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Explanation has been identified as an important capability for AI-based systems,
but research on systematic strategies for achieving understanding in interaction
with such systems is still sparse. Negation is a linguistic strategy that is often used
in explanations. It creates a contrast space between the affirmed and the negated
item that enriches explaining processes with additional contextual information.
While negation in human speech has been shown to lead to higher processing
costs and worse task performance in terms of recall or action execution when
used in isolation, it can decrease processing costs when used in context. So far,
it has not been considered as a guiding strategy for explanations in human-
robot interaction. We conducted an empirical study to investigate the use of
negation as a guiding strategy in explanatory human-robot dialogue, in which
a virtual robot explains tasks and possible actions to a human explainee to solve
them in terms of gestures on a touchscreen. Our results show that negation
vs. affirmation 1) increases processing costs measured as reaction time and 2)
increases several aspects of task performance. While there was no significant
effect of negation on the number of initially correctly executed gestures, we
found a significantly lower number of attempts—measured as breaks in the
finger movement data before the correct gesture was carried out—when being
instructed through a negation. We further found that the gestures significantly
resembled the presented prototype gesture more following an instruction with a
negation as opposed to an affirmation. Also, the participants rated the benefit
of contrastive vs. affirmative explanations significantly higher. Repeating the
instructions decreased the effects of negation, yielding similar processing costs
and task performance measures for negation and affirmation after several
iterations. We discuss our results with respect to possible effects of negation on
linguistic processing of explanations and limitations of our study.
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1 Introduction

Shaken, not stirred1—this is how the fictional British Secret
Service agent James Bond prefers his martini cocktail. The
catchphrase does not only indicate his preference, but also serves
the purpose of contrasting it with the more common way of
preparation.This formof contrastive explanation is a crucial element
in ensuring effective communication and fostering understanding
(Miller, 2019). This paper investigates how contrastive explanations
from a robot affect the human in Human-Robot Interaction (HRI).
Explanations within HRI serve diverse purposes, and one of
their pivotal functions resides in facilitating task-based dialogues
(Anjomshoae et al., 2019). Explanations primarily aim to improve
transparency, cultivate trust, and boost confidence in systems that
provide explanations [e.g., (Arrieta et al., 2020; Stange and Kopp,
2020; Matarese et al., 2021)]. In HRI, a major aim is to create a
more natural explanatory dialogue between humans and robots to
support humans in solving everyday tasks. In the present paper, we
specifically investigate the use of contrastive explanations and ask
whether negation has effects on the execution of instructed actions
in human-robot dialogues.

1.1 Task-oriented dialogues with robots

1.1.1 Guidance for task performance in HRI
A major field of robotic guidance for tasks comprises social

robots for education, which are increasingly used as tutors or peer
learners to improve foreign language learning, handwriting skills
or chess playing (Belpaeme et al., 2018). One strand of research in
this area addresses the question of how children can be motivated
to spend effort and time on the learning task. The evaluation
here is usually based on the assessment of whether such a social
robot improves children's task performance compared to a control
group who learned without a robot (Van den Berghe et al., 2019).
Saerbeck et al. (2010) have shown that social supportive behavior
does not only yield higher motivation but indeed a higher learning
success in learning an artificial language. However, Gordon et al.
(2016) were not able to find such a facilitating effect of their
motivation strategy on children's learning success. Thus, it is
unclear how motivation can support learning or understanding in
detail. While motivation plays an important role in educational
contexts, more specific guiding strategies may be more efficient in
achieving understanding or task success. These strategies can guide
the learner through attentional or temporal alignment strategies.
For example, to address distraction during a task instruction,
Carlmeyer et al. (2018) applied a hesitation strategy to regain the
user's attention. It could be shown that hesitations can indeed
lead to higher task performance measured as post-interaction
information recall (Richter, 2021). Guiding the learner through a
task by temporal alignment has also been shown to be successful.
Chromik et al. (2017) provided evidence that incremental (just in
time) information presentation improves human task performance.
Adaptation to the learner through an adaptive, gaze-contingent
interaction strategy between robot speaker and human listener

1 The catchphrase first appears in the novel Diamonds Are Forever (1956).

in a dictation scenario has also been shown to yield higher
performance as compared to a non-adaptive rhythmic leading
strategy (Palinko et al., 2015).

While these findings indicate that it is important to be adaptive
to the (human) learner, the presented strategies all function on
a surface, i.e., they take interactional features into account but
do not integrate task knowledge. Clement et al. (2013) propose
a more task-oriented guiding strategy by estimating the next
learning step of school students in math exercises based on their
performance onprevious exercises.The systemprovides the students
with exercises that it estimates can be accomplished by them
because they are in accordance with their current competences
or feasible learning effort. Evaluation showed that this approach
yielded better learning performances by the students—in terms of
correctly answered exercises of different levels of difficulty—than
a tutoring system based on a non-adaptive strategy as specified
by school teachers. In this approach, the guidance takes place by
presenting complete exercises—or tasks—but without providing
further detailed information about the task at hand or its relation to
prior exercises. In general, there is little research on how to guide
a learner within a new task or novel aspects of a familiar task or
exercise to support her in her understanding of the task. In the
following, we argue that negation is a strategy that can achieve a
meaningful guidance.

1.1.2 Negation in HRI
Linguistic negation is a grammatical construct that denies

a supposition. Negations can be found in numerous everyday
scenarios to contrast a positively affirmatively expressed
proposition, including instances like instructions on how to open
glass doors that are notoriously known to be moved the wrong
way (“do not push but pull!”). The potential of task-related aspects
of negation in the context of explaining (the robot uses it for
contrasting) in HRI has not been explored so far. Studies often
focused on narrow aspects of negation, such as affect or volition,
as context conditions (Förster et al., 2019). Although recently the
focus shifted towards explainable robots with some progress in the
direction of explaining why robots reject commands of a human
(Scheutz et al., 2022). In social robotics, negation is still generally
seen as a device that imparts a “negative” attitude to the interaction
and should therefore be avoided. In HRI research, the question of
whether negation can enhance understanding has not been explicitly
addressed—despite its potential—as we will demonstrate in the
subsequent discussion.

1.2 Negation in human speech

1.2.1 Negations
From the linguistic perspective on negation, the device of

contrasting propositions is often used in explaining circumstances,
be it personal preferences, causal chains or how things generally
function (Miller, 2019). From an epistemic point of view, compared
to a mere positive statement, a negation used in a contrastive
utterance can narrow down the statement space, thereby specifying
the question under discussion (Miller et al., 2017). Even if the
question under discussion is semantically unambiguous, contrasting
it with a hypothetical event might lessen the likelihood of confusion
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due to wrong presuppositions. Thus, on the one hand, a negation is
enriching the proposition by providing previously excluded context
which—although not desirable—constitutes a possible event. On
the other hand, the added contrastive proposition is yet another
proposition to process and even worse, it is a negated statement in
its nature. In their overview article, Dudschig et al. (2021) examine
linguistic negations and their influence on human performance.

