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From real-time adaptation to
social learning in robot
ecosystems

Alex Szorkovszky1,2*, Frank Veenstra1,2 and Kyrre Glette1,2

1RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo,
Norway, 2Department of Informatics, University of Oslo, Oslo, Norway

While evolutionary robotics can create novel morphologies and controllers that
are well-adapted to their environments, learning is still the most efficient way
to adapt to changes that occur on shorter time scales. Learning proposals
for evolving robots to date have focused on new individuals either learning
a controller from scratch, or building on the experience of direct ancestors
and/or robots with similar configurations. Here we propose and demonstrate
a novel means for social learning of gait patterns, based on sensorimotor
synchronization. Using movement patterns of other robots as input can drive
nonlinear decentralized controllers such as CPGs into new limit cycles, hence
encouraging diversity of movement patterns. Stable autonomous controllers
can then be locked in, which we demonstrate using a quasi-Hebbian feedback
scheme. We propose that in an ecosystem of robots evolving in a heterogeneous
environment, such a scheme may allow for the emergence of generalist task-
solvers from a population of specialists.
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social learning, evolutionary robotics, entrainment, central pattern generator, cultural
evolution

1 Introduction

It is by now a mainstream opinion in robotics and artificial intelligence that a properly
intelligent machine can only come about by continually interacting with its environment
through some forms of sensory perception-action loops (Pfeifer and Bongard, 2006;
Zador et al., 2023). Such situated cognition is a prevalent goal in evolutionary robotics,
where robots come to adapt to their environments and exhibit morphological intelligence
(Doncieux et al., 2015).

Taking evolutionary robotics to its logical conclusion, the Autonomous Robot Evolution
project presents a radically bottom-up approach to design and fabrication of diverse
populations of robots with high degrees of autonomy (Hale et al., 2019). The approach is
neatly broken down into three components: fabrication of a robot from a genotype, learning
in the physical world, and finally “mature life” in which tasks are performed, performance
is evaluated, and the robot’s morphology and/or controller is passed to the next-generation.
This cycle has been termed the Triangle of Life (Eiben et al., 2013). Of these three stages,
learning is currently the least well developed.

There are several reasons for a robot to learn during its lifetime, and not only benefit
from its successful ancestors’ genetic material. The “reality gap” refers to controllers
evolved in silico not behaving the same in the real world due to imperfections in the
simulation (Jakobi et al., 1995). Imperfections in manufacture also imply a noisy genotype-
to-phenotype mapping. This learning may not even necessarily be a small tweaking of
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parameters: a child robot resulting from mutations or crossover
is likely to have a different number of sensor inputs and motor
outputs to its parents, so the controller architecture often needs to
be reconfigured or learned from scratch.

A controller archive is a natural solution to the problem of
varying morphologies. This archives a high-fitness controller for
each class of morphology (for example, a certain number of inputs
and outputs) as a starting point for future child robots in this class
(Le Goff et al., 2022). Controllers tuned during lifetime learning can
then be passed down to compatible descendants. This approach
resembles “quality diversity” schemes (Pugh et al., 2016) in that
solutions occupying different parts of the space of solutions are
preserved.

When considering a time-varying or heterogeneous
environment, however, it is worth asking whether a certain learning
and evolution scheme promotes specialists or generalists. Consider,
for example, a task that can be solved by either stepping or hopping.
If this is used to determine fitness, certain morphology-controller
combinations will evolve to do either one or the other. Now, imagine
a real-world task appears that requires some combination of stepping
and hopping. The evolutionary solution in this case would most
likely come from a child of one stepper and one hopper. As this is
a new task, a new controller would need to be learned from scratch
for the right combination of parents’ morphologies. Additionally, if
the more complex task has been learned but is then absent for some
time, catastrophic forgetting is likely to occur if it is not explicitly
archived (McCloskey and Cohen, 1989).

One solution to generalist task-solving involves multi-objective
evolutionary optimization (De Carlo et al., 2021), another common
quality diversity technique. In this case the Pareto front will
include both specialists closer to the edges favouring different
fitness functions, and “jack-of-all-trades” solutions close to the
middle. A learning stage can also be implemented to optimize
specialized behaviours usingmultiple copies of the controller, which
can be switched between (de Bruin et al., 2023). So, for example,
a morphology that accommodates both stepping and hopping can
learn a separate controller for each.

