the dialogues
were designed such that the robot asks the participant whether they
need help to answer the question after the participant has tried to
answer the question twice incorrectly or the participant may request
a help to the Pepper robot. The interaction up to this assistance
request is labeled Condition A1_beforehelp, whereas all interactions
thereafter are labeled Condition A1_withhelp. This assistance, in
Condition A1_withhelp, involved the robot deliberately moderating
its speech pace, presenting the problem step by step, and soliciting
feedback from the participant to gauge comprehension. Such
differentiation helps us to explore whether there are detectable states
for participants as they transition from a confused state to one where
that confusion is being overcome. Some participants were able to
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TABLE 1 Example of sequences of confusion induction in participants.

Participant 1

Dialogues Non-, Confusion
Stimulus Type

Conditions

1st Simple information Condition B 

2nd Consistent information Condition B

3rd Sufficient information Condition B

4th Correct feedback Condition B

5th Confusion Cause
(CC)1*

Condition A1

6th CC2* Condition A1

7th CC3* Condition A1

8th CC4* Condition A1

Participant 2

Dialogues Non-, Confusion
Stimulus Type

Conditions

1st Simple information Condition B

2nd Consistent information Condition B

3rd Sufficient information Condition B

4th Correct feedback Condition B

5th CC1* Condition A2

6th CC2* Condition A2

7th CC3* Condition A2

8th CC4* Condition A2

*CC1: Complex information.
*CC2: Insufficient information.
*CC3: Contradictory Information.
*CC4: False feedback.

answer the confusion question without this help from the robot. In
such cases, we labeled the entire dialogue sequence as Condition
A1_beforehelp. However, in the unproductive confusion condition
(A2), the Pepper robot only repeated the question with the same
speed of speech until the participant showed their wish to give
up.

To attempt to ensure an invocation of confusion that might
correspond to the many different potential causes of confusion in
practical tasks, we mapped each of the four individual confusion
dialogues (either A1 or A2) to one of the four patterns of confusion
which we outlined in the previous section. Thus, each dialogue
was designed using either one stimulus type designed to induce
confusion or a stimulus type designed not to induce confusion (see
Table 1). To illustrate the specific nature of the tasks and text used
by the robot, eight dialogue scripts based on the four confusion

patterns have been included in the resources associated with this
paper2. It should be noted that while four distinct confusion causes
are used across the dialogues, the experimental design, which is
different from our previous study, is limited to verbal problems
only.

3.3 Data collection

During interactions, data were recorded across the Pepper
robot’s built-in sensors as well as the higher-fidelity devices that
were situated around the experimental room. Media data and post-
study survey data were thus collected from 81 participants—41
participants were in the productive confusion experimental
group, while 40 participants were in the unproductive confusion
experimental group. The multimodal data streams were initially
labeled as a whole based on the collection condition, i.e., “Condition
BA1” (including Condition B_A1, Condition A1_beforehelp, and
Condition A1_withhelp), or “Condition BA2” (including Condition
B_A2 and Condition A2), before post hoc fine-grained labeling was
applied to specific extracts of the data as appropriate. It should be
noted that Condition B_A1 and Confusion B_A2 represent the
same experimental state in practice, i.e., the extracts of interactions
at the start which consist of non-confusion states only. We thus
would expect that the two populations should demonstrate similar
characteristics and could in principle be grouped together as a
single B set in principle. While this is true we have kept these two
subgroups of B distinct in analysis as in many cases our interest is in
comparing intra-subject behavior between the participants in B_A1
and A1 and B_A2 and A2.

Basic editing as well as some limited preprocessing were applied
to the raw data to prepare a dataset for analysis. In each facial
video, we cropped the greeting and conclusions, and then extracted
facial frame data with conditions labeled. To ensure that each
frame instance is a valid facial image, we applied the Multitask
Cascaded Convolutional Neural Network (MTCNN)-based face
detection algorithm (Savchenko, 2021) to detect the face and then
automatically center-crop to a region of 224× 224 pixels. The
resultant set included 28,938 facial frames for Condition A1 (13,742
facial frames for Condition A1_beforehelp, and 15,196 facial frames
for Condition A1_withhelp), 26,631 facial frames for Condition A2,
and 11,218 facial frames for Condition B (5,695 facial frames with
Condition B_A1, and 5,523 facial frames from Condition B_A2).

As for the audio stream, we again removed the greeting and
conclusions and cropped several pieces of audio corresponding to
five experimental conditions segments of interest in the interaction.
After verifying these audio stream data, we had collected 316 audio
samples for Condition A1 (162 audio samples for Condition A1_
beforehelp, and 154 audio samples for Condition A1_withhelp), as
well as 152 and 308 audio samples respectively for Condition A2
and Condition B (156 audio samples labeled with Condition B_
A1, and 152 audio samples labeled with labeled Condition B_A2),
respectively.