1.2.2 Processing cost
In the psycholinguistic literature, the phenomenon of negation

attracted attention because it was found to cause higher processing
costs [e.g., Kaup et al. (2007a; b)]. Processing of negation often
leads to increased processing time (Tian and Breheny, 2019), even
after extensive encounters of negation. Also, negation processing
is more effortful and cognitively demanding (Deutsch et al., 2006).
Processing costs have been explained by additional processing steps.
Among the suggested mechanisms are tagging (negation requires
mentally representing a core supposition and adding a negation
tag (Clark and Chase, 1972)), inhibition of representations of
responses (Beltrán et al., 2021), and conflict resolving according
to which negations activate opposing representations and the
conflict between them must be resolved (Dudschig and Kaup,
2018). Processing costs, however, vary depending on the context
(Giora et al., 2007) and may even be absent, for instance in cases
of short-time adaptation after processing a negated utterance or
in certain pragmatic circumstances (Wason, 1965). Interestingly,
negation as a linguistic phenomenon was found not only to cause
higher processing costs but also to hamper recall [e.g., Mayo et al.
(2004; 2014)], even plant falsememories (Mayo et al., 2014), or elicit
opposite actions (Wirth et al., 2019).

1.2.3 Contextualization of negations:
explanations

These resultsmainly stem from laboratory experiments in which
negation was studied in limited contextual conditions, especially
limited tasks such as responding to certain information. There is
little empirical research on how negations are applied in natural
settings, let alone on how they can be used in specific contexts such
as explanations. This is surprising because in explanations the more
competent partner attempts to provide important information to
the addressee (the explainee). The fine-tuning of the information's
relevance to the explainee's knowledge is often achieved by
highlighting important parts (Axelsson et al., 2012) but also by
limiting the explanation space. Negation is a highly successfulmeans
that limits the explanation space (e.g., Garfinkel, 1982; Köller, 2016).

Lining up with studies from psycholinguistics, we can propose
that guidance with negative utterances has the potential to convey
valuable information because—by negating a state of affairs—they
address and relate to expectations (Kaup et al., 2007b), maintains
attention on alternatives, and foster recall for the contrastive events
(Singh and Rohlfing, 2023).These effects give reasons to assume that
a negation obviously requires a person to reason beyond what is
immediately present. One possible explanation for these effects is
that negation is creating a contrast space, in which “possible worlds”
(Garfinkel, 1982) get more in focus. The contextualization that is
achieved by negation is an interesting effect that can be utilized for
actions performedwithin an interactive task,making an explanation
more successful. Our study investigates the application of negation

in the specific context of explaining action execution for the purpose
of task learning.

1.3 Tasks as context for explanations

1.3.1 Tasks and actions
Above, we have argued for negation bearing the potential to

convey valuable information when put into context. Within an
interaction, a context can emerge from previous actions (Singh and
Rohlfing, 2023), creating particular expectations about them. In fact,
persons performing actions were found to construe a mental model
of a sequence of actions that fits a task (e.g., Ballard and Hayhoe,
2009; Fusaroli et al., 2014). Lining up with previous research on
actions, our findings on action understanding (Singh and Rohlfing,
2023) reveal that negation can be helpful because it addresses these
expectations. Clearly, the context of action is multimodal. Trying to
account for the complexity of this context, we reduced our action
model in order to focus on manner and path.

1.3.2 Manner and path
In topological terms, language has been shown to conceptualize

an event in two main components: path and manner [e.g., Talmy
(1975; 1985); Slobin (1987)]. The path component refers to the
trajectory that the subject follows from its starting point to its
destination, with reference to a ground or reference object. The
manner component describes the specific way in which the subject
moves along that path. The path component can either refer to the
physical motion of an object along a trajectory, such as “The boy ran
across the road,” or to a change in state, such as “The boy became
happy to sad” (Jackendoff, 1985). In either case, the event involves a
moving entity with a destination or goal. Studies in psycholinguistics
have shown an asymmetry in how information about the source
and goal of an event is encoded in memory (e.g., Lakusta and
Landau, 2005; Papafragou, 2010). Specifically, the goal tends to
be more salient than the source and the manner of the event, a
phenomenon known as goal biases in event memory. A recent study
of human-robot interaction found that the explainer only provides
elaborated information about the manner of the motion when the
explainee shows a sign of misunderstanding (Vollmer et al., 2013).
This suggests that the way in which an event is perceived and
approached is largely influenced by the conceptualization of its goal
as opposed tomanner, which is the primary driver of the interaction.
Consequently, the importance placed on the manner in which the
event unfoldsmay be comparatively diminished. According to Singh
and Rohlfing (2023), employing linguistic negation as a means
of providing contrastive guidance presents a potential method for
mitigating goal biases. This approach may help to ensure that both
the manner and the goal of an event are attended, improving the
overall understanding of the event.

1.4 Research hypothesis

From our review of the existing literature, it becomes
evident that a human–robot dialogue model can gain advantages
by incorporating well-established explanation strategies from
human–human communication. One effective approach to offer
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guidance within a context, particularly in a task where actions are
required, is bymaking explicit references to the ongoing or emerging
situation, including negating actions that were either possible or
previously requested but should now be avoided. We need to stress
that in the context of performing actions, explanations are similar
to instructions because they address the way and manner of the
performance rather than causal relations. Klein (2009) refers to this
type of explanation as “how-explanation.”

Negations are known to address and relate expectations (Lüdtke
and Kaup, 2006). They maintain attention on alternatives and foster
recall (Singh and Rohlfing, 2023). The literature reveals that explicit
negations in contrastive explanations (Miller, 2019), and when
combined with actions, foster the human's understanding in recall
of these actions (Singh and Rohlfing, 2023).

Our work aims to address the gap in previous studies, which
did not extensively investigate interactions guided by robots. We
examined the impact of contrastive explanations on understanding
and explore their potential to facilitate dialogue between a robot
and a human. In pursuit of this objective, our focus is directed
towards the facet of understanding that encompasses the capacity
to execute an explanation while being scaffolded (Rohlfing et al.,
2020). Therefore, we use contrastive guidance in a dialogue setting
for an interaction study. Given the plethora of evidence on negation-
induced processing cost and the rich contextual effect of negation at
the same time, we put forth the following hypotheses:

A) We hypothesize that an utterance containing negation
would require more processing time to react upon. This should
be reflected in the overall reaction time to complete the task.
Nevertheless, we acknowledge the rich contextual effect of negation
when used to contrast the emerging expectations. Hence, we predict
that in the contrastive instruction condition, participants will be
quicker to adapt to the task in comparison to non-contrastive
instructions and against the baseline. This adaptation should be
reflected in both the similarity between the performed action by the
human and the guided action by the robot as well as, the number of
attempts needed to complete the task.

B) Verbal instructions featuring contrast will enhance
comprehension, resulting in improved execution of instructed
actions in comparison to non-contrastive and baseline conditions.
To explore this, we will evaluate human performance through
metrics, including the frequency of incorrectly performed initial
actions, the number of attempts required to achieve correct gesture

execution, and the similarity between the actions performed by
humans as well as those guided by the robot (Section 2.5).