Here, we propose an alternative scheme, in which robots learn
from each other instead of on their own.That is, we propose situated
social learning of a variety of movement patterns from different
“teacher” robots. We demonstrate a key component of the proposed
learning method on a variety of controllers evolved using multi-
objective optimization, as in de Bruin et al. (2023). In principle, the
teacher and learner can exist in different regions of the Pareto front
and have different morphologies. One advantage of this approach is
that either specific behaviours can be human-defined as tasks, and
selected upon, or behaviours can emerge spontaneously from the
population if they are useful for survival. The latter is an example of
open-ended evolution (Taylor, 2012), which by removing potential
bounds on complexity intends to produce the “full generativity of
nature” (Soros and Stanley, 2014).

A key to the success of the human species is precisely
this kind of social learning, which can greatly enhance problem
solving abilities (Herrmann et al., 2007) and the accumulation of
knowledge and skills over time (Boyd et al., 2011). Not only does
this accumulation take place “vertically,” from older to younger
kin, but also “horizontally” across whole societies. Identifying the
conditions in which genes and culture co-evolve, and the aspects of

cognition thatmake it possible, are primary goals of dual inheritance
theory, or biocultural evolution (Boyd and Richerson, 1985). This
differs from the “memetic” approach influential in computer science
(Neri and Cotta, 2012) in that it is based on behaviours rather than
information, and is hence a more suitable framework for situated
agents.

Culture, in this sense of knowledge, practice and artifacts
preserved via non-genetic means across generations, is not only
confined to those preserved through syntactical language. It also
includes gesture, dance, vocal calls, music and tool-use transmitted
through action imitation. Recent studies have shown evidence of
social learning of several of these behaviours in non-human animals,
indicating those that higher formsmay be built upon (Whiten, 2021;
Aplin, 2022). These basic forms of social learning involve copying
of another agent’s behaviour, followed by its transformation into
autonomous behaviour. The propagation of behaviour from agent
to agent in this way is termed “cultural transmission” (Mesoudi and
Whiten, 2008).

A behaviour, in our case, is communicated as a periodic
rhythm via a series of impulses (for example, indicating swing-to-
stance transitions). The “learner robot” first synchronizes to the
input, a process known as rhythmic entrainment (Schachner et al.,
2009), and then self-synchronizes to preserve the resulting motion
pattern. Insofar as the frequency or pattern of ground contact
indicates a behaviour, this form of communication allows specific
behaviours to not be restricted to a particular area of morphological
space.

We will first review current and potential generative approaches
to social sensorimotor learning, and then demonstrate a scheme
to achieve this in a diverse population of central pattern generator
(CPG) based robots. The first ingredient of this process, CPGs
with the ability to spontaneously entrain to periodic stimuli, has
recently been achieved (Szorkovszky et al., 2023a). We will first
demonstrate that Hebbian-like spike timing-dependent plasticity
can be used to lock-in movement patterns achieved through
synchronization. Using autocorrelation functions, we characterize
both the diversification of movement patterns, as well as the cultural
transmission of patterns from teacher to learner. Finally, we propose
how this approach can be incorporated into a learning scheme for
evolving robots.

2 Related work

2.1 Imitation and sensorimotor learning

A number of subfields of robotics and computational
neuroscience have already successfully modelled aspects of
social sensorimotor learning. For robot arms, learning from
demonstration is a common technique, where operator training
data are generalized into smooth dynamical systems with stable
fixed points or limit cycles at desired positions in absolute or relative
space (Ravichandar et al., 2020). Using extra dimensions in the
dynamical system can even allow multiple overlapping limit cycles,
such as clockwise and anticlockwise circles (Khoramshahi and
Billard, 2019). Less common is robotic imitation and coordination
of gestures from visual signals (Billard and Arbib, 2002; Arbib et al.,
2014). However, much progress has been made in this area, and it
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has recently been proposed as a plausible means for open-ended
evolution, particularly with conditions that encourage spontaneity
(Ikegami et al., 2021).

