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The increasing adoption of robot systems in industrial settings and teaming
with humans have led to a growing interest in human-robot interaction (HRI)
research. While many robots use sensors to avoid harming humans, they cannot
elaborate on human actions or intentions, making them passive reactors rather
than interactive collaborators. Intention-based systems can determine human
motives and predict future movements, but their closer interaction with humans
raises concerns about trust. This scoping review provides an overview of sensors,
algorithms, and examines the trust aspect of intention-based systems in HRI
scenarios. We searched MEDLINE, Embase, and IEEE Xplore databases to identify
studies related to the forementioned topics of intention-based systems in
HRI. Results from each study were summarized and categorized according to
different intention types, representing various designs. The literature shows a
range of sensors and algorithms used to identify intentions, each with their own
advantages and disadvantages in different scenarios. However, trust of intention-
based systems is not well studied. Although some research in AI and robotics
can be applied to intention-based systems, their unique characteristics warrant
further study to maximize collaboration performance. This review highlights the
need for more research on the trust aspects of intention-based systems to better
understand and optimize their role in human-robot interactions, at the same time
establishes a foundation for future research in sensor and algorithm designs for
intention-based systems.

KEYWORDS

sensor, algorithm, intention (intent), trust, intention-based system

1 Introduction

The advancement of robot systems and machine learning has led to the employment
of robots in various industries to restructure labor. According to a report by the
International Federation of Robotics (IFR), the adoption of human-robot collaboration
is on the rise with an 11% increase in cobot installations compared to 2019 (Xiao et al.,
2022). The current robots involved in human-robot interaction scenarios range from
taking and serving orders in restaurants to assembling sophisticated parts in factories.
However, most interactions with robots require people to approach the robot and initiate
the interaction, reflecting their belief in the robot’s ability to complete a successful
social encounter (Bartneck et al., 2019). In contrast, humans are both initiators and
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responders in social interactions, relying on rich sensory input and
experience to anticipate the other’s actions. This is where intention-
based systems come into play in HRI scenarios.

Intention-based systems are a new class of user-centered
assistance systems that recognize the user’s intention and act upon
it to take on both active and passive roles in the interaction
(Wendemuth et al., 2018). This results in a more natural interaction
between the user and the robot as the system synchronizes with the
interacting entity during the process. However, the trade-off for this
is the need for more sensors to understand the user’s interaction
purposes from limited information collected by sensors or provided
by the user, such as voice, gesture, eye gaze, etc. Consequently, a
multi-modality approach is more common in this system to collect
more information from the user, and sensor fusion is employed to
generate both the user’s current intention and the prediction of their
motive in the long run.

In the field of Human-Robot Interaction, the definition of a
“robot” or “intention-based system” has been a subject of debate,
particularly with the integration of AI technologies blurring the
traditional boundaries. A robot is conventionally considered as an
autonomous or semi-autonomous system, capable of perceiving
its environment, processing information, and performing actions
to achieve specific goals (IEC, 2017). However, the advent of AI
has extended this definition to include systems that were not
traditionally considered robots. For instance, autonomous vehicles,
which have the ability to perceive their environment and operate
without human intervention, could be classified as robots within
the broader understanding (IEC, 2017). Similarly, exoskeletons,
which enable or enhance human capabilities through intelligent
design and control, can also be included under this umbrella (IEC,
2017). Moreover, a prime example of this expansive definition is
the Da Vinci Surgical System, a robot-assisted platform designed
to facilitate complex surgery using a minimally invasive approach
in healthcare domain (IEC, 2017). Although it does not operate
autonomously, the system enhances the surgeon’s capabilities,
enablingmore precisemovements and greater control, with the need
for more communication and teamwork during robotic assisted
surgery (RAS) (Randell et al., 2017; Catchpole et al., 2019). This
further illustrates how AI-driven systems, even those requiring
substantial human operation, can be classified as robots within the
context of their intention-based operation.This expanded definition
recognizes that as technologies advance, the line distinguishing
robots from other systems becomes increasingly ambiguous.

Previous literature has proposed various methods of
determining the user’s intention in HRI scenarios by utilizing
different sensor data and algorithms. Some of the designs are
already employed in working environments such as rehabilitation
(Liu et al., 2019a), life-support (Liu et al., 2017), assembly
(Mohammadi Amin et al., 2020), driving (Fang et al., 2017), etc.
Like machine learning algorithms, intention-based systems are
task-oriented in implementation, leading to variability in the choice
of sensor combination and algorithm, given the tasks spanning
different areas of the industry.

Aside from designing the system, trust is also fundamental in
HRI, especially in healthcare. It significantly affects the adoption and
optimal use of AI technologies by influencing users’ confidence in
the system’s capabilities, reliability, and safety (Choudhury et al.,
2022). Trust involves not only belief in the AI’s technical

competencies but also understanding its operations, transparency,
and risk management (Choudhury et al., 2022). Hence, cultivating
trust in HRI is paramount to the successful integration of AI in
healthcare and vital for ensuring beneficial interactions between
users and AI systems. However, despite the nature of intention-
based systems where factors like trust, which influences human
interaction with these systems, are pivotal, the exploration of this
aspect remains scarce in the existing literature.

1.1 Objective

As AI and robotics continue to advance, the use of intention-
based systems in working environments is becoming increasingly
common (Xiao et al., 2022). However, there is currently no literature
providing a comprehensive overview of the design characteristics of
intention-based systems. Therefore, a scoping review is needed to
gain a better understanding of the field before impactful designs can
be made. The aim of this study is to provide a basic understanding
of the current state of intention-based systems and assist in future
implementations. Specifically, the objectives are to.

1. Provide an overview of the sensors and algorithms used in
intention-based systems in the collected experimental research
and describe the HRI scenarios in which each system is used.

2. Explore the possible effects of human trust when working with
intention-based systems.

3. Identify gaps in literature for future research and establish a
foundation for subsequent design.

By compiling these different aspects, this study can help
researchers implement more comprehensive and user-friendly
intention-based systems in HRI scenarios. The review process will
be conducted according to PRISMA (Preferred Reporting Items for
Systematic Reviews andMeta-Analyses) guideline (Page et al., 2021)
to minimize bias and provide a broad understanding of the current
state of the field.

2 Methods

This systematic review adheres to the PRISMA guideline
throughout the entire process. This guideline outlines a systematic
approach to collecting and synthesizing data while having a well-
formulated research question. By following this structure, the review
aims to provide a comprehensive and unbiased overview of the
current status and design characteristics of intention-based systems.

2.1 Search strategy

The literature search for this review was conducted between
October and November 2022 using three databases: Ovid
MEDLINE, Ovid Embase, and IEEE Xplore. The search query used
for each database is shown in Table 1. While the syntax of the search
string may vary depending on the database, the terms were chosen
to capture a similar set of research literature. Both title and abstract,
as well as subject headings, were searched and reviewed based on
the availability of search methods for each database. The search
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TABLE 1 Database and respective search strings.

Database Search string

Ovid MEDLINE, Ovid Embase

1. Exp artificial intelligence/

2. (Machine intelligence OR Computer intelligence OR Cognitive computing OR Robot*
OR Expert system* OR Intelligent system* OR Autonomous agent* OR Artificial*
intelligen* OR Machine learning OR Deep learning OR Neural network OR Computational
intelligence).ti,ab,sh

3. (Intent* OR intent* predict* OR move* predict* OR act* predict* OR Prediction
algorithm).ti,ab,sh

4. 1 AND 2 AND 3

IEEE (“Document Title”:“machine intelligence” OR “Document Title”:“computer intelligence” OR
“Document Title”:“cognitive computing” OR “Document Title”:“robot” OR “Document
Title”:“expert system” OR “Document Title”:“intelligent system” OR “Document
Title”:“autonomous agent” OR “Document Title”:“artificial intelligence” OR “Document
Title”:“machine learning”OR “Document Title”:“deep learning”OR “Document Title”:“neural
network” OR “Document Title”:“computational intelligence”) AND (“Document
Title”:“intent*” OR “Document Title”:“intent* predict*” OR “Document Title”:“move*
predict*” OR “Document Title”:“act* predict*” OR “Document Title”:“prediction algorithm”)

was limited to English language publications but not restricted by
publication date. The aim of the search was to identify as many
relevant studies as possible to ensure the comprehensiveness of the
review.