2 https://github.com/nalibjchn/SituatedHRITrackConfusion/blob/main/
DialogueScripts.pdf
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4 Data analysis

To investigate participant behavior in all three conditions,
we grouped our two objective data types, i.e., visual and audio
data, and then applied a range of feature extraction algorithms
before analyzing the interactions between those extracted features
and both the experimental conditions and the self-assessed
confusion levels from the post-study survey. To this regard, we
can learn the correlations between each result of the feature
analysis and the experiment conditions. In the following, we
motivate specific hypotheses for analysis, break down the analysis
process, and then provide an overview of the results of this
analysis.

4.1 Visual data analysis

Our visual investigation was focused on the face, where
we borrowed methodologies for learning nonverbal interacting
user behaviors in the studies of emotion estimation and
user engagement with respect to eye gaze and head pose
features.

4.1.1 Facial emotion detection
Given an assumed link between emotional states and confusion

(D’Mello and Graesser, 2014; Liu et al., 2022), we applied a facial
emotion detection algorithm to estimate for each frame an
emotional quotient for each individual frame in terms of common
emotion categories, i.e., anger, disgust, fear, sad, happy, surprise,
and neutral. While the link between emotion and learning state is
well argued in the literature, there are a number of presumptive
hypotheses based on previous works that we hoped to be true.
Most significantly, we expect that participants in either a productive
confusion state or unproductive confusion state demonstrate enter
into a more negative emotional state and that this negative state
should be apparent from image data. As a corollary we expect
that more positive data would be associated with non-confusion
states. We similarly expect that the product confusion state should
be associated with less negative emotions than the unproductive
confusion state—particularly with respect to the with help portion
of the analysis.

For the facial emotion detection, we used a model based on
the MobileNet architecture and trained in the AffectNet dataset
(Howard et al., 2017; Mollahosseini et al., 2017; Savchenko, 2021).
The predicted emotion scores are from seven emotion indexes,
i.e., 0: “Anger”, 1: “Disgust”, 2: “Fear”, 3: “Happy”, 4: “Neutral”, 5:
“Sad”, and 6: “Surprise”. Thus, each image is assigned an emotion
type based on these predicted scores. Table 2 shows the results
analyzed for both the productive confusion experimental group and
the unproductive confusion experimental group. As the dialogue
interaction with any confusion condition is longer than these
with non-confusion condition, it appears that the number of
each detected emotion for Condition B_A1 or Condition B_A2 is
less than these for Condition A1 or Condition A2, respectively.
Moreover, concerningConditionA1_beforehelp andConditionA1_
withhelp, the number of emotions “happy”, “surprise”, and “neutral”
in Condition A1_withhelp are greater than these emotions in
Condition A1_beforehelp; meanwhile, the number of each of the

emotions “anger”, “fear” and “sad” in Condition A1_beforehelp
is greater than those in Condition A1_withhelp, excluding the
predicted emotion “disgust” that is ignored due to the limitations
of the facial emotion algorithm for these results (Li and Ross, 2023).

While facial emotion recognition algorithms are beneficial in
many tasks, it is known that they may still produce imperfect
results at fine granularities. Hence, following the 2-D model that
integrates valence and arousal (Russell, 1980), we grouped the
seven predicted emotions into four broader categories based on
the individual’s mental state, i.e., negative emotion that includes
“sad”, “fear”, “anger”, and “disgust”, positive emotion which is
a singleton class that includes only the “happy” emotion, the
surprise emotion (Vogl et al., 2019), and finally the neutral emotion.
Moreover, following (Maithri et al., 2022) who shows that these
boarder emotion categories can be modeled in three dimensions,
namely, valence-arousal-dominance. This modeling can help to
assess the level of stimulus control.

Considering first the case for the data with Condition A1,
these results are presented in Figure 2. We see that the number of
negative instances, positive instances and surprise instances within
Condition A1_withhelp are greater than these emotion instances
within the other two conditions; while for Condition A1_beforehelp
the number of neutral emotions is greater than those with the
other two conditions. Finally, it should be noted that the number of
surprise emotion instances is almost 0 in both Condition B_A1 and
Condition A1_beforehelp.We suggest that these results indicate that
participants were more engaged in answering the question with the
Pepper’s help.

Turning to the results for Condition A2, for the four emotion
groupings classified in Condition A2 and Condition B_A2, the
number of negative instances, positive instances, and surprise
instances in Condition A2 is greater than that of Condition B_
A2—see Figure 3. We suggest that these results show that, without
the robot’s help, the participants were more emotionally expressive
and taking longer interactions in the word problem tasks in
Condition A2 than in Condition B.

To provide a more detailed analysis, as the number of each
emotions in Condition A1_beforehelp, Condition A1_withhelp and
Condition A2 are greater than in Condition B_A1 and Condition
B_A2, but yet those predicted data were still a small size, we
randomly selected sub-results of facial emotion predicted outputs in
Condition A1_beforehelp, Condition A1_withhelp and Condition
A2 which are the same number of those outputs in Condition
B_A1 and Condition B_A2 respectively, for statistical analysis.
Across productive confusion and non-confusion, a Chi-Square test
for independence (with Yates’ Continuity Correction) indicated
a significant association between seven emotion indices and our
three labeled conditions (Condition A1_beforehelp, Condition
A1_withhelp and Condition B_A1), ̃χ2(1, n = 34,633) =
169.83,p− value < 0.05,phi = 0.07). Moreover, a Chi-Square test
for independence (with Yates’ Continuity Correction) indicated
significant association between the seven emotion indices
and two labeled conditions (Condition A1_beforehelp and
Condition A1_withhelp), ̃χ2(1, n = 28,938) = 82.45,p− value <
0.01,phi = 0.05). Turning to the emotion estimation results
across unproductive confusion and non-confusion states, a Chi-
Square test for independence (with Yates’ Continuity Correction)
indicated significant association between our seven emotion
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TABLE 2 The result of facial emotion estimation in Condition A1, A2, and B.