Social and collective behaviours are also commonly studied
using wheeled robots such as e-pucks. Often this is through directly
copying controller parameters (Heinerman et al., 2015; Bredeche
and Fontbonne, 2022). A notable exception is Winfield and Erbas
(2011) in which robots attempted to copy each others’ trajectories
based on their visual perception of their neighbours. This results
in “noisy imitation” and hence increased variation in behaviours.
Another interesting application of collective robotics is the use of
synchronization to identify faulty neighbours (Christensen et al.,
2009).

Another field of intense research is in vocal learning: the
production and imitation of speech sounds with biophysicalmodels.
These studies use a variety of machine learning methods to
maximize the match between perceived and produced sounds
(Pagliarini et al., 2020), including reward-modulated spike timing
dependent plasticity (Warlaumont and Finnegan, 2016). Early work
in this area showed that a discrete set of vocal sounds can emerge
in a self-organized fashion from mutual interaction (Oudeyer,
2005).

More general motor pattern learning is also an active topic
in computational neuroscience. Here, large reservoirs of recurrent
spiking neurons are commonly used to model the learning of
arbitrary patterns in time, generally with feedback control of chaotic
outputs (Sussillo and Abbott, 2009; Laje and Buonomano, 2013).
This method takes advantage of such networks’ universalizability
(Maass and Markram, 2004) and capacity for multifunctionality
(Flynn et al., 2021).

2.2 CPG-based entrainment

For locomotion, robotic systems have been created that can
adapt frequencies of movement to intrinsic body mechanics. In
Buchli et al. (2006), CPG controller parameters were continuously
modified according to phase-error feedback. In this case, once the
feedback is turned off, the learned behaviour can be set in place by
its new parameters. However, the need to employ a phase variable
and to calculate an error signal limits the potential complexity of
inputs.

Neuron-based CPGs, which due to their nonlinearity are faster
and more flexible in their adaptation, have also been used in
feedback loops to adapt to mechanical resonances in real time
(Williamson, 1998; Iwasaki and Zheng, 2006). In the case of
locomotion, force feedbacks can enable adaptation to physical
environments, even with interconnections between CPG modules
disabled (Thandiackal et al., 2021).

It has recently been demonstrated that self-organization of
a locomotion CPG without feedback is sufficient for real-time
entrainment to external rhythms, such as those transmitted through
audio (Szorkovszky et al., 2023a). This can be seen as an embodied
version of the “dynamic attending” approach to beat perception,
which was proposed using abstracted nonlinear oscillators (Large
and Jones, 1999). More broadly, this falls within the approach of
exploiting self-organized nonlinear dynamics in order to generate
complex behaviours (Steingrube et al., 2010; Husbands et al., 2021).

3 Materials and methods

3.1 Virtual robots

Webeginwith the samemodularCPGand recurrent filter design
as in Szorkovszky et al. (2023a). Each limb module contains three
Matsuoka neurons modified to have input-dependent frequency.
Two motor neurons drive the joints for each limb, while one
interneuron is used for inter-limb coupling (see Figures 1A, B). The
use of highly nonlinear CPGs and recurrent networks was intended
to encourage self-organization and avoid fixed gait periods.

A constant input is applied to all neurons in a module, each
with its own coefficient, to model the brain-stem modulation of the
gait. In addition, external inputs are fed to the interneurons through
a single-layer recurrent neural network (RNN) (see Figure 1C)
consisting of six neurons of the same type as the CPG.

We used two virtual robot body layouts, simulated in Unity
using the ML agents package (Grimminger et al., 2020). The first
body type is a short-legged quadruped, based on the Open
Dynamic quadruped (Juliani et al., 2018), and previously studied
in Szorkovszky et al. (2023a). For this body, each motor neuron
drives one joint angle (see Supplementary Material). Two control
parameters were used to evaluate a controller’s flexibility: the first
was the brain-stem drive, which typically affects gait period and
amplitude. For the quadruped, an offset angle of the upper joint was
also used tomodulate the forward-backward direction ofmotion via
the centre of mass.

The virtual hexapod body design is based on the 18-DOF robot
used in Allard et al. (2022). Motor neuron output A was connected
to the horizontal coxa joint, while output B was connected to both
vertical joints, with two independent coefficients included in the
genotype (see Supplementary Material). A simple coefficient for
the coxa joint (−1 to 1) was used to modulate the direction of
motion.