2.2 Participants

Studies with human aged above or equal to 18 years old
are included. The demographics of participants drawn from the
surveyed literature present a diverse range. In totality, they comprise
of more than 200 individuals spanning various age groups, genders,
and physical abilities. The age of participants largely ranged from
young adults in their early twenties to individuals in their late sixties,
with a few studies focusing on specific age ranges from 21 to 35
years old. In terms of gender, a majority of the subjects were male,
though a substantial number of females were also included. The
handedness of participants was also considered in some studies
in hand gesture recognition, and a few in lower and upper-
limb intention recognition included subjects with specific physical
conditions, such as amputations. Overall, the participant pool was
diverse, providing a broad perspective on the interaction between
humans and intention-based systems across different demographic
groups.

2.3 Intervention

The inclusion criteria for this review were studies that proposed
the design of sensors or algorithms for intention-based systems, as
well as evaluations of such systems. For the purposes of this review,
any system that utilized human intention to provide feedback or
judgments was considered an intention-based system, as long as it
was implemented in an HRI scenario that directly involved human
interaction.Additionally, studies that usedWizard ofOz testingwere
included in order to provide a comparison,where users believed they
were interacting with intention-based systems, but the system was
actually controlled by a human.

2.4 Inclusion and exclusion criteria

Exclusion criteria was chosen to prune out less relevant literature
to this study. Three exclusion criteria (E) and three inclusion criteria
(I) are identified as following before screening and assessing the
search results from databases.

• E1: Studies that are review articles, dissertations, and
conference abstract.

• E2: Studies focusing on financial, cryptocurrency, and brain-
computer interface.

• E3: Studies that do not meet the requirement stated in
participants, that is, with humans under 18 years of age, or do
not meet any inclusion criteria.

• I1: Studies focusing on intention, intention-based system,
human-robot interaction.

• I2: Studies that include implementation of sensors or
algorithms.

• I3: Studies evaluating effect of intention-based system on team
dynamics or human perceptions and attitudes when working
with one.

Inclusion criterion I1 required that any study searched had to
focus on the topics of intention, intention-based system, or human-
robot interaction to be considered for inclusion. Additionally,
studies needed to meet at least one of the other inclusion criteria: I2,
which included studies that discussed the implementation of sensors
or algorithms in intention-based systems, and I3, which included
studies that evaluated the effect of intention-based systems on team
dynamics or human perceptions and attitudes. However, studies that
met any of the exclusion criteria were excluded from the review. E1
excluded all review articles, dissertations, and conference abstracts
to ensure that the review was based only on primary sources. E2
excluded studies that focused on irrelevant topics such as financial
or cryptocurrency markets, or derivation of human intention in
non-HRI scenarios such as brain-computer interfaces. While these
topics related toAImethodologies are often incorporated and can be
included in the initial search, given that they do not specifically focus
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on HRI, they will be omitted from the scope of this review. Finally,
E3 excluded any study that included a participant of under-aged or
did not meet any of the inclusion criteria.

2.5 Information extraction

After applying the inclusion and exclusion criteria, full-text
articles were reviewed, and data were extracted from the selected
references. To ensure the collected data is relevant to the purpose
of the review, several crucial aspects were considered, such as
the design’s purpose, the sensors and algorithms utilized, the
data collection process, the data size for training, testing, and
validation, the performance evaluation, demographic information
of the participants involved(age, gender, height, weight, right-
handed or left-handed), and the method used for identifying
intentions. All extracted data can be found in the supplementary
files.

Once the data extraction was completed, the identified design
characteristics were compiled into a single file and categorized
accordingly. A matrix was created to show the statistical outcomes
from the references. The designs were then grouped together based
on the recognized intention and were analyzed in comparison.

2.6 Analysis

The entire process is shown in Figure 1. With the search string
in Table 1 applied to the following databases: Ovid MEDLINE,
Ovid Embase, and IEEE Xplore. The search identified a total
of 1296, 428, and 223 articles, respectively. After removing
duplicates and retracted articles, the number of literature reduced
to 1293 before screening. All remaining studies were screened
by title, and 973 articles (75.25% of deduplicated search) were
ineligible for not discussing social impacts, sensor, or algorithm
implementation, or is application in financial, cryptocurrency,
or brain-computer interface; 19 articles (1.46% of deduplicated
search) that are under different author names (problem of naming
convention). In the remaining 301 articles, abstract screening
excluded 214 articles (71.10%) due to not discuss intention-based
system, no sensor or algorithm mentioned, not in HRI context,
or not original research. Finally, the remaining 87 articles were
screened as full-text, leaving 59 articles (67.82%) as included
in this review. The exclusion is more specific compared to the
two before: discussed about psychology of intention rather than
intention recognition of systems, trials but limited social impact
mention, design for recognizing vehicle intention instead of human,
etc.

FIGURE 1
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.
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3 Results

Table 2 presents a summary of the demographic information
of the studies included in the review that proposed new designs
for sensors and algorithms in intention-based systems. Since the

TABLE 2 Summary of study characteristics of sensor and algorithm design
literature (n = 35).

Study characteristics Value, n (%)

Year

2017 4 (11)

2018 4 (11)

2019 6 (17)

2020 11 (31)

2021 6 (17)

2022 4 (11)

Involved participants

1–4 6 (17)

5–9 3 (9)

10–15 9 (26)

16–20 2 (6)

21–100 2 (6)

Unspecified 13 (37)

Sensor

RGB camera 10 (29)

Inertial Measurement Unit (IMU) 6 (17)

Surface electromyography (sEMG) 6 (17)

Depth camera 4 (11)

Force sensor 4 (11)

Myo armband 3 (9)

Custom 5 (14)

Other (mentioned once in article) 11 (31)

Algorithm

CNN-based 15 (43)

LDA 3 (9)

CNN + ConvLSTM 2 (6)

NN 2 (6)

Other (mentioned once in article) 13 (37)

Data type used

Image 11

sEMG 10

IMU 3

Force 2

Other (once in article) 9

identification of human intention varies depending on the task, the
designs proposed in the studies were categorized based on the type
of intention, mentioned in Figure 2. It shows the ontology created to
better visualize the structure of the literature review. The intention
types are separated into whole body and localized body parts, where
interaction, motion, and activity are the former, and hand gesture,
upper/lower limbmovement, facial gesture are the latter. Eachwould
be introduced in the later sections. The use of sensor clusters also
varies depending on the specific intention, especially in upper-limb
and lower-limb detection, where the placement of electrodes on
muscles may differ. Thus, it is difficult to rank the sensors and
algorithms used in the designs as being best or worst. Instead, they
have their own advantages and disadvantages. Table 3 provides the
complete reference to the intention types, and Table 4 for reference
to algorithms, which both will be discussed in detail in the later
sections. Figure 3 depicts the distribution of included studies from
2017 to 2022, and indicates that interest in intention-based systems
has peaked in 2020, although it remains consistent throughout the
years.

3.1 Whole body intention

3.1.1 Motion
The intention of human body movement, including standing

posture, gait pattern, and walking, is covered in the section on
motion intention. Instead of focusing on specific body parts
such as the upper-limb or lower-limb, the studies discussed in
this section prioritize whole body movements that are more
general. The determination of motion intention can ensure human
safety in HRI scenarios by avoiding collisions and increasing
efficiency. It differs from activity, as activity focuses on different
types of action (e.g., push-up vs. sit-up vs. walking with one
algorithm) whereas motion determines the occurrence of one type
of action (e.g., only walking). There are a total of 7 articles that
falls in the category, a summary of citations can be found in
Table 3.