Condition (labeled) Anger Disgust Fear Sad Happy Surprise Neutral Overall

A1_beforehelp 3,110 1,503 95 2,693 1,961 81 4,299 13,742

A1_withhelp 3,020 1,877 90 2,680 2,192 136 5,201 15,196

B_A1 1,086 826 37 1,025 646 35 2,040 5,695

A2 4,820 2,411 304 4,910 7,173 331 6,682 26,631

B_A2 815 495 51 949 1,431 50 1,732 5,523

FIGURE 2
Four facial emotion categories for Condition A1 and Condition B.

FIGURE 3
Four facial emotion categories for Condition A2 and Condition B.

indices and the two conditions (Condition A2, Condition B_A2),
̃χ2(1, n = 32,154) = 110.02,d f = 6,p− value < 0.01,phi = 0.06).

To provide deeper insight into the data, we randomly chose one
participant from each of the two experimental groups. Figures 4, 5

present a time-series visualization of the emotional group (four
states, i.e., “happy”, “sad”, “surprise” and “neutral”) for two
participants for each of the two experimental groupings in the
facial videos. For this particular analysis, we used the open
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FIGURE 4
The emotional changes for one participant during dialogues with conditions (BA1).

source facial expression recognition application (FER)3. The FER
application is built on the MTCNN facial recognition network
(Zhang et al., 2016), with the emotion classifier (Arriaga et al.,
2017) trained on the FER-2013 emotion dataset (Goodfellow et al.,
2013). In the productive confusion experimental instance we can
see that “neutral” and “sad” occurrences dominate, while the
“happy” emotions can sometimes climb to the top—particularly
during the non-confusion periods corresponding to Condition B.
Meanwhile, in the unproductive confusion group participant, we
see “neutral” and “happy” dominated during Condition B, while
for Condition A2 the emotions “sad” and “neutral” were very
strong.

4.1.2 Eye gaze estimation
Moving from facial emotion to eye gaze estimation, the

importance of eye gaze and its impact on emotion and engagement
levels has been previously investigated, and based on the
literature we hypothesize that the range of eye gaze for users
with either productive confusion or unproductive confusion
would be less than for those participants in a non-confusion
state.

To investigate this, we applied a state-of-the-art eye gaze
estimation algorithm, trained on the large-scale gaze estimation
dataset called ETH-XGaze (Zhang et al., 2020), to our pre-processed
facial frame data, in order to predict pitch and yaw angles. Since

3 https://pypi.org/project/fer

different angles may have positive or negative values, a composite
sum of angles for a given user would likely cancel out to zero;
therefore, as a composite metric, we instead summed the two
absolute angles to produce an amalgamated metric for each user.

Figure 6 presents the amalgamated metric (absolute yaw and
pitch) across our experimental conditions. From these results we
can see that the median of the composite feature for participants
in Condition B_A2 is greater than that of the other four labeled
conditions. However, there is a notable, though slight difference in
the median of the composite between Condition A1_beforehelp,
Condition A1_withehelp and Condition B_A1.

To provide a more detailed analysis, we applied a one-
way ANOVA to explore the impact of normalized the sum of
absolute pitch and yaw angles for eye gaze with experimental
conditions including productive confusion and non-confusion.
A significant difference was found in the angle scores (i.e.,
normalized sumof absolute pitch and yaw angles) for eye gaze across
Condition A1_beforehelp, Condition A1_withhelp and Condition
B_A1, (F(2,29784) = 14.61,p− value < 0.01,d = 9.80e− 04).
Tukey’s HSD (Honestly Significant Difference) test for multiple
comparisons found that the mean scores in Condition B_A1
(M = 0.36,SD = 0.13) were not significantly different from those in
Condition A1_beforehelp (M = 0.35,SD = 0.13), p− value = 0.36;
however, the mean scores for those in Condition A1_withhelp
(M = 0.36,SD = 0.14) were significantly different from those
for Condition A1_beforehelp p− value < 0.01, as was the case
for Condition B_A1, p− value < 0.05. Regarding unproductive
confusion, we again calculated the normalized sum of absolute pitch
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FIGURE 5
The emotional changes for one participant during dialogues with conditions (BA2).

FIGURE 6
Eye gaze estimation analysis. The line in yellow represents the median.

and yaw angles as a composite feature, and an independent sample
t-test showed that there was a significant difference in this composite
value across the two labeled conditions (M = 0.40,SD = 0.15
for Condition A2, M = 0.45,SD = 0.16 for Condition B_A2),
t(26736) = −21.205,p− value < 0.01,d = −0.26.