2 Materials and methods

This article presents an interaction study (in German language),
designed as a (restricted) dialogue between a human and a robot,
that investigated how negations can be used to generate contrastive
explanations in the context of human-robot explanatory dialogues.

2.1 Participants

For this purpose a study with 31 participants (17 female,
14 male) was conducted. The age of the participants was in the
range of 20–38 (Mage = 26.90). All participants were recruited on
the campus of Bielefeld University (Germany) and from general
mailing lists, containing also non-students. Participants' average
Affinity for Technology Interaction (ATI) (Franke et al., 2019) score
was MATI = 4.00,SDATI = 1.07. An ATI of 3-4 refers to medium
technology affinity.

2.2 Stimuli

2.2.1 Tasks with different manner
Floka (Lütkebohle et al., 2010), the virtual humanoid robot

head, provided instructions (Table 1) for everyday tasks (Figure 1)
that the participant had to carry out. These tasks involved common
objects and were solved by executing a range of gestures on
the touchscreen. A total of five distinct objects were designed
for these tasks. The users' task was to interact with these
objects in two different manners (in the sense of actions). Each
interaction manner was described by a verb and a corresponding
touchscreen gesture. In each trial, Floka explained to the participant
which specific gesture should be used for the task solution
and described it verbally. During the interaction with an object
in the correct way, the scenario provided participants feedback
generated through alterations on the touchscreen, reflecting their
interaction.

Each task, as visualized in Figure 1, was introduced by an overall
verbal explanation of the goal of the task (e.g., “Mix the liquids

TABLE 1 Tasks with correspondingmanners, required gestures and provided feedback by the scenario. Stimuli in German, English translations in brackets.

Description of objects and manner

ID Object Manner I Gesture I Manner II Gesture II Feedback

1 Bottle schwenken (sway) twist schütteln (shake) slide Fluids color changes

2 Bulb bewegen (move) slide anschubsen (push) swipe Position changes

3 Cup schnipsen ( flick) pinch drücken (press) hold Lid opens

4 Hob scheuern (scrub) circle wischen (wipe) slide Dirt disappears

5 Radio drehen (rotate) twist halten (hold) hold Frequency changes
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FIGURE 1
Objects (from 1 to 5: Bottle, Bulb, Cup, Hob, and Radio) for interaction on the touchscreen.

FIGURE 2
(A) Touchscreen gestures by finger inputs in 2D-space in which each axis represents one dimension. (B) Dimensions (x, y) by line type and touchscreen
coordinate values over time on the y-axis.
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in the bottle.,” “Open the cup.,” “Set the frequency of the radio in
the range of 98–99.,” “Clean the hob.” or “Light up the bulb.”). For
instance, the interaction with the object “bottle” could happen in
two manners, sway and shake. The manner sway is represented by
the gesture of a twist movement on the touchscreen. If the correct
manner was used during the task, feedback for the participant
was provided in the scenario in form of a color change by the
fluids in the bottle. In the further scenarios, once the task was
solved correctly, the bulb moved towards the pocket socket and the
object lit up, the cup opened, and the hob became more visible
as the dirt on the screen disappeared. For the radio, changing the
frequency of the channel was visualized by a field changing on
screen.

Each manner was represented by a specific gesture, visualized
as points on a 2D coordinate system (Figure 2). The twist gesture is
a movement of two fingers sliding in a clockwise circular pattern,
starting at opposite points. Sliding is represented on a touchscreen
by the simple movement of one finger along a given path. Zooming
in and out with two fingers in fast velocities describes the pinch
gesture. For the circular gesture, participants had to move one finger
in circular patterns on the touchscreen. A quick, jerky movement
in a specific direction on the touchscreen, which is released at the
target point, describes the swipe gesture. The hold-touch gesture is
performed by two fingers that rest on two points on the touchscreen
until a given threshold is exceeded.

2.2.2 Verbal instructions
After the overall instruction concerning the task goal, Floka

guided the participant by a contrastive or non-contrastive
instruction for manner (Table 2). For a contrastive instruction,
the robot contrasted the two possible manners for a task,
the correct manner and a negation of the incorrect manner
(“now shake, not sway” and vice versa). The non-contrastive
condition included a placeholder (“auf geht's,” “let's go”)
combined with the correct gesture (“let's go, now shake” and
vice versa). The verbal instruction by a single affirmation
was the baseline instruction in the experiment. The baseline
instruction was the only one presented in combination with
an abstract object (see Figure 4). This generated three overall
conditions for instructions and their corresponding instruction
structures.

2.3 Experiment procedure

Figure 3 shows the experimental setup in which the stimuli
(Section 2.2) in our HRI study were presented. Participants sat
in front of a touchscreen. To their right, the virtual robot Floka
was presented on an additional monitor. There was no human
experimenter present. The experiment was presented automatically
based on different states of the touchscreen application and
was conducted in order to form a standalone dialogue between
participant and Floka. For this purpose, an interface was developed
that allowed the robot to react based to different states of the scenario
(see Section 2.4).

All participants went through the experimental procedure
(Figure 4) in a within-subject design. The selection of a within-
subjects design aims to enhance statistical significance and reduce
individual differences by accounting for potential confounding
variables and experimental biases. This type of experimental
design promotes these objectives by effectively randomizing verbal
instructions and tasks, mitigating order-effects, and incorporating
wash-out phases within the task gamification. First, the participants
were instructed to read a prepared script, which contained general
information about the course and structure, as well as the data
protection declaration. The participants were positioned in front
of the touchscreen and could initiate the experiment by clicking
on the touchscreen. They conducted the experiment individually
in a dedicated room where the robot and the scenario ran
autonomously. The robot remained unresponsive to any questions
posed by the participant. Once the study began, Floka provided
a brief monologue explaining the structure of the study. The
first task for each participant was to complete a small tutorial.
This section included the familiarization with the touchscreen and
allowed the participant to learn and practice the gestures which
were required later. The aim was to create a realm of anticipations
emerges, bridging the gap between verbal instructions and the
forthcoming gestures to be executed. The tutorial comprised six
tasks related to an abstract object (a cube), with one tutorial
task assigned to each specific gesture. The participants had a
maximum of 30 s per task to familiarize themselves with the
gestures. Each task could also be ended prematurely before the
time ran out. The tutorial was followed by the main part of the
experiment.

The participant went through four iterations of a task series
of five tasks each. Thus, there was a total of 20 tasks. The five

TABLE 2 Types of conditions and their verbal instruction structure with the original stimuli and translated examples.

Verbal instructions

ID Condition Instruction structure Stimuli (GER) Example (ENG)

a Contrastive Affirmation-Negation jetzt [...], nicht [...] now shake, not sway

b Contrastive Negation-Affirmation nicht [...], jetzt [...] not sway, now shake

c Non-Contrastive Affirmation-None jetzt [...], auf geht's now shake, let's go

d Non-Contrastive None-Affirmation auf geht's, jetzt [...] let's go, now shake

e Abstract Baseline Affirmation jetzt [...] now shake
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FIGURE 3
Floka (explainer) gives verbal instructions to the human (explainee) on how to solve tasks on a touchscreen (explanandum). Floka receives current state
information about the task's progress.