3.1.1.1 Pedestrian intention
One aspect of motion intention is predicting the movement of

pedestrians in the context of automated vehicles. Goldhammer et al.
(2020) proposed a method called “PolyMLP” which uses artificial
neural networks to predict the future movement of pedestrians and
cyclists. The method employs a multilayer perceptron (MLP) with
sigmoid activation functions and polynomial approximation of time
series to recognize the current motion state and future trajectory
of vulnerable road users (VRUs). The network is trained using
offline learning approach,meaning themodel would have no further
learning input after training. Since it only requires information
regarding VRU’s past position in any coordinate system to make
prediction, the sensor choice is widely flexible, and no additional
information such as map data is needed. MLP was chosen due to
its ability to handle multi-dimensional data input and output and
learn complex patterns through several hidden layers. However,
MLP requires a large amount of training data and can be prone to
overfitting. In this study, the model was trained with video data of
pedestrians and cyclists, and the resilient backpropagation (RPROP)
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FIGURE 2
Ontology of intention-based system.

algorithm was used to optimize the number and sizes of hidden
layers and improve generalization (Riedmiller and Braun, 2002).The
trained model classified four motion intentions, including moving,
waiting, starting, and stopping, organized into connected states. The
method does not require additional information such as map data
and is widely flexible in sensor choice.

Fang et al. (2017) proposed a method to detect a pedestrian’s
intention to cross the road or turn in front of the vehicle using
stereo camera images as input. The system employs a two-branch
multi-stage convolutional neural network (CNN) for recognition of
human posture. The CNN is trained on the Microsoft COCO 2016
keypoints challenge dataset for skeleton fitting (Lin et al., 2015),
and then a support vector machine (SVM) and random forest
(RF) are compared as binary classifiers to determine the motion
intention. Both classifiers output a normalized score, with SVM
using Platt scaling on radial basis function kernel scores and RF
using probability values. The system achieves an identification of
crossing intention in under 750 milliseconds when transitioning
from other actions such as standing still and bending. The study
identifies a problem when encountering pedestrians at a far distance
where the skeleton fitting may confuse left and right side body parts.
This issue could potentially be minimized with a larger or more
specific dataset including these cases.

3.1.1.2 Walking intention
The ability to identify the walking direction of humans is critical

in several human-robot interaction scenarios, such as walking
support, object manipulation, and exoskeleton control. Liu et al.
(2017) proposed a design that can detect the walking direction
intention of a human when using a walking support robot (WSR).
The design employs a smartphone as a 3-axis accelerometer, along
with force sensors embedded in the armrest of the WSR to detect
pressure exerted by the human. The accelerometer is placed on
the chest of the subject. To classify the intention, SVM is used,
which has the advantage of being robust to noise and having global
optimization. The training and validation dataset is collected from
four participants when using the WSR to walk in eight directions,
including forward, back, left, right, left front, left back, right front,
and right back. The data is split into 80% for training and 20% for

testing. The combined sensors can achieve an accuracy of 89.4% at a
data collection window width of 0.1s, and an accuracy of 95.9% at a
window width of 0.5s.

Lanini et al. (2018) proposed a model for human-robot
collaboration when carrying heavy objects together. The model
identifies the motion state of humans and enables the robot to
perform synchronous movement. The study used 3D force sensors
(Optoforce) and a motion capture system (Optitrack) with 15
markers to collect training data, and only used the force sensor
during testing and imaginarywork environment.The data collection
involved 16 individuals with fair distribution, where one subject
always acted as a leader in motion, and the others were followers.
The followers were blindfolded and wore earmuffs to prevent visual
and acoustic feedback, and the leader was equipped with Bluetooth
earphones from which an audible beat was played to minimize
disturbances in the data.The feature extractionwas performed using
single variable classification (SVC) and multivariable classification
(MVC) models. SVC was used to investigate the effect of a single
threshold approach on features such as force and position, andMVC
was not limited in the number of features used. For classification
of the four types of identified intentions (Stationary State SS,
Walking Forward State WFS, and Walking Backward State WBS),
linear discriminant analysis (LDA) classifier was used as it has
interpretability on which are the most discriminative features and is
fast for training and testing. As a result of supervised learning, SVC
performs well on SS, achieving a 96% accuracy, but less satisfactory
on WFS with only 79%, while MVC has a 92.3% accuracy for WFS.
When the model is implemented on the COMAN robot, it performs
well on the starting and stopping of synchronizedmotion but poorly
on acceleration and deceleration, possibly due to misclassification
of deceleration as stopping with slow walking speed (0.25 m/s).

Another usage of walking intention detection is in dynamic
gait generation for exoskeleton. Ren et al. (2018) designed a on-line
dynamic gait generation model to plan real-time gait trajectories
in continuous motion process according to user intentions. The
exoskeleton used in the study is lightweight lower-limb exoskeleton
robot (LLEX), with inertial measurement unit (IMU) in the
backpack and angle sensors in the joints. Since the users all have
unique stride length, the study adopted a strategy to utilize real-time

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1233328
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhang and Doyle 10.3389/frobt.2023.1233328

TA
BL

E
3

Li
te
ra
tu
re

to
in
te
nt
io
n
ty
pe

.

In
te
nt
io
n
ty
pe

St
ud

y

M
ot

io
n

7
Fa

ng
 e
t a

l.
(2

01
7)

,L
iu

 e
t a

l.
(2

01
7)

,L
an

in
i e

t a
l.
(2

01
8)

,R
en

 e
t a

l.
(2

01
8)

,G
ol
dh

am
m

er
 e
t a

l.
(2

02
0)

,K
um

ar
an

d
M

ic
hm

iz
os

(2
02

0)
,L

i e
t a

l.
(2

02
0)

H
an

d
ge

st
ur

e
11

C
ot

e-
A
lla

rd
 e
t a

l.
(2

01
9)

,Y
ou

ng
 e
t a

l.
(2

01
9)

,C
he

n 
et
 a
l.
(2

02
0a

),
C
he

n 
et
 a
l.
(2

02
0b

),
G
ar

dn
er

 e
t a

l.
(2

02
0)

,C
hi

u 
et
 a
l.
(2

02
1)

,F
el
ek

e 
et
 a
l.
(2

02
1)

,D
in

g
an

d
Zh

en
g
(2

02
2)

,T
sit

os
 e
t a

l.
(2

02
2)

Lo
w
er

-li
m

b
m

ov
em

en
t

7
M

as
sa

lin
 e
t a

l.
(2

01
8)

,M
oo

n 
et
 a
l.
(2

01
9)

,S
u 
et
 a
l.
(2

01
9)

,C
ok

er
 e
t a

l.
(2

02
1)

,V
ie
ka

sh
 e
t a

l.
(2

02
1)

,W
an

g
(2

02
1)

,W
en

an
d
W

an
g
(2

02
1)

U
pp

er
-li

m
b
m

ov
em

en
t

5
K
ili

ca
nd

D
og

an
(2

01
7)

,L
iu

 e
t a

l.
(2

01
9a

),
H
ua

ng
 e
t a

l.
(2

02
0)

,K
op

ke
 e
t a

l.
(2

02
0)

,L
u 
et
 a
l.
(2

02
0)

A
ct
iv
ity

3
Li

 e
t a

l.
(2

01
8)

,J
ao

ue
di

 e
t a

l.
(2

02
0)

,P
ou

lo
se

 e
t a

l.
(2

02
2)

In
te
ra

ct
io

n
1
M

oh
am

m
ad

i A
m

in
 e
t a

l.
(2

02
0)

Fa
ci
al

ge
st
ur

e
1
C
ha

 e
t a

l.
(2

01
9)

spatial position planning, then use inverse kinematics to calculate
the joint angle trajectory. The walking process is divided into four
distinct patterns, start, normal gait, transition, and end, each with
different constraint conditions. A two-state state machine is used
to distinguish the two-leg support phase and other phases, which
the movement intention recognition would focus on. With multi-
sensor fusion of the data of IMU and angle sensors and rules
developed, the four patterns can be correctly identified, with a 5%
difference between generated gait and natural gait collected at the
same time of generating. Comparingwith existingmethod proposed
by Kagawa et al. (2015), it shows higher accuracy, naturalness, and
continuity, among varies stride length tested.