3.2 Evolution

Themulti-objective evolutionary algorithmNSGA-III (Deb and
Jain, 2013) was used to simultaneously optimize CPGs for flexibility
in speed and direction, as well as stability, resulting in a diverse
range of CPGs spanning the Pareto front. The genotype included
CPG parameters, interconnection weights and tilt feedback weights
[with the same ranges as in Szorkovszky et al. (2023a) for both
morphologies] as well as central joint angles, angle limits and joint
amplitude coefficients (see Supplementary Material of this paper for
ranges).

Each evaluation was in three stages of 10 s each: 1) negative
direction parameter with decreasing brain-stem drive, targeting fast
backwards motion; 2) positive direction parameter with low and
constant brain-stem drive, targeting steady forwards motion; and
3) positive direction parameter with increasing brain-stem drive,
targeting fast forward motion. The fitnesses were calculated as.

F1 = −y1 −(
x1
x0
)
2

(1)

F2 = 2y0y2 − y
2
2 −(

x1
x0
)
2

(2)
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FIGURE 1
Robot controllers and learning scheme. (A) Quadruped and hexapod CPG layouts. Each circle is a module, connections are to the module’s
interneuron. All connections between modules are inhibitory. (B) Diagram of a single CPG module. Each circle is a modified Matsuoka neuron.
Connections with arrows are unidirectional, otherwise bidirectional. All connections can be inhibitory or excitatory. (C) Diagram of the learning
scheme. Selection between free (F), synchronization (S) and learned feedback (L) stages is depicted as a switch. Variables shown in red are parameters,
variables in blue are time series. The input signal xT is the free output xF of another agent. LPF: low pass filter; LIF: leaky integrate-and-fire neuron; RNN:
recurrent neural network of 6 fully connected modified Matsuoka neurons with inhibition, thresholded so there is no output in the absence of input.
During synchronization, b(t) = 1 and during the feedback stage, each wi(t) is fixed.

F3 = y3 −(
x1
x0
)
2

(3)

F4 =
y20Htot

1+ ttot
(4)

where yi and xi were the parallel and perpendicular motion,
respectively, in the ith stage.The perpendicular terms, with constant
x0 = √5 m, were introduced to discourage turning. F2 is maximized
at y2 = y0 = 2.5m, while F1 and F3 are unbounded.The fourth fitness
F4 targets stability across the entire evaluation, where Htot is the
mean height (normalized and limited for a maximum of 1), and ttot
is the root mean square body tilt.

Five runs were performed for each morphology, with each run
using a population of 168 individuals evolving over 200 generations.
After each run, four controllers were selected, each preferentially
weighting one of the four fitness functions:

F*m = zFm +
4

∑
k=1

Fk, (5)

where z was incremented in intervals of one until the maximum of
each F*m was unique, or until a limit of z = 100 was reached.

For both morphologies, two of the post-evolution selections
using Eq. 5 did not converge, meaning only three unique CPGs
were output instead of four. Therefore, only 18 out of a possible
20 CPGs were selected for each, making a total of 36. For each
of these CPGs, recurrent filter layers were evolved for maximum
entrainment to a repetitive impulse pattern with a range of periods
(Szorkovszky et al., 2023a).

3.3 Learning scheme

Using these 36 virtual robots, exhibiting a range of gait
styles, we now consider firstly whether they can entrain to
each others’ movement patterns, and secondly whether they can
learned its entrained motion pattern. Entrainment ability has been
demonstrated for various external periodic inputs in the quadruped
morphology (Szorkovszky et al., 2023a; b). However, due to the
open-loop nature of this entrainment, the robot’s originalmovement
pattern reappears shortly after the input stops.

While reservoir-based methods can successfully learn to
replicate time-series inputs using spike-timing dependent plasticity,
as detailed in Section 2.1, these require large numbers of neurons
to work effectively (Ganguli et al., 2008; Sussillo and Abbott, 2009).
Instead, we approximate the outcome of a larger reinforcing
feedback network by using time-delayed impulses from foot sensors
to approximate the rhythmic input (see Figure 1C). These feedback
connections are separate from the CPG and RNN modules, which
are kept fixed and define the free motion and stimulus response,
respectively. Therefore, the robot can return to its free motion by
removing the feedback, or even switch between different learned
motor patterns by interchanging the learned feedback parameters.