FIGURE 4
Experiment structure. Blue states are related to verbal instructions from Floka. The main experiment is separated into four iterations, with five tasks each.
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different tasks in each iteration corresponded to the five conditions
as described in Table 1. Each iteration contained every kind of task
once, without presenting the last kind of task from the previous
iteration as the first task in the following iteration. The robot
supported the participant with verbal instructions and explained
which gesture had to be used to solve the task. Two guidance-
application steps, which served to create a link between gesture
and verbal instruction (manner), were passed before each of
the twenty tasks including the concrete object. Here, the robot
demonstrated both possible manners with a simplified verbal
instruction (“now shake”), followed by an application of the
corresponding gesture by the participant on the abstract object
(cube). Thereby, the participant was made aware of the two specific
actions available for resolving the upcoming tasks. Visual guidance
was implemented by the presence of one or two red dots on the
touchscreen, simulating the finger movement necessary to solve the
task. All demonstrated gestures maintained a consistent duration
of 1.5 s. The participants had a maximum of 20 s to apply the
demonstrated gestures to the abstract object. If the correct gesture
had been used earlier, the next step started automatically. The
guidance-application phase was used to further consolidate the
mapping of verbal instructions and gestures during the study,
visualizing the differences in the history of interactions between
conditions.

After the two guidance-application steps, the main task
began. First, Floka verbally explained the overall goal of the
task to the participant. The verbal instruction strategies listed
in Table 2 were employed to describe the gestures that should
be utilized. Participants were given unrestricted time to solve
the assigned tasks and had the option to terminate a task
prematurely if they were unable to solve it. Verbal instructions
by the robot were randomized within the tasks, providing an
equal number of instructions for each condition in the experiment.
Demographic information and subjective meanings about the
experiment were asked in a questionnaire at the end of the
experiment.

2.4 Technical setup

The HRI scenario (Section 2.3) with different tasks was
developed with the Unity3D2 game engine. All object models were
designed as 3D Objects in Blender3. The touchscreen event system
in the application was implemented with the Lean Touch4 asset.This
asset offers functionalities for manipulating objects or calculating
events based on inputs on the scene using a touchscreen. A
State Chart eXtensible-Markup-Language (SCXML)5 configuration
was developed to run the experiment automatically in a state-
machine like structure. This enables the execution of custom
experiment orders and allows the reusability of the system. The

2 Unity3D https://unity.com [Accessed 21 March 2023].

3 Blender https://www.blender.org/ [Accessed 21 March 2023].

4 LeanTouch for Unity https://carloswilkes.com/#LeanTouchPlus [Accessed
21 March 2023].

5 State Chart XML (SCXML) https://www.w3.org/TR/scxml [Accessed 21
March 2023].

configuration includes states, transitions, scenario-tasks, robot-
tasks and functions for randomizing. SCXML-states correspond to
different scenario-states of the experiment. State transitions describe
the triggers that are used to change from one state to a subsequent
state. Scenario-tasks and robot-tasks describe functions within a
state. Each function triggers a behavior on the corresponding side
(scenario or robot). For instance, a scenario-task could represent
loading a new scene by given variables and a robot-task could
execute a robot-specific behavior. Transitions are triggered by the
respective callbacks of the functions, which allow the experiment
to run automatically. A randomization function is used to exclude
order effects within the experiment. For the HRI part of the
experiment, we used a 3D simulation of the robot Floka. The
simulation of the virtual robot was implemented in Unity3D, and
it can interact with the participants on verbal and non-verbal
communication channels. Floka can use verbal speech, express
emotions through facial expressions and move its head and eyes.
The Robot-Operating-System (ROS) (Quigley et al., 2009) is used
to execute different behaviors on the robot and for exchanging
information between the robot and the scenario. On the robot's side,
we used amodified architecture as middleware of an existing system
to control different behaviors of the robot by given inputs from the
scenario (Groß et al., 2022). These works allow the configuration
of robot-behaviors in eXtensible-Markup-Language (XML) format
and the execution of such behaviors via a network also for non-
computer scientists (Schütze et al., 2022). The Unity Robotics Hub6

was used to exchange information between scenario and robot
via a Transmission Control Protocol (TCP)-connection via network.
This allows the communication via ROS between the robot on the
server-side and the touchscreen application as client. During the
experiment, a logger captured data at a rate of 60 frames per second,
including e.g., touchscreen event locations, scenario-states and robot
instructions. Additionally, two webcams were utilized for video
recording purposes: one for capturing the participant's face and
the other for recording hand gestures on the screen. Furthermore,
screen capturing was employed to record the touchscreen along
with the scenario. Finally, the software SoSci Survey7 was used to
collect personal data about participants and the experiment in a
questionnaire.

2.5 Measurements

The measurements in this experiment focused on two aspects.
(1) The procedure for measuring the processing costs of the
participants as reaction times in each task (Section 2.5.1). (2)
The methodology for determining the manner-specific gesture
performance (Section 2.5.2). Figure 5 shows the chronological
sequence of themeasurements for one trial of the experiment. A task
was divided into three phases. 1)The time-frame from the beginning
of the task (after receiving the overall instruction about the goal
of the task) until the first interaction with the touchscreen by the
participant constitutes the reaction time for this task. 2) The data

6 Unity Robotics Hub https://github.com/Unity-Technologies/Unity-
Robotics-Hub [Accessed 21 March 2023].

7 SoSci Survey www.soscisurvey.com [Accessed 01 August 2022].
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FIGURE 5
Timeline with points of measurements during a task. Timestamps for the first interaction with the touchscreen after a verbal instruction, and for the
time until the first correct application of a manner.

recorded after the first interaction with the touchscreen until the
execution of the first correct manner is the manner-specific gesture
performance. 3) Any data that occurred after the point of the first
correct manner is reported as part of gamification. This approach
was intended to amuse the participants and provided a wash-out
time before the next verbal instruction and task.

2.5.1 Processing cost
This experiment deals with the influence of negation in

explanations.One effect of negation is the additional processing loop
and associated effects on participants' reaction times (Section 1.2.2).
After a verbal instruction pertaining to the overall goal of a
task by the robot, each task consisted of an interaction with the
touchscreen to solve the task. The time until the first interaction
with the touchscreen was measured as the reaction time in each task
(Figure 5).

2.5.2 Manner-specific gesture performance
The present study focuses on evaluating the execution of

a gesture in relation to a verbally instructed manner. For this
experiment, precise data on the execution of individual gestures
could be recorded in form of finger inputs, which allowed
for the computation of correct vs. incorrect gestures and the
measuring of insecurity regarding the execution of the gestures. The
manner-specific performance of gestures was described by three
characteristics. In a first step, the number of initially incorrectly
performed gestures was considered in order to make a statement
about how well an instruction could be understood. Secondly,
the number of times the touch input was interrupted while
performing a gesture was recorded. This number of attempts
was used to draw conclusions about the continuity of a gesture.
Thirdly, to evaluate the actual touchscreen inputs, a similarity
between the demonstrated and performed gestures was calculated.
For all these measurements, the period from the first interaction
with the touchscreen to the first correctly recognized gesture was
considered.