3.1.1.3 Other motion intention
In addition to the previouslymentionedmotion intentions, there

are other categories that require identification.

3.1.1.3.1 Rehabilitation
Kumar andMichmizos (2020) proposed a design to assessmotor

learning by identifying the intent of initializing a goal-directed
movement and the reaction time (RT) of the movement, which
can be used in the rehabilitation of sensorimotor impairment. A
deep CNN consisting of five layers was trained using 128-channel
EEG signals to predict movement intention, and four layers were
used for RT classification. Data collection was performed in two
separate tasks: the first is active mode, where the subject performs
the motion, and the second is passive mode, where motion is
performed by the robot with the subject’s arm affixed to the robotic
end effector. The training and testing dataset ratio is 4:1, and the
mean accuracy achieved for movement intent and RT classification
were 87.34%± 2.83% and 84.68%± 3.68%, respectively. In the future,
the proposed model could be used to target specific treatment
and provide assistance according to the percentage of voluntary
movement, andRT could be used as an indicator of functionalmotor
recovery.

3.1.1.3.2 Standing posture
Li et al. (2020) proposed a design for the recognition of standing

posture using a pressure-sensing floor. The floor design includes
a pressure buffer layer, a pressure sensor array, and a supporting
plate, along with a data collection unit that gathers foot-pressure
distribution over the sensor matrix. The foot-pressure distribution
is then converted into a grayscale image for further usage. The
proposed multi-classifier fusion algorithm includes a CNN similar
to lenet-5, a SVM classifier, and a KNN classifier. The latter two
were selected after comparing the training results within a group of
classifiers that included SVM, KNN, RF, decision tree (DT), Naïve
Bayes (NB), and backpropagation (BP) neural network. The trained
network can classify between nine standing postures with an average
accuracy of 99.96% across testing data. However, this study is limited
to static standing postures, and future implementations could focus
on identifying dynamically moving subject’s posture.

3.1.2 Activity
This literature review focuses on activity recognition, which

involves classifying whole body movements into distinct categories.
The studies analyzed in this section utilize image sensors, which are
a commonmethod as they conveymore comprehensive information

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1233328
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhang and Doyle 10.3389/frobt.2023.1233328

TABLE 4 Literature to algorithm.

Intention type Study

CNN-based 15 Fang et al. (2017), Owoyemi and Hashimoto (2017), Su et al. (2019), Chen et al. (2020a), Chen et al. (2020b),
Jaouedi et al. (2020), Kumar and Michmizos (2020), Li et al. (2020), Mohammadi Amin et al. (2020), Chiu et al.
(2021), Viekash et al. (2021), Wang (2021), Wen and Wang (2021), Ding and Zheng (2022), Poulose et al. (2022)

LDA 3 Lanini et al. (2018), Huang et al. (2020), Kopke et al. (2020)

CNN + ConvLSTM 2 Cha et al. (2019), Zhang et al. (2022)

NN 2 Moon et al. (2019), Coker et al. (2021)

Other (mentioned once in article) 13 Kilic and Dogan (2017), Liu et al. (2017), Li et al. (2018), Massalin et al. (2018), Ren et al. (2018), Liu et al.
(2019a), Cote-Allard et al. (2019), Young et al. (2019), Gardner et al. (2020), Goldhammer et al. (2020), Lu et al.
(2020), Feleke et al. (2021), Tsitos et al. (2022)

FIGURE 3
Distribution of studies from 2017 to 2022.

(Li and Xie, 2019). Moreover, the sensors do not need to be
placed directly on humans which allows activities to proceed
without interference. Detecting activities is critical when it comes
to collaborating on multiple tasks, as the robot can then identify
the specific task the human partner is performing and provide the
corresponding assistance. There are a total of 3 articles that falls in
the category, a summary of citations can be found in Table 3.

Jaouedi et al. (2020) proposed a novel approach for human
activity recognition using a combination of Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) with a
Kalman filter. The CNN model used in this study is a combination
of Inception V3 and MobileNet, while the RNN model is used
for activity classification. The approach was applied to videos
captured using an RGB-D camera and depth camera, and the
spatio-temporal features of the human skeleton were extracted for
feature presentation. The CAD-60 dataset was used for training and
testing the model. The dataset consists of RGB-D video sequences
of humans performing activities, recorded using the Microsoft
Kinect sensor. The study achieved an accuracy of 95.50% for
activity recognition, demonstrating the effectiveness of the proposed
approach.

Poulose et al. (2022) proposed a novel approach for Human
Activity Recognition (HAR) systems that use a smartphone camera
to capture human images and subsequently perform activity
recognition. The proposed approach, referred to as the Human

Image Threshing (HIT) machine-based HAR system, uses Mask R-
CNN for human body detection and ResNet for classification. The
HIT machine-based HAR system relies on images captured from a
smartphone camera for activity recognition, which has the potential
to significantly lower the cost and complexity of HAR systems. The
accuracy of the proposed system was evaluated using a dataset of
9 activities, including sitting, standing, walking, dancing, sit-up,
running, jumping, push-up, and lying. The model accuracy was
reported as 98.53%, with a model loss of 0.20. The precision, recall,
and F1 scores were also reported as 98.56%, 98.53%, and 98.54%,
respectively. The HIT machine-based HAR system achieved high
accuracy in activity recognition, indicating its potential to serve as a
cost-effective and efficient solution for HAR systems.

Li et al. (2018) proposes a novel gaze-based intention inference
framework for robots. The framework consists of three main
components: head pose estimation, eye center localization, and
eye model and gaze tracking. By analyzing the gaze data, the
system predicts the user’s intention, allowing the robot to provide
appropriate assistance or interaction. Existing frameworks mainly
focus on establishing the relationship between gaze points and
objects, but lack the ability to predict the user’s intentions. The
proposed framework aims to address this limitation by enabling
the robot to understand the user’s intentions and provide more
personalized assistance.The input to the system is gaze data captured
by a camera and a fixed monitor of scene image observed by the
robot.

3.1.3 Interaction
This literature review underscores the significance of

recognizing interaction intention to ensure safety in human-robot
interaction (HRI) scenarios. There are instances when humans have
no intention of interacting with robots, and it is vital for the robot
to identify these moments and halt the collaboration to avoid any
potential risks. This category differs from the others, focuses on
multimodal approaches, similar to a human-human interaction
wheremultiple sensors (eyes, ears, hands, etc.) are utilized to express
intent. There are a total of 1 articles that falls in the category, a
summary of citations can be found in Table 3.

Mohammadi Amin et al. (2020) proposed a method to enhance
safety by combining visual and tactile perception in human-robot
interaction. To achieve this, the study employs a camera system
consisting of two Kinect V2 cameras, with RGB and depth cameras.
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The study utilizes a 3D CNN for human action recognition and 1D
CNN for contact recognition.The input for the system includes RGB
and depth images captured by the camera system.The dataset for the
study consists of 33,050 images divided into five classes of human
action recognition and 1,114 samples divided into five classes of
contact recognition. The study achieved an accuracy of 99.72% for
human action recognition and 93% for contact recognition.