4.1.3 Head pose estimation
Similar with eye gaze, head pose has been found to have

correlations to engagement and emotion level, and based on this
we hypothesized that the ranges of head pose for participants
in either productive confusion or unproductive confusion states
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FIGURE 7
Head pose analysis.

should be less than those of users who are in non-confusion
states.

To test this, on our aligned facial images, we applied a
trained head pose estimation model based on a CNNs backbone,
dropout and adaptive gradient methods which was trained on three
public datasets: the Prima head pose dataset, the Annotated Facial
Landmarks in theWild (AFLW), and the Annotated face in theWild
(AFW) dataset (Gourier et al., 2004; Köstinger et al., 2011; Zhu and
Ramanan, 2012). From this trained model we extracted the three
angles of pitch, yaw, and roll for each image frame. These values
were then grouped across our five labeled conditions. Similarly to
the analysis of eye gaze estimation, we calculated the sum of the
three absolute values of these angles to produce a new composite
feature.

Figure 7 demonstrates a slight difference between the head
pose estimation results for the five labeled conditions. From these
results we can see that the median composite value for Condition
B_A1 and Condition B_A2 is lower than that in Condition
A1 (Condition A1_beforehelp and Condition A1_withhelp) and
Condition A2, respectively. Meanwhile, the median value in
Condition A1_beforehelp is higher than those for Condition A1_
withhelp.

Again, similar to the eye gaze estimation, we performed
a statistical analysis of these results by applying a one-way
ANOVA which showed that a significant difference was found
in the composite angle scores (i.e., normalized sum of absolute
pitch, yaw and roll angles) measurement across Conditions
A1_beforehelp, Condition A1_withhelp and Condition B_A1
(F(2,34622) = 32.08,p− value < 0.01,d = 1.85e− 03). Tukey’s HSD
test for different comparisons of any two conditions illustrated that
the mean scores for Condition A1_beforehelp (M = 0.25,SD = 0.14)
was significantly different from those for Condition A1_
withhelp (M = 0.24,SD = 0.13), p− value < 0.01 and also

significantly different for Condition B_A1 (M = 0.23,SD = 0.14),
p− value < 0.01. However, there were no significant differences
for the mean head pose scores between Condition A1_withhelp
and Condition B_A1, p− value = 0.98. For the unproductive
confusion experimental group, an independent sample t-test
was performed showing that there was a significant difference
for the composite angle scores across (M = 0.25,SD = 0.14
for Condition A2, M = 0.24,SD = 0.14 and Condition B_A2),
t(32152) = 2.78,p− value < 0.01,d = 0.03.

4.2 Audio data analysis

With respect to audio data, our focus is on the features of speech
that can be taken as indicators without requiring a full semantic
or context-specific analysis of the speech. Thus, in this section, we
present the analysis of low-level features including silence time,
speech emotion recognition, acoustic feature vectors, e.g., Mel-
Frequency Cepstral Coefficients (MFCCs) feature (Mohan et al.,
2023), as well as pitch of speech.

4.2.1 Emotional silence duration analysis
Silence or delayed response in a dialogue is a useful feature of

nonverbal interaction. Oto et al. (2017) suggested that the silence in
HRI can be divided into four types, i.e., semantic silence, syntactical
and grammatical silence, robotic silence, and interactive silence,
and that interactive silence may at times reflect the user’s strong
emotion such as anger, surprise, and fear, etc. Broadly speaking,
we can therefore hypothesize that the emotional silence duration
of the participants in a non-confusion condition should be shorter
than that for participants in either the productive confusion or
unproductive confusion condition.
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FIGURE 8
Silence duration time analysis.

Based on this hypothesis, in our analysis of the audio data,
we accounted for interaction silence by labeling and subsequently
measuring the silence duration time of the participants only between
the point after the robot asked a question or gave feedback to the
participant, but before the participant started to respond orally.Then
the labeled silence duration time was normalized under the different
experimental conditions.

Figure 8 presents a comparison of the normalized silence
duration time for five labeled conditions. From these results we can
see a sharp difference in silence duration time between confusion
conditions and non-confusion conditions. The median score of the
silence duration time is 0 in Condition A2_B and Condition A1_
B; and there is a slight difference in the median scores between
Condition A1_beforehelp and Condition A1_withhelp. Meanwhile,
the median score of the silence duration time in Condition A2 is
lower than that for both labeled conditions in productive confusion.
We suggest that this demonstrates that the participants expected to
have to wait for the robot’s help in order to overcome their confusion
in dialogues with productive confusion.