We consider every possible pairing of one “teacher,” which
transmits its rhythmic step pattern, and one “learner” which
attempts to entrain to the pattern and learn it. That is, each robot
attempts to learn a new pattern from every other robot. The
procedure for each teacher-learner pair consists of three stages,
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elaborated in the following sections. First, the learner synchronizes
in an open-loop fashion to impulses from the teacher’s steps.
Secondly, feedback parameters are learned to approximate the
teacher’s input while still in a synchronized state. Finally, the
teacher input is replaced with the feedback signal, and the learner
then continues its behaviour autonomously, in a closed-loop “self-
synchronized” state.

Foot sensors were added in simulation to record all instances
of swing-to-stance transitions. Each of the 36 controllers was
initially run for 60 s (4,000 frames at Δt = 15 ms) to record
its free motion, which is also its “teacher” output. This was
the sum of impulses for each foot at each time step. The
amplitude for each foot was one-half of the impulse amplitude
used during evolution. In addition, the natural period of the
robot’s free motion was calculated using autocorrelation of the CPG
outputs.

Of the 36 controllers, five were discarded due to foot-dragging
behaviour, resulting in an average of less than one step every
two periods, and hence very low output levels. All teacher-learner
combinations from the remaining 31 robots were run in the
following three stages, each of 60 s duration.

3.4 Synchronization stage 1: feedback
delay learning

The impulses in the teacher output were run through an
exponential low-pass filter, using the decay rate in the learner’s
genotype. This decay rate was optimized during evolution for
entrainment to rhythmic impulse patterns. This input (zT) was then
passed through the recurrent filter layer to the CPG.

After 60 s, a two-time cross-correlation was performed between
each leg’s impulse output and the low-pass filtered input. All
peaks were then identified with height greater than zero, with a
distance of more than 1/20th of the learner’s CPG period from
any higher peak, and with a lag of less than the learner’s CPG
period.

The average number of foot sensor outputs per cycle
was also calculated, and this was used as a threshold θi for
limb i. This is because a synchronized system containing n
teacher impulses and mi foot steps per cycle for limb i is
expected to generate nmi cross-correlation peaks for each limb.
Therefore, if mi is greater than one, generating one feedback
impulse per step will produce more than the n impulses in the
input.

3.5 Synchronization stage 2: feedback
weight learning

The second synchronization stage is simply a continuation of the
first, but now the foot sensors with the calculated delays are fed into a
leaky integrate-and-fire (LIF) neuron to combine them into a single
feedback signal zL(t). Weights for the delayed impulses are learned
continuously in order to match zL(t) to the input zT(t) as closely as
possible.

The impulse signals per limb Si are created using the delays τ1..τp,
where p is the number of cross-correlation peaks. and thresholds θi

determined from the previous stage:

Si (t) = I(
p

∑
j=1

si (t− τj) ≥ θi), (6)

where si(t) is 1 if the ith foot sensor is triggered during a three frame
window centred at time t, and 0 otherwise, and I is an indicator
function. A learner output zL(t) is then generated on-the-fly using
the following update equation:

ΔzL (t) = ILIF (t) − γzL (t) , (7)

where γ is the learner robot’s low pass filter decay parameter. We
use a standard leaky integrate-and-fire output current ILIF and
membrane voltage VLIF, where

ILIF (t) = {
Iout if VLIF (t− 1) > b (t)
0 otherwise,

(8)

and

VLIF (t) = {
0 if VLIF (t− 1) > b (t)
∑ih(wi (t))Si (t) + (1− Γ)VLIF (t− 1) otherwise. (9)

Here, h(x) is a rectified linear unit, meaning that the inputs are
strictly excitatory. The firing threshold b(t) is set to a constant value
of one during the learning stage. For the results presented in this
study, the LIF decay was set to Γ = 10 s−1 unless specified otherwise.

At the same time, the feedback weights are updated according
to:

Δwi (t) = {
a
m
(zT (t) − zL (t)) ∑

T
t′=0e
−Γt′ΔtSi (t− t

′) if wi (t− 1) < wmax

0 otherwise,
(10)

where a = 0.01,m is the number of feet, T = 2/(Γ Δt) rounded to
the nearest integer, wmax is the maximum weight (set to 1.5 for this
study), and the beginning weights wi(0) are zero for all i.