2.5.2.1 Number of gesture and instructionmatches
To identify the effect of an instruction on the execution of a

gesture, the number of corrections was measured. This variable
described the number of trials in which a participant initially made
an incorrect gesture. An incorrect gesture is a gesture that does

not follow the intention of the verbal instruction. For this, only
the period from the first interaction with the touchscreen until
the identification of the intention of a gesture was considered. A
qualitative video analysis was carried out to evaluate the gestures
first performed by the participant after hearing an instruction
of the task. The video recording of the hand gestures and the
screen were used for evaluation. Two independent annotators
watched the video material and labeled the first gestures of each
task for all participants. The annotation was performed blindly.
The annotators had no information about the verbal instructions
by the robot. They only knew which gestures were generally
available to solve the task. For instance, for the task “hob,” the
annotators knew that the robot could verbally introduce the gestures
scrub or wipe. The annotators' task was to describe the first
recognized gesture out of the two possible gestures for each task.The
comparison between the interpreted gesture by an annotator and
the introduced gesture in the verbal guidance resulted in a match or
mismatch.

2.5.2.2 Number of gesture attempts
To measure the number of execution repetitions for the

instructed gesture, the finger inputs on the touchscreen were
regarded as a continuous data stream. Missing values in this data
stream were interpreted as a lack of interaction with the screen.
To assess the number of these breaks, the events in which the
stream changes from interaction to no interaction were counted
for the finger with the first contact on the touchscreen. These
breaks were described as the number of attempts to perform a
gesture.

2.5.2.3 Gesture dissimilarity
The quality of a gesture performed by participants was

determined by comparing it to the corresponding gestures presented
by the robot. By considering the touchscreen inputs as two-
dimensional points on the screen, the data points of a gesture
could be described as a time series.Dynamic-Time-Warping (DTW)
(Senin, 2008) allows for the comparison of two time series of
different lengths by calculating the dissimilarity between them. For
this purpose, DTW sets up a cost matrix between two data sets.
Here, the distance (Euclidean distance) between the points of the
first time series (query) and all other points of the second time series
(template) is calculated. DTW calculates a local cost matrix for the
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alignment of two sequences x and y with the estimated distances
(Eq. 1).

Cl ∈ ℝ
N×M: ci,j = ‖xi − yj‖, i ∈ [1:N] , j ∈ [1:M] (1)

cp (X,Y) =
L

∑
l=1

c(xnl,yml) (2)

DTW (X,Y) = cp* (X,Y) =min{cp (X,Y) ,p ∈ PN×M} (3)

Once the local cost matrix is established, the calculation of
warping paths takes place. The distances are summed up, and paths
are computed based on the associated costs. One warping path with
respect to the local cost matrix is described by Eq. 2. DTW refers to
the outcome of the calculation involving the dissimilarity between
the two time series. Therefore, the algorithm calculates the warping
pathwith the accumulatedminimumcosts for all pairwise local costs
(Eq. 3).

In general, DTW requires two defined time series of equal or
different length.Thedemonstrated gestures, performed by the robot,
have fixed lengths of 1.5 s.When the participants try to imitate these
actions, there is no way of knowing where the start and end of the
input of the actual gesture are. Each participant starts performing
the gestures at different points in time and performs the movements
with different speed and uncertainties. The performed gestures can
be described as a continuous stream of data within the task. To
allow a comparison between guidance and application, an approach
is needed which can handle input streams with unknown lengths. In
the literature, onlineDTWalgorithms are used to calculate real-time
measurements for continuous data streams (Sakurai et al., 2006).
The problem of classifying gestures in real-time can be transferred to
this problem. Parts of these concepts were used in amodified form to
calculate the dissimilarity in the measurements of this study. Sliding
windows are often used to perform an iterative process of comparing
two time series (Li, 2015). To enable a comparison between the fixed
time series (guidance) and the data stream (participant's task), the
entire taskwas considered in subsequences up to the execution of the
first correct action. With the use of a sliding window, the time-series
was divided into n subsequences by an iteration step of 0.1 s. Each
subsequence, with the length of 1.5 s, was compared to the gesture
to be imitated via DTW to calculate the dissimilarity. Therefore, n
sliding windows with the length of 1.5 s were considered with a step-
wise increase of 0.1 s on the entire time-frame until the first correct
manner was recognized. Considering a frame rate of 60 s within the
scenario and the logging, we aimed for an average number of 90
samples (touchscreen input events) in a sliding window.

In order to allow the use of DTW in this experiment, the
following conditions have to be met: the time series of gesture
coordinates has to be (1) made robust against interruptions in
the data stream caused by the sensitive touchscreen, (2) made
gesture comparison insensitive to amplitudes of different strengths
and offsets and (3) shifted to the origin of the coordinate system
by removing different starting positions. (1) In real data sets of
this experiment, participants sometimes take breaks during gesture
performance by pausing or lifting their finger for a short time.
Changing the finger pressure on the touchscreen can also cause
measurement interruptions. To ensure a continuous comparison
using DTW despite interruptions, we removed the missing
measurement points in the time series through interpolation
(Lepot et al., 2017). Interpolation allows for a seamless comparison

because the gestures have been associated with objects in the
scenario and are not extended to different positions. (2) In addition
to potential data point interruptions, we've also taken into account
distinct prominent features within the time series when applying
DTW. To achieve this, we made the time series less sensitive
to varying amplitudes and offsets. Following a similar approach
as in previous research (Rakthanmanon et al., 2012; Shokoohi-
Yekta et al., 2017), we standardized the gestures in the guidance and
every gesture within each subsequence of the performed gestures
using z-normalization (Keogh and Kasetty, 2002). (3) The final
assumption for comparing the guidance and the application involved
eliminating the impact of varying starting positions of the gestures
on the touchscreen. In our presented gesture data, the objects had
starting positions that differed from those in the actual tasks for
the participants. Differences in starting positions of the objects
could have resulted in an offset when comparing gestures. This kind
of offset—the distance from the coordinate system origin to the
first touchscreen input of the gesture from both time series—was
subtracted (Tang and Dannenberg, 2014).

3 Results

The analysis for this study focuses on the effects of contrastive,
non-contrastive conditions against an abstract baseline (Table 2) and
the corresponding subjective ratings provided by the participants
during the experiment, as indicated in Section 1.4. In order to draw
conclusions about participants' performance during the experiment,
results are presented across the iterations comprising the individual
tasks or trials (Figure 4). All data processing steps and analysis for
this study were performed in R (R Core Team, 2022).

3.1 Effects on processing cost

Weanalyzed the data using a hierarchicalmixedmodel approach
in R (Bates et al., 2015), incorporating random slope adjustments
for subjects and treating instruction type and iteration as fixed
effect structures. We then added these structures gradually to a
reduced model and tested the effect of each fixed variable using
log-likelihood ratio tests following Barr et al. (2013). Based on these
tests, we selected the best model. The results are visualized in
Figure 6, and the model predictions are presented in Table 3.