For statistical analysis, a one-way ANOVA was performed
to investigate the impact of the interactive silence duration
across productive confusion and non-confusion periods. There
was a significant difference in the normalized silence duration
time across Condition A1_beforehelp, Condition A1_withhelp,
and Condition B_A1 (F(2,660) = 40.56,p− value < 0.01,d = 0.11).
Tukey’s HSD test found that the mean scores for Condition
B_A1 (M = 0.04,SD = 0.11) were significantly different from
those for Condition A1_beforehelp (M = 0.15,SD = 0.16),
p− value < 0.01 and also differ significantly for Condition A1_
withhelp (M = 0.13,SD = 0.15), p− value < 0.01; however, the mean
scores for Condition A1_beforehelp were not significantly different
from those for Condition A1_withhelp, p− value = 0.35. Turning to
the unproductive confusion experimental group, an independent
sample t-test was performed, indicating that there was a significant

difference between the normalized silence duration time across the
two conditions (M = 0.09,SD = 0.10 A2, M = 0.02,SD = 0.08 and
B_A2), t(990) = 12.57,p− value < 0.01,d = 0.14.

4.2.2 Emotional pitch analysis
Pitch is one of the prosodic elements in speech signals, and

is also a nonverbal parameter in human social communications,
whereby various expressions of emotions can be reflected by changes
in different ranges of pitches, e.g., people in a happy state can be
detected by higher pitch and larger range of pitch, whereas, when
people feel sad, their speech signals are typically slower with lower
average pitch and narrower range of pitch, etc. (Gasteiger et al.,
2022). Based on this potential relationship to emotional state,
and hence an indicator of more pronounced confusion states, we
can express a broad hypothesis that the emotional pitch of the
participants in a non-confusion state should be higher than that
for participants in either the productive confusion or unproductive
confusion states.

In our analysis, we extracted pitch values using the YAAPT (Yet
Another Algorithm for Pitch Tracking) pitch tracking algorithm
(Zahorian and Hu, 2008). As the pitch results of each audio sample
are a sequence of temporal pitch values, we calculated the mean
value of each set of values as a new feature (called pitch value)
for analysing. Figure 9 presents a detailed comparison of the mean
pitch value for the five labeled conditions. It shows that there
are minor differences in each experimental group. The median
of pitch values in Condition A1_B is slightly lower than that in
Condition A1 (i.e., Condition A1_beforehelp and Condition A1_
withhelp). Whereas, in the unproductive experimental group, the
median of pitch values in Condition A2_B is greater than that in
Condition A2.

To further analyze, for the productive confusion experimental
group, we conducted a one-way ANOVA on the YAAPT estimations
to explore the influences of normalized user pitch values under
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FIGURE 9
Emotional pitch analysis.

the productive confusion conditions. We found that there was no
significant difference in normalized pitch values with Condition
A1_beforehelp, Condition A1_withhelp, and Condition B_A1
(F(2,470) = 1.22,p− value = 0.30). For the unproductive confusion
experimental group, an independent sample t-test was performed.
Again, no significant differences were found for the normalized
pitch values between the two conditions (M = 0.39,SD = 0.25
for Condition A2, M = 0.39,SD = 0.37 for Condition B_A2),
t(302) = −0.27,p− value = 0.79.

4.2.3 Speech emotion analysis
Speech signals can also be used to directly infer an

associated emotional signal, which again may have a direct
influence on confusion states as per the argument set forward
for visual indicators. On that basis we again hypothesize
that participants in a non-confusion state will demonstrate
more positive emotions as measured from speech signals
directly than is the case for participants in a confusion
condition.

To investigate this possibility, we cropped all participant audio
speech signals for each labeled condition, then extracted the
speech spectral features from those data using MFCCs features as
input, in order to directly predict four different salient emotion
indexes, i.e., “anger”, “happy”, “neutral”, and “sad”. For this, we
used the trained Temporal-aware bI-direction Multiscale Network
(TIM-Net) model (Ye et al., 2023), which is a state-of-the-art
temporal emotional modeling solution, trained on six benchmark
Speech Emotion Recognition (SER) datasets, i.e., Chinese corpus
CASIA, German corpus EMODB, Italian corpus EMOVO,
English corpora IEMOCAP, RAVDESS and SAVEE (Busso et al.,
2008; Tao et al., 2008; Jackson and Haq, 2010; Costantini et al.,
2014; Livingstone and Russo, 2018; Benlamine and Frasson,
2021).

Figure 10 presents the predicted emotion categories with respect
to the two experimental groups. Notable results include the
fact that there were no instances of the “sad” emotion in the
participants’ speech, and that the number of “happy” instances
in Condition B_A1 was greater than those of the other two
labeled conditions. Additionally, the number of “anger” instances
recorded for Condition A1_beforehelp was greater than those in
both Condition A1_withhelp and Condition B_A1. Meanwhile,
the number of “neutral” instances in Condition A1_withhelp was
slightly higher than that of Condition A1_beforehelp and Condition
B_A1. For the unproductive confusion experimental group, the
number of “happy” instances in Condition B_A1 was greater than in
Condition A2, while the number of “anger” emotions in Condition
B_A1was less than that for Condition A2. Finally, it should be noted
that the number of “neutral” instances in Condition B_A2 was 0,
while therewere no “sad” instances recorded for user speech in either
labeled conditions.