3.2 Localized body intentions

3.2.1 Hand gesture
In this literature review, the topic of hand gestures is explored,

encompassing both hands and wrist movements. Various studies
discussed in this section focus on recognizing different hand
gestures and their intended actions.The recognition process involves
the use of several sensors and algorithm combinations, such as
sEMG, MMG, RGB, and depth sensors. The primary objective
of recognizing hand gestures is to enable robots to interpret
human actions accurately or follow commands during collaboration,
thereby enhancing the efficiency of human-robot interaction (HRI)
scenarios. There are a total of 11 articles that falls in the category, a
summary of citations can be found in Table 3.

Chen et al. (2020a) proposed a design that utilizes a compact
deep neural network called EMGNet for gesture recognition
using sEMG data collected by Myo armband. The network has
four convolutional layers and a max pooling layer, without a
full connection layer as final output. EMGNet has reduced the
parameters to 34,311, which is significantly lower than othermodels,
such as CNN_LSTM, LCNN, and ConvNet. Moreover, the accuracy
of EMGNet is also higher, with 98.81% on the Myo dataset and
69.62% on the NinaPro DB5 dataset. However, the NinaPro DB5
dataset suffers from low accuracy due to a relatively small amount of
data with a large number of gesture categories and similar gestures
representing different categories. The Myo dataset has 19 subjects
performing 7 gestures, with 2280 samples for each gesture by each
person, while the NinaPro DB5 dataset has 10 subjects performing
12 gestures, with 1140 samples for each gesture by each person.

In another study, Chiu et al. (2021) proposed a design for
recognizing human intention to open automatic doors by detecting
and interpreting hand gestures. The proposed system aims to
address privacy concerns and reduce the spread of infection during
pandemics by enabling non-contact intention recognition. The
authors utilized both thermal and camera sensors to collect data,
but only the thermal data was used for actual recognition. The
data consists of 6,000 images of RGB and thermal data that were
masked into 64 × 48 pixels for “open” and “close” classes.Themasked
images were then fed into a Mask R-CNN, implemented with the
Detectron2 library, to extract human masking. A U-Net structure
was subsequently employed to identify the intention of the detected
human.

Cote-Allard et al. (2019) presented a novel 3-D printed armband
called the 3DC armband for sEMG hand gesture recognition. This
armband features a customSoC that can record 10 sEMGchannels in
parallel, a 9-axis IMU, a wireless transceiver, a MCU for interfacing
the components, and a power management unit (PMU) for low-
power consumption. The system is powered by a 100-mAh LiPo
battery and employs a Molex connector for connecting with the

armband and programming theMCU. For comparative experiment,
the performance of the 3DC armband was compared to the widely
used Myo armband as an sEMG measurement sensor. The Myo and
3DC armbands were worn simultaneously on the dominant arm of
participants, and a total of 8 cycles of 11 hand gestures were collected
for testing and training. The ConvNet architecture was then used to
classify each gesture. Results showed an accuracy of 89.47% for the
3DC armband and 86.41% for the Myo armband.

Ding and Zheng (2022) proposes a dual-channel VGG-16
CNN for gesture recognition using CCD RGB-IR and depth-
grayscale images. The authors collected 30,000 CCD RGB-IR and
30,000 depth-grayscale images using a Kinect depth camera, with
10 actions to recognize in total. They fused the images using
three different wavelet fusion techniques (max-min, min-max, and
mean−mean), resulting in 30,000 of each fused image. The dataset
was split into 15,000 for training and 15,000 for testing. The
results showed that the fusion of the min-max type had the highest
accuracy of 83.88%, while CCD RGB-IR only had an accuracy of
75.33% and depth-grayscale only had an accuracy of 72.94%. The
mean−mean type fusion had an accuracy of 80.95%, which was
also relatively high. Overall, the proposed method achieved high
accuracy in gesture recognition by combining CCD RGB-IR and
depth-grayscale images through wavelet fusion.

In Feleke et al. (2021), a recurrent fuzzy neural network (RFNN)
is proposed to map sEMG signals to 3D hand positions without
considering joint movements. The aim is to predict human motor
intention for robotic applications. The study analyzed the effects
of slow and fast hand movements on the accuracy of the RFNN
model. Two complex tasks were performed, one involving picking
up a bottle from the table and pouring it into a cup, and the other
a manipulation task with multiple obstacles, resembling intelligent
manufacturing. Each task was performed at both slow and fast
speeds, with 9 trials for each scenario, making a total of 36 trials.
The accuracy for slow tasks are 83.02%, 81.29% and for fast tasks
85.29%, 82.38%, both in the order of task 1 and task 2. The results
showed that RFNN could predict hand positions with high accuracy,
regardless of the speed of motion. This approach could be useful for
developing human-robot interaction systems.

In Young et al. (2019), a simplified pipeline system for hand
gesture recognition is proposed for prosthetic hand users. The
system utilizes a Myo armband as the sEMG sensor and a random
forest (RF) algorithm for classification. The system was tested on a
dataset consisting of five hand gestures: wave in, wave out, spread
fingers, fist, and pinch, from the Myo dataset. The results show that
the proposed system achieved an accuracy of 94.80%, indicating
high performance.

In this study by Gardner et al. (2020), a low-cost multi-modal
sensor suite is proposed for shared autonomy grasping, which
includes a custom mechanomyography (MMG) sensor, an IMU,
and a camera. The system is used to estimate muscle activation,
perform object recognition, and enhance intention prediction
based on grasping trajectory. The proposed KNN grasp classifier
achieved high accuracy for bottle (100%), box (88.88%), and lid
(82.46%) grasping tasks. The study aims to overcome limitations of
commercially available systems, which often employ indirect mode-
switching or limited sequential control strategies. The proposed
system allows for simultaneous activation of multiple degrees of
freedom (DoF) during grasping. Three different grasp patterns were
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tested for a box and two different grasp patterns were tested for a
bottle and a lid. Each object was tested at 18 different locations, with
a 3-s timewindowprovided for the user to reach and grasp the object
and 2.5 s to return to a resting position. The results demonstrate
the feasibility and potential for shared autonomy grasping using the
proposed multi-modal sensor suite.

Tsitos et al. (2022) used a single RGB-D camera to observe
human behavior and predict intentions in real-time for robotic
actions using logistic regression (LR) algorithm. The aim was
to evaluate the feasibility of the proposed approach. The results
showed 100% accuracy for both touching and distant objects when
compared to human performance in all scenarios. The input was
an image, and the dataset consisted of two subjects who performed
grasping movements towards two identical objects in two different
scenarios. Each participant completed 50 movements towards each
object (left or right) for each scenario, making a total of 400
movements. An 85%–15% split was used for training and testing.
Further studies are needed to evaluate the proposed approach with
a larger sample size and a wider range of scenarios to determine its
generalizability and practicality.

From Chen et al. (2020b), a CNN-based algorithm was
proposed for stiffness estimation and intention detection using
sEMG data collected from the Myo armband. The algorithm
consisted of six 2D convolutional layers (Conv2D), a 2D max-
pooling layer (MaxPool2D), and three 2D Global Average Pooling
layers (GAP2D). The output of the last GAP2D layer was
concatenated with the output of the previous layer, and the process
was repeated three times. The accuracy of the algorithm was 96%
for each type of wrist configurations in several trials.

The ability to identify handmovement intention is prominent for
robots on collaborated assembly line in HRI scenario. Zhang et al.
(2022) proposed a method to predict human hand motion during
an assembly task to improve collaboration flow and efficiency. The
design utilizes an RGB camera mounted over the robot, facing
downwards at the working area on the table. The study proposed
a state-enhanced ConvLSTM network that combines the flexibility
and effectiveness of regular ConvLSTM with improved accuracy
(Liu et al., 2019b). The experiment involved six sub-tasks, each
requiring the installation of one part of a seat. Using an extended
Kalman filter (EKF) to track and a separate CNN to recognize
the human intended part, together with the ConvLSTM to predict
intention, the robot arm can assist the human in assembly with
only image data. After training, the recognition accuracy was higher
than 99%. Comparing this method with using speech recognition
to detect and deliver intended parts, the prediction method saved
36.43 s in completing all sub-tasks. This approach reduces idle
time during the process and improves the efficiency and quality
of collaboration since longer idle time reflects worse collaboration
between human and robot.