3.6 Feedback stage

In the final stage, the teacher input is replaced with the feedback
from the feet governed by Eq. 7 with the feedback weights wi fixed
at their final learned values. Since stability cannot be guaranteed
in the closed-loop case, we use a homeostatic feedback to stabilize
the output level Husbands et al. (2021). We therefore adjust the
LIF firing threshold b(t) if the feedback level is not close to the
time-averaged teacher input Et[zT]:

Δb (t) =
{{
{{
{

η( ̄zL −Et [zT]/k) if ̄zL < Et [zT])/k
η( ̄zL − kEt [zT]) if ̄zL > kEt [zT])
0 otherwise,

(11)

where ̄zL is a moving average of the last 200 frames (3 s), b(0) = 1,
η > 0 and k > 0. Hence, if too many foot sensors are triggered (for
example, due to noise or imperfect feedback), producing excess
input, the threshold is raised in order to lower the rate of firing of the
LIF neuron. Likewise, if the robot is not stepping enough to produce
the correct feedback level, the threshold is lowered. In this study, we
use k = 1.5, so that there is a tolerance of 50% in the feedback level,
and an increment η = 2× 10−4.
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3.7 Analysis

Analysis of the controllers’ similarity of output patterns was
done using autocorrelation functions. The differences between
movement patterns for the free, synchronized and learned (closed-
loop feedback) trials were calculated using:

d (X,Y) = 1
TT
∫
TT

0
(RXX (τ) −RYY (τ))2dτ (12)

where X and Y are two low-pass filtered time series, TT is the CPG
period of the teacher, and Rxx(τ) is the autocorrelation of time-
series x at lag τ, calculated over the last 40 s of each stage. This
function, rather than the cross-correlation was used as it is relatively
insensitive to relative phase drifts. Low-pass filters were used due
to the inherent noisiness of correlation functions when one or both
time series consist of short spikes.

The period of motion was also determined from the
autocorrelation functions of the joint outputs. For each limb, a
complex signal was made with a real part corresponding to the hip
joint, and imaginary part corresponding to the knee joint, using the
last 40 s of each stage.The real parts of the autocorrelation functions
were then averaged, and the lag at the highest peak at τ > 0.1 s was
used as the period, while its height was used as ameasure of stability.

4 Results

We focused on two abilities. First is the ability of the learner
to substantially modify its movement pattern temporarily through
synchronization to a teacher, and/or in a lasting way through applied
feedback.This ability implies a large synchronized-to-free difference
d(xS,xF) and learned-to-free difference d(xL,xF), respectively. These
were calculated for every teacher-learner pair.

Another important ability is to retain the input signal in the
feedback, and then to transmit it with some fidelity. This can

be quantified by the difference between the feedback signal and
the input d(zL,zT) during the closed-loop feedback stage, and the
difference between the teacher input and the final learner output that
would be transmitted further d(xL,zT). Both of these are low for well
performing pairs.

Synchronization of learner to teacher was largely learner-
dependent, and did not show substantial preferences for the
same morphology (see Figure 2A) or evolutionary run (see
Supplementary Material for unsorted teacher-learner pair plots).
Average within-teacher variability of the synchronized-to-free
difference d(xS,xF) was 72% greater than average within-learner
variability (standard deviation of 0.16 compared to 0.093). Although
some learners rarely succeeded to proceed to the feedback stage
(most often due to reduced motion), those that did synchronize
successfully tended to also lock in new motion patterns in the
feedback stage, as shown by Figure 2B. Here, the within-learner
variability was more than twice the within-teacher variability
(standard deviation of 0.176 compared to 0.087). In other words,
some gaits are more able to be modified than others, while the
characteristics of the teacher’s gait appear relatively unimportant.

Another way to show diversification is to examine movement
characteristics such as speed and rotation. An example of a learner’s
movement profile modified by the learned feedback is shown in
Figure 3. In this example, the learned motion can be seen to be
outside the normal range ofmotion patterns controlled by the brain-
stem drive. Switching between the intrinsic and learned motion is
possible by simply turning on the feedback.

The synchronizedmotion, as expected, oftenmatched the period
of the teacher, or a multiple thereof, as shown by Figure 4A. By
comparison, robots with learned feedback tended to drift away from
these periods, most often to a shorter one, and approached the
input-free distribution.