In the statistics analysis of emotion speech, it suggests that
participants were on average happier in dialogues with non-
confusion condition than those with either confusion state. A
one-way ANOVA was used to investigate the impact of emotion
speech with productive confusion and non-confusion. We found
that there was a significant difference in the normalized emotion
scores across Condition A1_beforehelp, Condition A1_withhelp,
and Condition B_A1(F(470) = 6.30,p− value < 0.01,d = 0.03).
Tukey’s HSD test found that the mean emotions scores for
Condition B_A1 (M = 0.27,SD = 0.18) were significantly different
from those for Condition A1_withhelp (M = 0.19,SD = 0.19),
p− value < 0.01, but did not significantly differ for Condition
A1_beforehelp (M = 0.25,SD = 0.23), p− value = 0.54. Moreover,
there was a significant difference in mean emotion scores
between Condition A1_beforehelp and Condition A1_withhelp,
p− value < 0.05. For the unproductive confusion experimental
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FIGURE 10
Four emotions speech recognition.

group, an independent sample t-test was performed which
showed that there was a significant difference between the
normalized emotion scores in users’ speech between Condition A2
(M = 0.31,SD = 0.27) and Condition B_A2 (M = 0.41,SD = 0.25),
t(302) = −3.48,p− value < 0.01,d = −0.4.

4.3 Self-reporting analysis

In addition to analyzing the results of raw audio and video
data, we also present an analysis of the participant’s self-reported
confusion scores and related subjective estimates with confusion
states on the Likert scale (1–5). In particular, we assess whether
there is a significant difference in user-reported confusion levels
with respect to the experimental conditions; and second, whether
the participants tried to push through the confusion or whether
the participants wanted to stop in order to otherwise resolve their
unproductive confusion; third, whether the mean PARH scores are
significantly below the scale midpoint 4).4 Broadly we expect that

4 More details on the post-study survey are available here: https://github.
com/nalibjchn/SituatedHRITrackConfusion/blob/main/Surveys.pdf

self-reported confusion scores should be higher for participants in
the confusion state than for those in a non-confusion state.

Figure 11 presents the results for the self-reported confusion
estimates. From these results, we can see that the median confusion
scores is 1 in both non-confusion conditions. The highest median
confusion scores were 4 in Condition A1_beforehelp and Condition
A2, and the median of confusion scores in Condition A1_withhelp
was 3, which is in the middle of confusion levels. These results
suggest that there is a very highly pronounced change in self-
reported confusion levels that corresponds to the expectations of the
experimental conditions.

For the productive confusion experimental group, a Kruskal-
Wallis rank sum was performed to explore the impact of
users confusion scores with those labeled conditions, and
a significant difference was found in confusion scores for
Condition A1_beforehelp (Mdn = 4.00,M = 3.79,SD = 1.27),
Condition A1_withhelp (Mdn = 3,M = 2.68,SD = 1.44), and
Condition B_A1 (Mdn = 1.00,M = 1.50,SD = 0.85), ̃χ2(2) =
174.47,p− vlaue < 0.01,H = 0.36. For the unproductive
confusion experimental group, a Mann-Whitney U test
was performed, showing that the confusion scores with
Condition A2 (Mdn = 4.00, IQR = 2.00) were significantly higher

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1244381
https://github.com/nalibjchn/SituatedHRITrackConfusion/blob/main/Surveys.pdf
https://github.com/nalibjchn/SituatedHRITrackConfusion/blob/main/Surveys.pdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Li and Ross 10.3389/frobt.2023.1244381

FIGURE 11
User reported confusion levels analysis.

than those with Condition B_A2 (Mdn = 1.00, IQR = 0.00),
U = 2,327,Z = −13.27,p− value < 0.05, r = 0.74.

To examine whether the participants are aware of productive
confusion or unproductive confusion, after each task-oriented
dialogue, a fewmore questions were asked of each participant (more
details are provided in the surveys). For the productive confusion
conditions, the proportions of responses to the question of whether
users solved the task with the robot’s help were: 69% “Yes, resolved”,
26% “No, I am still confused”, and only 5% selecting “I was not
confused”. On the topic of participants who wanted to cease the
dialogue without the robot’s help in the unproductive confusion
condition, 110 out of 140 feedback responses reported “extremely”
and “very” levels of abandonment.

Turning to the PARH evaluation, the foundation of our data
analysis is based on the assumption that users are unaware of
the objective behind our research. The average showed that the
average user did not have a clear understanding of the study
(M = 3.86,SD = 0.72). Following the methodology suggested by the
author of the PARH survey Rubin (2016), we investigated the
potential significance of the average PARH survey question against a
theoretical mean of 4 (i.e., the survey midpoint value). Specifically, a
sample t-test shows that the sample mean was significantly less than
the scoremidpoint of 4, therefore participantswere generally unclear
about the nature of the study (M = 3.86,SD = 0.72,Mdn = 4),
t(80) = −1.8,p− value < 0.05,d = 0.039.