Owoyemi and Hashimoto (2017) developed an approach to
identify intention by utilizing collections of point clouds. The study
used a 3D sensor mapped into 3D occupancy grids and input
the processed data into a 3D CNN to recognize arm and hand
motion. The evaluation of the model was to recognize subject’s
pick and place action from four boxes. Using 119,102 datasets for
training and 14,802 separate datasets for offline testing, the model
achieved 100% accuracy in identifying the intention of the subject.
When compared to LSTM and 1D convolution model variants,

the proposed model showed better accuracy with significantly
fewer parameters. However, the positioning of the camera used
to generate the point cloud can affect the accuracy of the final
result. Additionally, generalization can be a problem since only one
subject was used in the training and testing datasets, which requires
further data collection with different participants andmore complex
motions to enhance the model’s generalizability.

3.2.2 Upper-limb movement
This literature review delves into the topic of upper-limb

movement, which encompasses the entire arm and shoulder,
excluding hand gestures and wrist configurations. Various sensors,
including sEMG and muscle shape change (MSC), as well as
torque and limb position detection by exoskeletons, are utilized to
detect upper-limbmovements.The primary objective of recognizing
upper-limb movement intentions is to enable robots to anticipate
the trajectory of human arms and provide assistance in movement,
thus reducing the workload for humans in specific muscle areas
with effective designs. There are a total of 5 articles that falls in the
category, a summary of citations can be found in Table 3.

In Liu et al. (2019a), the focus is on upper-limb rehabilitation
using exoskeleton robots, and a study proposing a sensorless control
scheme with human intention estimation is discussed. The study
aims to address the control problem of upper-limb rehabilitation
by utilizing a self-built exoskeleton robot called NTUH-II, which
detects shoulder horizontal abduction/adduction (HABD), shoulder
flexion/extension (SF), and elbow flexion/extension (EF) joints. The
proposed control scheme employs a deep neural network (DNN) for
human intention estimation, with the input being the upper limb
torque. The accuracy of the scheme was evaluated using root mean
square error (RMSE) and normalized RMSE (NRMSE) metrics. The
dataset used for training and testing consisted of 28,000 data points
and was split into 85%–15% for training and testing, respectively.

Lu et al. (2020) focuses on a study that proposes a novel
controller for a Franka Emika robot. The purpose of the study is
to enhance the efficiency of human-robot interaction by improving
trajectory prediction accuracy. The controller combines variable
admittance control and assistant control, and utilizes fuzzy Q-
learning and LSTM algorithms for optimization. The input for the
controller is human limb dynamics, and the dataset consists of 30
trajectories sampled at 1000 Hz. The trajectory prediction accuracy
after model training was less than 1 mm with the actual trajectory.
The fuzzy Q-learning algorithm optimizes the damping value of
the admittance controller by minimizing the reward function. The
LSTM algorithm is utilized to predict the trajectory of the robot
based on the human limb dynamics input.

The design and control of an active wrist orthosis that is mobile,
powerful, and lightweight is proposed in Kilic and Dogan (2017)
as a means to avoid the occurrence and/or for the treatment of
repetitive strain injuries. The study utilizes two sEMG sensors at the
extensor carpi radialis (ECR) and flexor capi radialis (FCR)muscles,
and a force sensor. The control system is based on a fuzzy logic
controller.The study aims to reduce the workload of the FCRmuscle
while maintaining the accuracy of the orthosis. The study recorded
the deviation from the intended trajectory for wrist movement and
found that it increased from 1.794° to 2.934° on average, but reduced
the workload by half for the FCR muscle. The dataset for the study
consisted of a healthy person performing an isometric test to record
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maximum torque and sEMG at the forearm. The orthosis generated
three levels of torque according to EMG signals detected at the FCR
and ECR muscles.

Kopke et al. (2020) focuses on investigating the effectiveness
of pattern recognition of sensor data to identify user intent for
various combinations of 1- and 2-degree-of-freedom shoulder tasks.
The sensors used in this study include load cells and sEMG
electrodes. The dataset consists of different max joint torque lifting
or depressing conditions determined by isometric testing. The
conditions include 0%, 25%, and 50%ofmaximum joint torque, with
a minimum of three and a maximum of ten trials of each condition
completed. Two sets of LDA classifiers were developed for each
dataset type, including sEMG, raw load cell data, and a combined
dataset, with one set using 0% and ± 25% lifting condition data and
the other using 0% and ± 50%.The accuracy of the combined set was
found to have a 9.7% error rate.

Huang et al. (2020) presents the development of a novel sensor
for the acquisition of muscle shape change (MSC) signals in
order to decode multiple classes of limb movement intents. The
sensor is custom made using nanogold and is both flexible
and stretchable. The study utilized a linear discriminant analysis
(LDA) classifier to classify seven classes of targeted upper-limb
movements, including hand close, hand open, wrist pronation,
wrist supination, wrist extension, wrist flexion, and rest state. The
dataset was collected with a video prompt for each movement,
followed by a rest session, with each prompt lasting 5 s. The
accuracy achieved was 96.06% ± 1.84%, demonstrating the potential
of using MSC signals for multi-class limb movement intent
recognition.

3.2.3 Lower-limb movement
This literature review explores the topic of lower-limb

movement, which pertains to leg motions. As walking intention
is considered a part of the overall body movement, this section
places greater emphasis on detecting signals from the lower body
to determine related activities and partial movement intentions
of the thigh, knee, and other such areas. The primary objective of
recognizing lower-limb movement intentions is to enable robots to
predict and assist humans in variousmovements, including walking,
standing, and stair ascending/descending, among others. There are
a total of 7 articles that falls in the category, a summary of citations
can be found in Table 3.

In Moon et al. (2019), the development of a single leg knee
joint assistance robot with motion intention detection using a
sliding variable resistor to measure length between the knee
center of rotation and the ankle (LBKA) was investigated. The
aim of the study was to enhance the control of exoskeletons by
incorporating the detection of motion intention. The algorithm
used in the study was a neural network with 15 hidden layers and
one input/output layer. The dataset used in the study consisted
of three motions: stairs ascending, stairs descending, and walking.
40 training datasets were used for each motion, and 200 training
datasets were used for exception state training. The performance
of the algorithm was evaluated based on the ROC curve. The
results showed that the algorithm had good performance, indicating
that it is a promising approach for motion intention detection in
exoskeletons.

Su et al. (2019) proposed a novel method for training an intent
recognition system that provides natural transitions between level
walk, stair ascent/descent, and ramp ascent/descent. The study
utilizes three IMUs (thigh, shank, and ankle of the healthy leg) and
a CNN algorithm for motion intent recognition. The input to the
system is lower limb IMU data, and the dataset consists of 13 classes
of motion intent. The able-bodied individuals performed ten trials
each, with at least five steps, while the amputees performed ten
locomotion modes, including level ground, stairs, and ramp, and
any transition between them. The dataset comprises 1300 samples
from able-bodied individuals and 130 from amputees. The accuracy
of the system is 94.15% for able-bodied individuals and 89.23% for
amputees.

In Wen and Wang (2021), a lower-limb motion intention
recognition algorithm is proposed that utilizes multimodal long-
term and short-term spatiotemporal feature fusion for accurate
recognition. The input used for the algorithm is sEMG data, and
the proposed algorithm consists of a 3D CNN for extracting short
term spatiotemporal features in segments, Le Net and shape context
to extract features of the target motion trajectory, and an LSTM
network for time-series modeling of the extracted features. The
purpose of the study is to develop a robust motion intention
recognition system that can accurately interpret human motion
in real-time scenarios. The accuracy achieved by the proposed
algorithm is 90%, indicating that the fusion of long-term and
short-term spatiotemporal features has significantly improved the
recognition performance. However, the study does not provide any
information regarding the dataset used for testing the proposed
algorithm.