Participants took significantly longer to perform the manner
in both the contrastive (β = 0.87, SE = 0.08, p < .001) and non-
contrastive (β=0.45, SE = 0.08, p < .001) conditionswhen compared
to the baseline condition. In a post-hoc pairwise comparison, in the
contrastive condition the reaction time was significantly higher than
in the non-contrastive condition (β = 0.42, SE = 0.09, p < .001). This
delay may be attributed to the additional cognitive load introduced
by negation processing in the contrastive condition. This result is
in line with our predictions and previous studies stating that the
negation processing might lead to a higher processing cost (Clark
and Chase, 1972; Carpenter and Just, 1975; Kaup et al., 2007b).

Our main interest was to investigate the change in reaction time
across iterations. In all instruction conditions, response times in the
first trial were significantly higher than in subsequent iterations (β =
−0.06, SE = 0.01, p < .001). Comparing the trial-dependent decrease
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FIGURE 6
Visualizing the reaction time in seconds as a function of iteration count for each instruction condition.

TABLE 3 Reaction-Times: Parameter estimates of the fixed effects for
instruction type and its interaction with iteration as the predictor.

Term β SE t p

(Intercept) 1.15 0.05 21.39 < .001

Iteration −0.06 0.01 −4.93 < .001

Contrastive 0.87 0.08 11.10 < .001

Non-Contrastive 0.45 0.08 5.89 < .001

Iteration × Contrastive −0.16 0.03 −5.72 < .001

Iteration × Non-Contrastive −0.05 0.03 −1.80 .07

Contrastive × Non-Contrastive 0.42 0.09 4.30 < .001

Iteration × Contrastive × Non-Contrastive −0.11 0.03 −3.14 < .001

in reaction time across each instruction condition, in the contrastive
condition, participants initially took longer to respond in the first
iteration. Their reaction time decreased significantly more rapidly
in this condition, compared to both the baseline (β = −0.16, SE =
0.03, p < .001) and non-contrastive (β = −0.11, SE = 0.03, p < .001)
conditions.

3.2 Effects on manner-specific gesture
performance

Our previous results (Figure 6) have already shown that
participants have to incur increased processing costs for contrastive
instructions, which are reflected in longer reaction times during the

beginning of a task. The following analysis focuses on participants'
execution of gestures based on instructions received from the
robot. Three measurements are examined: (1) The initial correct
intention of gesture execution, (2) number of gesture attempts and
(3) the similarity between the executed gesture and the gesture
demonstrated by the robot.

3.2.1 Effects on number of gesture and
instruction matches

The error rate in executing the first gesture can be used
to describe an enhancement in gesture performance when
correctly applying the gesture following a perceived instruction.
A classification into a match or mismatch represents the result
of the comparison between an annotator's interpreted gesture
and an introduced gesture in the verbal instruction by the robot.
For this, two independent annotators qualitatively annotated all
620 tasks. The first annotation resulted in 550 matches and 70
mismatches (12.73%), while the second annotator evaluated it
as 537 matches and 83 mismatches (15.46%). The agreement
of the results of the annotations can be classified according to
Landis and Koch (1977). Cohen's κ was run to determine how
large agreement between the two annotators was. The match was
denoted as strong, κ = 0.86 (95% CI, .82 to .90) (McHugh, 2012).
Upon receiving independent submissions from both annotators,
the annotations were compared to identify discrepancies. A total
of 44 cases with differing annotations were identified. Through a
consensus process, the annotators reached an agreement on the
final gesture under discussion, which results in 548 matches and 72
mismatches (13.14%). The annotated results were compared to the
verbal instructions of the tasks to determine the overall number of
matches.

Figure 7 describes the distributions for the instruction types
in relation to the total frequencies of matches and mismatches.
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FIGURE 7
Comparison between first gesture by participants (agreement) and verbal instructed gesture from the robot. (A) Result for instructions in total and (B)
more detailed structure of the different types. Visualizations using R-Package from Patil (2021).

Based on the agreement of the annotators, the data is prepared
for a chi-square test (Pearson, 1900). There was no significant
association between the classification of matches of participants'
gestures and the robot's instruction, X2(1,N = 620) = 1.01,p = .32.
The instruction types can be further subdivided based on their
different structures to assess whether the lack of difference
in the conditions can be attributed to verb placement effects.
The total frequencies are then categorized into more detailed
subgroups that correspond to these distinct instruction type
structures (Table 2). There is a significant relationship between
the classification of matches for gestures and verbal instruction,
X2(3,N = 620) = 13.20,p = .004. In a pairwise comparison, the
instruction types Affirmation-Negation and None-Affirmation with
X2(1,N = 310) = 8.1231,p = .004 and Affirmation-None and None-
Affirmation with X2(1,N = 310) = 9.3,p = .002 show a significant
difference.

3.2.2 Effects on number of gesture attempts
To assess the continuity of performed gestures, we analyzed

the number of attempts before the first correct manner using
a generalized linear mixed effects model, GLMER (Bates et al.,
2015). The data was analyzed by treating the abstract condition
as the baseline, and parameter estimates were obtained for each
comparison by using post-hoc pairwise comparisons.The results are
presented in Figure 8 and the estimates are provided in Table 4.

The instruction type has a significant effect on the number
of attempts. Participants exhibited a higher number of attempts
for both the contrastive (β = 1.11, SE = 0.06, p < .001) and non-
contrastive (β=1.85, SE = 0.05, p < .001) conditionswhen compared
to the baseline. A post-hoc pairwise comparison conducted during
the first iteration revealed that participants made significantly
more attempts to perform the correct manner following the
non-contrastive instruction when compared to the contrastive

instruction (β = 0.74, SE = 0.05, p < .001). In terms of the iteration-
dependent change in the number of attempts, we observed a general
decrease in the number of attempts required to reach the correct
manner across all conditions. When comparing the change in the
number of attempts between the contrastive and non-contrastive
conditions, we found that the non-contrastive condition led to a
consistently higher number of attempts in the second iteration as
well, which then decreased in the third iteration (β = −0.25, SE =
0.02, p < .001). The trial-dependent decrease in attempts suggests
that the non-contrastive condition led to an overall faster decrease in
the number of attempts required to perform the manner (β = −0.38,
SE = 0.02, p < .001). This means that participants needed more trials
to perform the first correct manner, but as trials progressed, they
quickly adapted to the task. On the other hand, for the contrastive
instruction condition, the overall attempts remained lower than for
the non-contrastive condition.