Although feedback learning was less reliable than
synchronization at copying the teacher’s gait period, learned
controllers were more stable than the synchronized controllers,

FIGURE 2
Diversification of gait pattern. Panel (A) shows the difference between synchronized and free gaits for all pairs of teachers and learners, ordered by
morphology. Lower values indicate a smaller difference. Within each morphology, individuals are ordered by their mean synchronization difference as a
learner. Diagonals are left blank since individuals were not tested against themselves in teacher-learner pairs. Panel (B) shows the difference between
feedback-learned and free gaits, ordered as in (A). Non-diagonal blank elements indicate that no cross-correlation peaks were found during the period
learning stage, and hence the feedback stage was not run.
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FIGURE 3
Behavioural switching. Panel (A) shows the mean movement characteristics of one learner during free motion as a function of the brain-stem input
(line and circles), and the modified movement characteristics under self-synchronization (triangle). BL: body lengths. Panel (B) shows the learner’s
switching from its intrinsic movement pattern (brain stem input 0.5) to its learned pattern upon the application of feedback parameters after 30 s.

FIGURE 4
Panel (A) shows the frequency distribution of the ratio of the output to input period over all teacher-learner pairs, for the three input conditions. (B)
Violin plots of the overall maximum of the autocorrelation function, showing the distributions over all teacher-learner pairs. The distribution for learned
gaits only includes pairs for which feedback was actually applied.

as shown by the height of the autocorrelation peak (see Figure 4B).
Compared to synchronized gaits, learned gaits were more likely to
have autocorrelation peaks near zero or one. The overall median
for learned gaits was 0.76 compared to 0.66 for synchronized gaits
(Mann-Whitney U-test: p < 0.001).

Upon both synchronization and feedback learning, agents that
deviated more from their free gait were less stable, as shown by
Figure 5. Some, however, had gait patterns closer to the input than
their own free gait, shown by points on the lower-right of the
plots (d(xS,xT) < d(xS,xF), and d(xL,xT) < d(xL,xF), respectively). A
significant proportion of controllers in each stage were closer to the
input pattern than the free pattern, as shown at the bottom right of
each panel, which we call the “success rate.” Under synchronization,
the learner was closer to the input for 43.5% of pairs. After
feedback learning, the success rate was 23.7% among pairs where
the feedback stage was run (total 15.7%). Hence, for some teacher-
learner pairs, the combination of synchronization and feedback led
to successful cultural transmission (see Supplementary Material for
teacher-learner matrix plots). However, in other cases, the feedback

led to a motion pattern unrelated to both the learner’s free motion
and the teacher’s motion, as shown by the points in the top-right
corner of Figure 5B. The low autocorrelation in this area implies
that the feedback is leading to chaotic behaviour, and that the
stabilization method can therefore be further optimized.

An example of successful synchronization and learning is shown
in Figure 6A.While the shape of the autocorrelation was largely kept
upon feedback learning, there was a slight change in period that
increased the learn-to-target difference.

The main parameter that was tuned was the LIF decay rate Γ,
which determines the window in which impulses from different
limbs can be combined. As shown in Figure 6B, there is a trade-
off between stability and flexibility, with a shorter window (higher
Γ) increasing the success rate of learning but decreasing the average
stability of the final gaits. This illustrates the importance of accurate
timing in the feedback, as an impulse from one foot that reaches
the LIF neuron early or late will either reduce the accuracy of the
input pattern (long window) or destabilize the gait completely (short
window).
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FIGURE 5
Cultural transmission. Panel (A) shows a scatter plot of the sync-free difference against the sync-target difference for all pairs, with colour indicating
the autocorrelation peak height, ranging from zero (dark blue) to one (light yellow). Points on the lower-right correspond to synchronized gaits that are
closer to the teacher’s gait than the learner’s original gait. Panel (B) shows the equivalent plot for learned gaits.

FIGURE 6
Panel (A) shows an example of autocorrelation functions modified by synchronization and learning, for the same teacher-learner pair as in Figure 3.
Each autocorrelation function is offset from the previous by 1 for visibility. For this pair, d(xS,xF) = 0.279,d(xL,xF) = 0.240,d(xS,zT) = 0.002,d(xL,ZT) = 0.145. Panel (B)
shows the learning success rate and median autocorrelation peak height over all teacher-learner pairs as a function of the LIF decay rate Γ.