5 Discussion

As outlined in the introduction, the key challenge for this
work is the elicitation and detection of confusion states in the
user. Earlier in the paper we expressed this in terms of an overall
hypothesis for our work (see Section 1) as well as a set of evidenced
individual hypotheses with respect to the modalities that we

investigated. Overall, these various questions can be construed as
two broad research questions. First, do participants self-recognize
different states of confusion—albeit under the conditions set out
in a specifically designed HRI study? And second, are there any
detectable manifestations of behavior that participants produce
which can be used to estimate different states of confusion? In the
following, we make a number of observations on the data to help us
draw some answers with respect to these questions.

First, it is clear from the results that the participants are well
aware that they are confused. Importantly it can be observed that
results forConditionB_A1 andConditionB_A2were very similar as
would be expected, as were the results for Condition A1_beforehelp
and Condition A2. Digging into more detail, it was apparent that
for the productive confusion experimental group, most of the
participants were confident that their confusion could be overcome
with the help of the robot. And in the unproductive confusion
experimental group, most of the participants wanted to stop the
current conversation without any help from the robot when they
were confused.

Turning to the hypotheses we noted with respect to physical
manifestation and themodality data that was subsequently analyzed,
we saw that results seenwere broadly in line with our expectations in
most cases, though it is notable that the subtleties of some analyses
did produce some results which were unexpected. Considering first
the face based detection of emotion. Here we saw that as expected
positive emotions, or rather non-negative emotions “happy” and
“neutral” were the main emotions expressed by people who were in
a non-confused state during these interactions, while the emotional
expression associated with “sad” was correlated with participants
in both the productive confusion and the unproductive confusion
condition. Turning to the differences between productive and
unproductive confusion conditions, for the productive confusion
state, participants displayedmore instances of positive and surprised
emotions in the productive condition; while for the unproductive
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confusion state, participants displayed more instances of negative
emotion.

Considering the related concepts of eye gaze and head pose, we
see that these features are potentially strong indicators of confusion
states, but that the observed behaviors for these two features are
not aligned with each other, and indeed one of our hypotheses were
not met. Specifically, eye gaze results, for the productive confusion
experimental group, demonstrate that the range of eye gaze for the
participants with the help condition is larger than that of the before-
help condition. In the unproductive confusion experimental group,
the range of users’ eye-gazing in non-confusion condition is larger
than in the unproductive confusion. These results, taken together
indicate that stronger confusion states are associated with a lower
range in eye gaze variances, which is in disagreement with our initial
assumptions and hypothesis.

However, for head pose analysis, we observed that the range
of head pose before the robot provided help is larger than that for
both after the provision of help and in the non-confusion condition.
Similarly, for the unproductive confusion group, the head pose
angles for participants during unproductive confusion were greater
than for those in non-confusion states. These results indicate a
tendency to vary head pose more during confusion states which is
in accordance with our expectations.

While the visual indicators of confusion seem strong, the
indicators associated with speech were more mixed. In particular,
no significant differences were found for participants’ emotion pitch
across conditions. We note that one reason that might explain this is
that voice pitch is differentiated (Aung and Puts, 2020), depends on
their gender, ages, etc. Since our analysis does not attempt to account
for such demographic variation, this may account for the failure
to identify meaningful differences. Despite this, a more focused
emotion analysis demonstrated a range of potential indicators. As
hypothesized, the positive “happy” emotional category for non-
confusion dialogues was greater than for both productive and
unproductive confusion dialogues. Surprisingly, perhaps, there were
no indications of the “sad” emotion in the participants’ speech under
those experimental conditions. Moreover, under the productive
confusion conditions, the number of “anger” emotions in the
participants’ speech before the robot provided help was greater than
with the robot’s help. Also, participants were more neutral after the
robot helped them overcome their confusion relative to the period
before getting the robot’s help.

Silence duration also turned out to be a useful factor to
consider in assessing participants’ potential confusion states. In
simple terms, the interaction silence duration for non-confusion
dialogues is shorter than for those dialogues with confusion states.
This difference, as predicted by our hypothesis, can be interpreted,
perhaps, as participants taking more time to consider the problem
presented to them. However, it should be noted that in the specific
case of productive confusion conditions, the difference in interactive
silence periods was less pronounced.

A final important comment is that we did not indicate to
participants that this study was specifically about confusion or any
particular investigation ofmental states. Between our understanding
of the introductions given and the post-study interviews conducted,
we can have some certainty that the participants were not aware
of our research purpose. Therefore, we have some confidence that

the participants’ behaviors across different confusion and non-
confusion conditions are natural—albeit within the context of a
semi-controlled HRI study.

6 Limitation

While the current investigation has shown strong potential for
a systematic detection and later mitigation of confusion effects in
interaction, there are of course a number of notable limitations in
our experimental data collection and analysis, as presented here. In
the following, we briefly outline some of these limitations along with
our thoughts on mitigation of these limitations.

The first limitation of note concerns the limited demographic
range of our participants. While this study did attempt to target
a relatively large pool of participants, the social and cultural
background of these individuals is not representative of the general
population. We note that 61 out of 81 participants were students
in colleges, and of those 61 participants, most of them have a
technical background in science and engineering. Moreover, 69 of
the 81 participants were between the ages of 18 and 44. Although
we opened recruitment to a wider society, we fully acknowledge
that those who participated in the study have a higher propensity
towards technology and interest in attending this HRI experiment
(Henrich et al., 2010; Fischer, 2021).