3.2.3 Effects on gesture dissimilarity
The dissimilarity was calculated based on the assumptions from

Section 2.5.2 with the R-package for DTW by Tormene et al. (2008).
A linear mixed effects model with varying intercept and slope
by subjects was fitted to capture the iteration-dependent changes
for the dissimilarity. Factor revealing was performed by treating
the baseline condition as the intercept in the model, allowing for
comparisons of all other instructions conditions (contrastive and
non-contrastive) and their interaction with iteration. Additionally,
a separate pairwise comparison was done between contrastive and
non-contrastive conditions to get the estimated values of the main
effects and its interaction with iteration. The model predictions
and the estimates are shown in Table 5. The results show a main
effect of instruction type such that the overall dissimilarity score
was significantly lower in the baseline condition than in the
contrastive (β = 39.34, SE = 5.22, p < .001) and the non-contrastive
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FIGURE 8
Plot showing the number of attempts before the first correct gesture for each instruction type and across trial iterations.

TABLE 4 Number of attempts: Fixed effects parameters for the number of
attempts. The baseline (intercept) shows the values for the abstract baseline
condition against which other conditions are compared.

Term β SE z p

(Intercept) 1.85 0.06 28.87 < .001

Iteration −0.09 0.02 −5.86 < .001

Contrastive 1.11 0.06 19.63 < .001

Non-Contrastive 1.85 0.05 35.71 < .001

Iteration × Contrastive −0.12 0.02 −5.55 < .001

Iteration × Non-Contrastive −0.38 0.02 −17.58 < .001

Contrastive × Non-Contrastive 0.74 0.05 14.88 < .001

Iteration × Contrastive × Non-Contrastive −0.25 0.02 −12.05 < .001

(β = 105.05, SE = 4.96, p < .001) conditions. Participants were more
accurate in performing gestures on an abstract object. A pairwise
comparison between contrastive and non-contrastive conditions
at the first iteration revealed that the overall dissimilarity score
was significantly lower in the contrastive condition than in the
non-contrastive condition (β = −65.71, SE = 5.09, p < .001). This
suggests that participants were more likely to be accurate in their
gesture following a contrastive instruction in comparison to a non-
contrastive instruction. An interaction of dissimilarity with the
iteration suggests that participants' dissimilarity decreases faster for
contrastive (β = −11.58, SE = 2.04, p < .001) and non-contrastive
(β = −30.30, SE = 1.93, p < .001) conditions when compared to
the baseline condition. Importantly, the decrease in dissimilarity

TABLE 5 Dissimilarity: Fixed effects parameters for the dissimilarity with
instruction type and its interaction with iteration as predictor. The intercept
shows the baseline condition.

Term β SE t p

(Intercept) 252.53 6.78 37.26 < .001

Iteration −2.93 1.27 −2.31 .02

Contrastive 39.34 5.22 7.53 < .001

Non-Contrastive 105.05 4.96 21.17 < .001

Iteration × Contrastive −11.58 2.04 −5.69 < .001

Iteration × Non-Contrastive −30.30 1.93 −15.70 < .001

Contrastive × Non-Contrastive −65.71 5.09 −12.90 < .001

Iteration × Contrastive × Non-Contrastive 18.72 2.17 8.62 < .001

was faster in the contrastive than in the non-contrastive condition
(β = 18.72, SE = 2.17, p < .001), which is also evident at the fourth
iteration where the dissimilarity is minimum for the contrastive
condition.

3.3 Effects on subjective ratings

Previous results (Figures 8, 9) show that negation in
explanations can also have positive effects on the execution of an
instruction. Subjective perceptions of the instruction types by the
robot were collected as part of the questionnaire. Participants rated
each of the four instruction types on a seven-point Likert scale.
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FIGURE 9
Mean dissimilarity before the first correct gesture. The plot shows the time-dependent changes to the dissimilarity values for different instruction types.

FIGURE 10
Subjective rating of the participant's benefit from a verbal instruction. (A) with the comparison of instructions types overall (B) with their different
structures. Rating from 1 (less helpful) to 7 (very helpful).

For this purpose, a reformulated question similar to the Single Ease
Question (Sauro and Dumas, 2009) was used.

Figure 10 represents the mean values of the subjective
evaluations across all participants in relation to the instruction
types. A Wilcoxon test (Field et al., 2012) was conducted to evaluate
whether contrastive instructions showed a greater subjective rating
than non-contrastive instructions. The results indicate a significant
difference, p < .01, with a moderate effect-size r = 0.379. In a second
step, the instruction types were divided into their single structure

types for considering the placement of the affirmation. Here, the
aim was to assess the influence of verb placement on participants'
subjective ratings by examining its variation across the subgroups,
while also identifying strengths and weaknesses in the instruction
types' structure. Therefore, another Wilcoxon test was conducted
to evaluate whether the instruction types showed different
subjective ratings. For the comparison of Affirmation-Negation and
Affirmation-None, the results are significantly different, p < .01, with
a moderate effect-size r = 0.402. In addition, for the comparison
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of Negation-Affirmation and None-Affirmation, the results show a
significant difference, p < .001, with a moderate effect-size r = 0.353.
These results emphasize that contrastive instructions subjectively
helped participants to complete the tasks.

4 Discussion

Our study on a human–robot dialogue model was motivated
by well-known explanation strategies from human communication.
We proposed that one way to provide guidance in the context of
actions is to relate to an ongoing or emerging context by explicitly
negating actions that are possible or were previously requested but
should now be avoided. We designed this guidance according to
psycholinguistic research positing negation as a contrastive device,
which relates to existing or emerging expectations and addresses
these expectations (Kaup et al., 2007a). Our study provides a first
attempt to investigate the role of negation as contrastive guidance in
the context of HRI. In addition, our study extends current research
on explanation strategies in human communication by putting
negation into the context of joint actions.

To realize our scenario with joint actions, we employed real-
world objects, each of which could be manipulated in two potential
manners in order to accomplish the task goal in collaboration with
the robot (Section 2.2.1). During these tasks, there is a potential
predisposition towards a specific manner once the goal becomes
clear, resulting in the default selection of a particular action among
all the potential actions implied by the object. In such situations,
an effective understanding model can be gauged by how efficiently
one selects the correct manner while simultaneously keeping the
task goal in focus. By incorporating a dialogue that introduces
contrast through negation—explaining both the preferred approach
for achieving the task goal and the alternative manners to be
avoided—we created a more controlled selection process that is
dependent on the desired task goal. In order to draw conclusions
about the course of the interaction history and consider the effects
during task repetition, the tasks were divided into iterations. This
led to the execution of four iterations of task repetitions, where
all instruction types were presented in combination with each
task.

Validating this approach in relation to our hypothesis
(Section 1.4), our analysis revealed that verbal contrast had
two major effects on human actions: (A) While participants
were overall slower in all the tasks that were accompanied by
a contrastive explanation, their reaction time decreased at a
faster rate with each iteration in this condition compared to the
tasks with a non-contrastive explanation (Section 3.1). (B) The
performance of an instructed action—as measured by number of
attempts and gesture similarity—improved following a contrastive
explanation when compared to a non-contrastive explanation
(Section 3.2).