The study of Massalin et al. (2018) proposes a user-independent
intent recognition framework using depth sensing for five activities:
standing, walking, running, stair ascent, and stair descent. The
objective of the study is to develop and validate a framework that
can accurately recognize user intention without relying on user-
specific data. The sensor framework consists of a depth camera on
the shank and an action camera for class labeling, with support
vector machine (SVM) as the algorithm for classification. The
dataset includes 5 activities with 20 trials per subject, resulting
in a total of 402403 depth images. The study concludes that
the proposed framework can accurately recognize user intention
in real-time, which could have potential applications in various
fields such as sports training, gait analysis, and rehabilitation.
The framework’s user-independent nature makes it particularly
useful in scenarios where user-specific data cannot be obtained,
such as in public spaces or medical facilities. The accuracy
of the proposed framework is reported to be 94.5%, which is
achieved using 8 subjects’ data for training and 4 subjects for
testing.

Wang (2021) proposes the use of a convolutional neural network
(CNN) model to reconstruct the motion pattern of a lower limb
prosthesis. The input to the CNN model is the data collected
from the IMU sensor attached to the prosthesis. The dataset used
in this study includes four different motion patterns: heel strike,
support, swing, and tippy toes touchdown. The CNN model used
in this study includes seven layers, which are used to extract
the features from the input data and classify the motion pattern.
The accuracy of the system is measured using a recognition
rate, which is found to be 98.2%. The use of a single sensor
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and the high accuracy of the system make it a practical and
convenient solution for motion pattern recognition in lower limb
prostheses.

Coker et al. (2021) presents amethod for predicting knee flexion
angle using surface electromyography (sEMG) signals from thigh
muscles and knee joint angle data. The purpose of this research
is to develop a framework for predicting human intent for control
purposes in exoskeleton technology. Twelve sEMG electrodes and a
10-camera Vicon motion capture system were used to collect data
from ten subjects during walking trials. A nonlinear input-output
time series neural network trained using Bayesian regularization
was used to predict the knee’s flexion angle at 50, 100, 150,
and 200 ms into the future. The neural network consisted of a
single hidden layer of ten nodes with a feedback delay set to
two. The accuracy of the predictions was evaluated using RMSE,
which was found to be 0.68 for 50 ms, 2.04 for 100 ms, 3.38 for
150 ms, and 4.61 for 200 ms. The results showed good accuracy
in predicting the knee joint angle up to 100 ms in advance, which
is promising for real-time control of exoskeletons. However, the
accuracy decreased for longer prediction horizons, which may
be due to the complexity of the underlying muscle activation
patterns.Thedataset included ten subjects with no history of chronic
pain in the spine or lower extremities, which suggests that the
results may not be generalizable to individuals with injuries or
pathologies.

Viekash et al. (2021) presents a new approach for controlling
and actuating a continuous passive motion (CPM) machine
using a deep learning-based control strategy that integrates
CNNs. The sensor inputs include sEMG and thigh IMU data,
which are used to train three 1D-CNN models. Each 1D
CNN algorithm is employed to analyze the sensor data, and
40 trials are conducted for each motion (forward, backward,
and rest) during the training phase. The training and testing
datasets are split at an 80%–20% ratio. The accuracy of the
proposed approach is reported to be 97.40%, indicating good
performance.

3.2.4 Facial gesture
This literature reviewhighlights the importance of facial gestures

in controlling augmented reality/virtual reality (AR/VR) systems.
These gestures can potentially be utilized to collaborate with robots
and enhance the efficiency of such collaborations.

InCha et al. (2019), an infrared (IR) camera and laser diodewere
used to capture skin deformation data as input for a spatial-temporal
autoencoder (STAE) that recognizes facial gestures for hands-free
user interaction (UI) with an augmented reality (AR) headset. The
use of skin deformation as input for gesture recognition is a novel
approach to hands-free UI for AR headsets. The STAE consists of
two 3D convolutional neural networks (CNN), two convolutional
long-short-termmemory (ConvLSTM)networks, and one 3DCNN.
The goal was to achieve high accuracy in recognizing user intentions
based on facial gestures. The results showed an accuracy of 95.4%
on 10 subjects during data collection. Future work could investigate
the use of this approach in real-world AR applications, as well as
explore the potential for combining facial gesture recognition with
other types of input, such as voice or gaze, to further enhance hands-
free UI for AR.

4 Discussion

As robotics become more integrated into our working and
living environments, ensuring the safety and efficiency of human-
robot interaction has become increasingly important. Intention-
based systems have emerged as a promising approach to achieve this,
as they allow robots to anticipate and respond to humanmovements
and intentions. This literature review provides an overview of the
current methods used in implementing intention-based systems,
with a specific focus on the sensors and algorithms used in
the process. Various studies have proposed designs for different
task environments to react to different determined intentions.
However, due to the current limitations of sensors and algorithms,
it is premature to assume that one combination of sensors and
algorithms is the best choice for all tasks.Therefore, further research
is needed to determine the most effective sensor and algorithm
combinations for specific human-robot interaction scenarios.

When analyzing the data extracted from the literature and
presented in Table 2, it becomes clear that the most popular sensor
used in designs is the RGB camera (Fang et al., 2017; Li et al., 2018;
Gardner et al., 2020; Jaouedi et al., 2020; Mohammadi Amin et al.,
2020; Chiu et al., 2021; Ding and Zheng, 2022; Poulose et al., 2022;
Tsitos et al., 2022; Zhang et al., 2022). This is likely due to the
widespread use of image recognition applications in recent years,
as well as the relative affordability and accessibility of RGB cameras
in work environments. RGB cameras have a distinct advantage in
intention recognition due to their ability to capture detailed color
information. This allows AI systems to accurately perceive and
understand human actions in real-world scenarios, enhancing the
robot’s ability to infer human intent. By capturing rich visual data,
RGB cameras enable machine learning models to interpret nuanced
human behaviors and gestures, improving the robot’s ability to
anticipate human actions and interact more naturally and efficiently.
However, they also have notable disadvantages. RGB cameras may
struggle with recognizing intentions in low light conditions or
when the subject is at a distance. Additionally, they can be affected
by occlusion, where objects in the foreground block those in the
background. Lastly, there are significant privacy concerns associated
with using RGB cameras for intention recognition, as they can
capture identifiable and sensitive visual data.

The second most commonly used sensors are IMUs and
sEMG sensors. IMUs are often found in exoskeleton designs and
commercialized armbands, such as the Myo armband (Ren et al.,
2018; Cote-Allard et al., 2019; Su et al., 2019; Gardner et al., 2020;
Viekash et al., 2021; Wang, 2021), while sEMG sensors are mainly
used to measure upper-limb movements with armbands (Cote-
Allard et al., 2019; Young et al., 2019; Chen et al., 2020a; Chen et al.,
2020b) and lower-limb movements with sEMG electrodes (Kilic
and Dogan, 2017; Kopke et al., 2020; Coker et al., 2021; Feleke et al.,
2021; Viekash et al., 2021; Wen and Wang, 2021). IMUs, which
measure body acceleration and angular rate, offer the advantage
of being unobtrusive, portable, and relatively easy to use, making
them ideal for real-time, dynamic motion tracking. However, their
accuracy may be affected by sensor drift over time, and they may
not capture subtle movements or muscular activities that do not
result in noticeable motion. On the other hand, sEMG sensors,
which record muscle activation, offer high temporal resolution
and can detect subtle muscle contractions that might not result
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in visible motion, potentially improving the detection of intended
movements.They can provide detailed information about the degree
of muscle activation, which can be useful in assessing user intent in
tasks that require fine motor control. However, sEMG signals can
be sensitive to variations in sensor placement, skin condition, and
muscle fatigue, which can affect their reliability. Also, the setup of
sEMG sensors can be more obtrusive and uncomfortable for the
user, which might limit their use in certain scenarios.