5 Discussion

We have demonstrated a proof of principle of a simple social
learning scheme for robot gaits. Useful behaviours can be imitated
by only communicating a series of foot contact events, such as
via audible footsteps. Depending on fidelity, the imperfect copying
that we demonstrate (Winfield and Erbas, 2011) can generate
behavioural diversification and/or cultural transmission, which
can be seen as population-level processes of exploration and
exploitation, respectively.

Our scheme is a potential starting point towards robot to
robot imitation in evolving populations where morphologies
can differ drastically. Alternatives involving visual processing are
computationally intensive and rely on an understanding of an agent’s
own body and that it is imitating. New ways of communicating

behaviour, either implicitly or explicitly, using rhythmic signals,
would be a valuable continuation on this path.

The ability to entrain to a stimulus is a prerequisite of the
demonstrated technique. However, the CPG architecture used
here is modular, so can be straightforwardly implemented in the
modular framework typically used in an evolutionary robotics
setting Hale et al. (2019).

Our approach allows for multiple behaviours to be learned
and switched between. Therefore, a learning environment could
be composed of several elementary tasks, and individuals learn
new tasks from teachers who have mastered them. We found
that individuals differed substantially in their ability to learn new
motion patterns, as quantified by the average difference between
original patterns and those learned from various teachers. By
incorporating the performance from numerous tasks into a fitness
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function, good generalist learners could therefore be selected by
evolution.

Another possibility is for individuals to learn a behaviour-
environment mapping, so that they automatically decide which
motion pattern to use in an environment, and new individuals
learn both the mapping and motion pattern from their neighbours.
This unsupervised scheme avoids imposing artificial divisions in
the learning environment and defining numerous tasks. Such an
absence of designed goals could help to satisfy the theoretical
requirements for the goal of open-ended evolution (Soros and
Stanley, 2014). This lack of oversight, however, comes with risks
of maladaptive behaviour spreading quickly, and may require
precautionary safeguards (Eiben et al., 2021).

We found that on average, closed-loop feedback was more
stable than the open-loop synchronization, despite pronounced
delays in the feedback. Delayed feedback has been successfully
used to generate a variety of motion patterns from discrete-
time chaotic oscillators (Steingrube et al., 2010), and our results
show this may also be a promising avenue for continuous-
time CPGs with impulse feedback. The integrate-and-fire
neuron with self-adapting threshold was a key factor in the
stability of the learned gaits. The stability could further be
increased using a more detailed spike-timing dependent plasticity
(Kempter et al., 1999), which may be useful for adapting to different
terrains.

Culture, like any human behaviour, is not trivial to generate
in an artificial setting. However, there are clues pointing to
the bootstraps that it is lifted by. It is believed that copying
specifically via imitation of actions, as opposed to emulation of
outcomes, is crucial for sustaining cultural transmission of complex
behaviours (Whiten et al., 2009). To better understand how to
sustain complexity, iterated learning over many individuals can be
tested (Ravignani et al., 2016).

Our work can also inform research into the function of
rhythmic entrainment. Due to the fact that animals that can
entrain to a beat are often skilled at vocal mimicry, it has
been widely theorized that these processes are built on the same
neural substrate (Schachner et al., 2009). Forms of entrainment
have also been linked to faculties for temporal prediction (Patel
and Iversen, 2014), turn-taking (Takahashi et al., 2013), separating
other agents from objects (Premack, 1990), and more advanced
social capabilities such as joint attention (Knoblich and Sebanz,
2008).

In general, it is important to understand the link between
rhythmic movement and cognition. Neuromorphic models of
locomotion are potentially crucial for a bottom-up development
of intelligence as they are dynamical systems that can exhibit
attractor states, a proposed solution to the symbol grounding
problem (Pfeifer and Bongard, 2006). Opening these systems to
inputs from other networks and sensory data from the physical
environment leads to “open dynamical systems,” which constantly
adapt in their attractor landscapes (Hotton and Yoshimi, 2011;
Beer and Williams, 2015). We believe that our proposal fruitfully
extends this idea to social environments. It remains to be seen
whether agents influencing each other through their basic motion
can lead to the emergence of new forms of perception and
action.
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