The second issue of note is that there were 36 participants
who did not self-identify as being native English speakers. Among
those participants we noted a small trend towards higher confusion
reports—which may be in part due to either misunderstandings of
the Pepper itself or indeed a lesser ability to understand the problems
as articulated. We encountered a similar trend in our earlier pilot
study. To mitigate this issue, we designed the “free-talk session”
segment of the interaction in order to allow the participants to
become comfortable with the mode of communication. We decided
not to omit these participants from the study as nonnative speakers
are an important component of many large societies.

In our analysis, we have attempted to normalize certain
measurements by time to account for the fact that some dialogues
which have confusion conditions introduced will often by nature
take longer than those without and hence will have higher counts of
emotional expression, etc. This analysis, however, does not account
for the fact that some users in the confusion state often expressed a
desire to end a dialogue early andmove on.This not only impacts the
analysis mechanism, but also means that fewer instances associated
with a confused condition could be collected. An alternative strategy
would have been tomake the participant wait until a minimum time
for the dialogue, but we decided that this would add an additional
contradiction with boredom, which we were aiming to minimize.

Finally, it is notable that while our analysis did show a strong
association between confusion experimental conditions and self-
reported confusion states, this is often not fine-grained enough to
account for the change in confusion states for a participant over
the duration of a given dialogue. Therefore, we believe that a more
fine-grained analysis of our data to focus on the specific points
at which a third party annotator believes the user has moved to
a confusion state could be highly beneficial. Furthermore, in this
study, four patterns of confusion stimuli are referred to design
interactive dialogues only, and the feature analysis with different
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confusion states from specific type of confusion stimuli is out of this
study scope.

7 Future work

While the analysis presented here has attempted to concretely
demonstrate the relationships between observable features,
confusion conditions, and self-reported confusion states, this is
not in itself an operationalizable model, and indeed, there are many
other aspects to the data which are beneficial for analysis. Thus,
our immediate future work focuses on these joint objectives of
extending the analysis of the data and building an operationalizable
model as part of a more complete HRI investigation of confusion in
interaction.

Specifically, we plan to expand our analysis to include semantic
textual features, full-body gestures and stances, and also to assess
the impact of emotion arousal and valence on acoustic features in
user speech, as documented in previous studies (e.g., Weninger et al.
(2013)). This analysis will encompass different confusion states
and non-confusion states, or/and a time-domain examination
of emotion valence (seen in Deshpande et al. (2019)). As part
of this extension, we also plan to provide a more fine-grained
though subjective analysis of participant confusion by designing
an annotation schema of confusion and non-confusion states for
annotators to label thosemultimodal data. In parallel to this we wish
to further delve into the time series nature of the data to uncover
the progression of confusion over the course of an interaction and
look to see if there are correlations across features as the participant
transitions through mental states. Normalizing across participants
for differences in duration, etc., will be an important consideration
in this work.

While our interest here has been to systematically analyze
the features and indicators of confusion, the core outcome
from a HRI perspective is to build a machine learning driven
confusion estimator model which is incorporated into a real-
time conversational process. To that end, we also aim to build
a multimodal fusion based model to estimate the confusion
score for a given user. While the construction of such a model
building on various foundationalmodels and deep learningmethods
is very feasible, the challenge will be to make such a model
generalized in the sense that it can be applied to other experimental
scenarios.

Finally, it should be noted that an important part of our
ongoing work is the development of conversational policies which
can benefit from the identification of users who have entered
a confused state (Li and Ross, 2022). In this work, we have
developed several operational dynamic dialogue planning policies
with specific implementable solutions. The ultimate goal with this
work is to design a dialogue framework that integrates these
dialogue policies for confusion mitigation, which can be applied to
eliminate different states of confusion in the different interacting
dialogue systems. While current advancements in large-language
model conversational technology do change the overall trajectory of
conversational HRI, accounting for personalized assessment of the
user during interactions will require much more systematic study
and modeling.

8 Conclusion

This paper presented a controlled HRI study to investigate the
systematic triggering and detection of confusion states in task-
oriented interactions. Analysis showed that participants were aware
of being confused across the experimental conditions associated
with confusion. Furthermore, both visual and speech based signals
were shown to have significant correlations with the confusion
conditions associated with individual dialogues.

Unlike previous work that focused on a single confusion state
with a small number of participants and multiple task types, this
paper provided amore systematic investigation across two confusion
types and had greater control with respect to the presentation and
sequencing of stimuli. We argue that this study validates the earlier
study and opens possibilities for including confusion and related
task-oriented mental states into a generalized framework for social
and affective HRI.

In future work, we plan to extend the analysis of the data
introduced in this paper, generate abstracted confusion assessment
models that should be generalizable to other interactive systems, and
build out a dialogue framework that includes policy elements that
are sensitive to confusion and subsequently assist users to overcome
confusion states before disengagement results. Taken together, we
believe that this is a small but important step towards true social
intelligence in HRI.
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