In contrast, force sensors and depth cameras are less popular.
Force sensors have limitations regarding the area and tasks that
require contact, which may account for their relatively low usage in
designs. Additionally, depth cameras are often used in conjunction
with RGB cameras rather than being employed as a standalone
sensor in designs. They may also struggle with distant subjects.
Moreover, they can have difficulties with transparent or reflective
surfaces, and their depth accuracy decreases as the distance from
the camera increases.

When compared to other algorithms, those based on CNN
have been used most frequently in intention recognition research.
This is likely due to the popularity of RGB cameras, which capture
visual input that can be processed by CNNs to identify patterns
or features indicative of specific motions or actions. They excel
in feature extraction from images, which makes them ideal for
interpreting complex patterns and details in RGB images. The result
can be a more accurate, real-time prediction of intentions based on
visual cues, gestures, and behaviors captured by the RGB camera
and analyzed by the CNN. Furthermore, CNNs are well-suited
to handling complex and high-dimensional datasets, which are
often generated when multiple sensors are used simultaneously in
intention recognition.

The majority of studies are focused on motion intention-based
system. There appears to be an even spread in more specific
directions such as walking intention, pedestrian intention, and hand
motion. The most common sensor and algorithm used to determine
motion intents are cameras and CNN. Since motion intention is
about whole body movement, sEMG and IMU are not as descriptive
as camera sensor with the same effort, which builds up to a lot of
CNN usage.

Several studies also focus on recognizing hand gestures, which
are often used to issue commands to robots or signal collaboration
intent. In these studies, sEMG and RGB sensors are used in
relatively equal numbers. This is because sEMG sensors, when used
on armbands, can accurately predict hand motion, while cameras
can capture detailed visual information about hand gestures.
Additionally, there has been an increasing usage of sEMG in
upper-limb and lower-limb intention determination, making it an
ideal choice when only partial intention needs to be determined.
This occurs when only a small group of related muscles are used
to complete an intended action. While CNN-based algorithms
remain the majority in intention recognition research, various other
algorithms and classifiers are also used, including RFNN, RF, and
KNN. This is because some designs employ sEMG sensors, which
can classify hand gestures without requiring complex data input.
As a result, CNNs may not always be necessary for these specific
applications, leading researchers to explore alternative algorithms
and classifiers.

While motion-based systems have been widely explored in
intention recognition research, there are other domains that have

received less attention and present opportunities for further study.
For example, interaction and facial gestures are relatively unexplored
areas that could benefit from more research.

Interaction can be studied in both social robot and industrial
robot contexts, although the literature review focused primarily
on the latter, with the expanded definition described in the
introduction. One included study (Mohammadi Amin et al., 2020)
proposed a design for ensuring safety during interactions with
robots using visual and tactile perception, which initiated research
on combining tactile cues with intention-based systems. In addition,
as collaboration between humans and robots is most efficient when
communication is bidirectional, it is also important to explore
methods for recognizing the intentions of robots, as this will enable
more effective collaboration.

Facial gesture can be explored further for integration with
other intention recognition in working environment. For example, a
robot could be programmed to recognize specific facial expressions,
such as frustration or confusion, and use this information to
adjust its actions accordingly. This could be used as an additional
factor for robot reaction, improving the robot’s ability to support
human operators in various tasks. Additionally, facial gesture
recognition could be used in assistive robots, allowing users to
control the robot’s behavior using facial expressions and gestures,
leading to more intuitive communication between the user and the
robot.

The impact of intention-based systems on trust in HRI scenario
has not been extensively studied. None of the articles related to
sensor and algorithms included in this review have considered the
effect of trust on participants. While there is a lack of specific
research on the effects of these systems on trust, general research on
robots and AI in healthcare domain can provide some insight. The
studies conducted by Choudhury et al. (2022), Esmaeilzadeh et al.
(2021), Asan et al. (2020) underscore the multifaceted importance
of trust in the implementation of AI within healthcare scenarios, as
it emerges as a pivotal factor influencing the acceptance and effective
use of these technologies, as well as Torrent-Sellens et al. (2021),
which highlights the factors affecting trust in RAS.

Choudhury et al.’s study (Choudhury et al., 2022) offers a
targeted perspective by examining clinicians’ trust in AI systems and
how this influences their willingness to adopt such technologies.
Notably, trust appears to serve as a mediator between perceived
risk and expectancy in the decision to use the AI tool. This study
underscores the importance of striking a balance between trust and
over-reliance, suggesting that an informed and rational level of trust
leads to an optimal utilization of AI, whereas blind trust can lead to
overdependence and potential misuse.

Esmaeilzadeh et al. (2021) broaden the perspective by focusing
on patients’ perceptions and how they interact with trust. Their
study identifies an array of factors - from privacy concerns to
communication barriers - that could influence patients’ trust in
AI and subsequently their intention to use AI in their healthcare.
The study particularly emphasizes the importance of physician
involvement in healthcare delivery involving AI tools, suggesting a
co-existence model where AI augments rather than replaces human
care providers.

Another study by Asan et al. (2020) discussed a similar aspect.
The study reflected that trust varies between patients and clinicians.
With the rise of patient-centered care, understanding the role of
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AI in patient-clinician decision-making is essential. Concerning
medical responsibility, clinicians could face accountability if AI
recommendations deviate from standard care, leading to negative
outcomes.Thus, it is crucial to find a balance of trust between human
judgment and AI recommendations, considering the evolving
nature of AI and individual human factors.

The study by Torrent-Sellens et al. (2021) examines factors
affecting trust in robot-assisted surgery in Europe. Trust initially
increases with more experience with robots but declines as
this experience grows, suggesting a nuanced relationship.
Sociodemographic factors play a pivotal role; men, those aged
40–54, and higher-educated individuals show pronounced trust
based on their experience. Access to detailed, accurate information
about procedures significantly impacts trust. The study calls for
public policy should address the fluctuating trust by funding
research on regulatory, ethical, and legal aspects and emphasizing
clinical efficacy, as current design and model lacks attention on the
importance of trust during RAS.

While the studies mentioned above shed some light on trust of
human with robots and AI in healthcare, they do not specifically
address the potential impact of intention-based systems in human-
robot interaction scenarios. Intention-based systems are designed
to be more “intelligent” and responsive to human intention and
behavior, whichmay lead to different characteristics and perceptions
of the robot by the human team members. As robots become
more integrated into various aspects of human society, it is crucial
to examine the effect of intention-based systems on trust and
cooperation in different settings, such as in industrial or medical
contexts. Further research on intention-based systems can provide
insight into how to design and implement such systems to gain
adequate trustand cooperation between humans and robots in
various contexts.

5 Conclusion

This literature review follows the PRISMA guidelines and
examines the sensors and algorithms used in intention-based
systems, as well as their potential impact on trust and team
dynamics. The studies included in this review propose various
designs for intention-based systems based on the given task
environment, with the choice of sensors and algorithms being
dependent on the task at hand. RGB cameras and CNN-
based algorithms are the most commonly used sensors and
algorithms, respectively. In contrast, sEMG measurements
in electrodes and armbands are more commonly used for
determining partial body intention, such as for upper-limb and
lower-limb.

Despite the advancements in intention-based systems, there
are still several areas where further research is needed. For
instance, interaction intention can be further explored to improve
bidirectional communication and increase the efficiency of
collaboration. Facial gesture recognition could be integrated with
other intention recognition methods to create a more intuitive

interaction environment. Additionally, the effect of intention-
based systems on trust and team dynamics in HRI scenarios has
not been well studied. Finally, there is a need to investigate the
impact of anthropomorphism on the perception of robots in moral
interactions.

This literature review provides a foundation for future research
and development of intention-based systems, as well as analysis of
their social impact factors. By exploring the gaps in the existing
literature, future research can help improve the effectiveness and
safety of human-robot interactions in various industries.
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