A) In the literature on negation, so far, processing costs were in
the focus of investigation. When taking this measure into account
and regarding the abstract baseline condition, both contrastive
and non-contrastive instructions induced more processing costs
on the participants in terms of reaction time (Figure 6). For the
interpretation, we highlight that our investigation took place in the
context of actions, in which a specificmanner of action performance

was considered as correct. Thus, the increase in processing cost
is likely reflecting the perceptual complexity of the real objects
(e.g., a bottle) in contrastive and non-contrastive instructions as
opposed to the abstract object (e.g., a cube) in the baseline condition.
In addition, an increase in reaction times following a contrastive
instruction—providing information about both the correct and
alternate manner—indicates that participants needed more time
to process this additional information. Although the processing
costs are high during the first iteration, participants demonstrated a
quicker adaptation to the task demands in the contrastive condition.
This supports previous findings, precisely that when negation is used
in a context, the processing cost decreases (Tian and Breheny, 2019).
Our results extend these insights to the context of actions. Overall,
the observed adaptation following contrastive guidance appears to
involve a contextual facilitation that leads to a rapid decrease in
cognitive load.

B) Similarly, concerning the performance of an instructed
action—as measured by number of attempts and gesture
similarity—we observed that when contrastive guidance was
provided the number of attempts required to reach the correct
manner was lower in comparison to instances where non-
contrastive instruction was given (Figure 8). A lower number of
attempts indicates that participants needed fewer attempts to select
the appropriate manner based on the task goal. One possible
explanation for this phenomenon is that participants—when
following the contrastive instruction—might have a greater sense
of control in their selection of task-specific manners, and hence
they relied less on a trial-and-error approach. These findings are
in line with previous research indicating that negation engages
neural mechanisms associated with higher-order action-monitoring
processes (de Vega et al., 2016), as well as response inhibition and
control (Beltrán et al., 2018; Dudschig and Kaup, 2018). Given that
the two potential manners in our task were intrinsically linked to the
task goal, it is more likely for participants to attempt both manners
once the task goal becomes apparent, unless explicitly instructed not
to perform one manner—as in the case of contrastive instruction.
Previous research has demonstrated that when confronted with a
negated instruction, individuals tend to mentally represent both the
intended action and its alternate, leading to a two-stage processing
strategy (Hasson and Glucksberg, 2006; Tian et al., 2016). This
strategy, in our case, could potentially result in a higher number
of attempts and a delay in the action selection process. However,
according to the simulation account (Kaup et al., 2006; 2007b),
the activation of the positive alternative in response to a negated
instruction is short-lived—lasting only a few milliseconds—and
diminishes rapidly after seconds. In addition, given the sufficient
time for decision-making, the affirmative counterpart of the
negated instruction may not necessarily translate into actual
behavior and hence may not necessarily be acted upon as shown
by Kaup et al. (2005, 2007a); Anderson et al. (2010); Scappini et al.
(2015). Therefore, in our case it is plausible that while participants
may have initially represented both the actual and alternatemanners
at the perceptual level—as indicated by the reaction time for the
first action following the instruction—participants might have
successfully suppressed the activation of the alternate manner at the
decision level, where ample time was available for manner selection.
As a result, they exclusively acted following the requested manner,
requiring fewer attempts to converge towards it compared to the
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non-contrastive condition, where both manners were equally likely
and required more attempts to arrive at the correct manner.

A lower number of attempts not only suggests a convergence
between the executed and the instructed manner, but also indicates
the requirement of fewer attempts performing the correct action,
resulting in greater similarity at each iteration. This assumption
was substantiated by the observed high gesture similarity following
contrastive instructions as compared to non-contrastive instructions
(Figure 9). Meaning, each action taken towards reaching the
task goal was accompanied by a more precise manner following
the contrastive instruction. The high gesture similarity following
contrastive instructions further supports the notion that when
participants were instructed to perform a manner that was
contrasted with another (e.g., “now shake, not sway”), they initially
took longer to process the instruction, as evidenced by the reaction
time results. However, they required fewer attempts to accurately
execute the correct gesture with enhanced precision. One possible
explanation for this effect could be that participants were more
mindful and deliberate in their manner selection when presented
with contrastive instructions, as negation has previously been
shown to recruit the domain general cognitive control processes
(Beltrán et al., 2021). However, when provided with non-contrastive
instructions, the participants relied more on a trial-and-error
approach. The aforementioned assumption finds support in the
evaluation of the participants' subjective assessment. Participants
rated contrastive instructions as being more helpful in solving
the tasks (Figure 10). However, since our analysis did not directly
examine the relational dynamics among reaction time, number of
attempts, and similarity, we are cautious in speculating about the
specific cognitive processes underlying manner initiation following
each instruction.

Our study has also limitations regarding the range of manners
that the objects could afford, which resulted in overall reduced
complexity, as evidenced by the high success rates of 90% and 87%
for the tasks following verbal instructions (Figure 7). Therefore,
caution is needed when generalizing our findings to real-world
scenarios. Further researchwill be needed to investigate if and under
what conditions in more complex and natural contexts negation can
even be more critical to the task success.

5 Conclusion

This study aims to address the existing research gap in the
field of explanatory dialogues with robots, specifically focusing
on the use of negations as a contrastive explanatory strategy
within task-related contexts. The goal is to develop strategies that
enhance the understanding of instructions and promote more
natural dialogues with robots. We demonstrated that the positive
effects of human interaction (Singh and Rohlfing, 2023) can be
extended to HRI as well. Our research highlights that in both HRI
and human interaction, the processing costs of negated instructions
increase. However, even with sufficient contextual information for
contrast, there is an advantage in terms of understanding the
intended action. A primary objective in HRI is to enhance the
naturalness of dialogues between humans and robots to foster
human understanding and their actions. Explanation strategies,
such as the use of negation, enable robots to effectively highlight

specific aspects of an explanation capturing the interlocutor's
attention. This not only promotes more authentic interactions with
robots but also paves the way for implementing adaptable robot
models that can respond to individual circumstances based on the
dialoguewith humans.The utilization of negations empowers robots
to steer conversations in a targeted manner, thereby improving their
overall responsiveness.

These findings lay the groundwork for future investigations
into interactive human–robot explanatory dialogues. A promising
avenue for further research involves equipping robotswith the ability
to employ negation as an explanatory strategy, facilitating a deeper
understanding of information in diverse situations. Furthermore,
our results indicate that the impact of negation can be influenced by
the complexity of tasks, highlighting the need for further exploration
in this area. While this study primarily focused on negating the
manner of an action, it is important to note that there are numerous
other ways to shape explanations and instructions using negation.
In our upcoming research, our objective extends beyond the micro-
level of interaction, which focuses on individual linguistic items
within an utterance (e.g., “not red”). Instead, our interest lies in
the task-level, which pertains to the overall task itself (e.g., “do
not pull”). This task-level perspective benefits from the cumulative
history of interactions, encompassing established actions and tasks.
This broader approach holds significant promise, particularly in the
context of joint actions, and thus merits further exploration.

Our aim is to leverage our findings to introduce a methodology
suitable for adoption by explanation-generation systems within
the domain of Explainable Artificial Intelligence (XAI). This
methodology highlights the potential not only to elucidate system
algorithms, but also to effectively clarify actions within social
contexts.
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