AUTHOR=Bodaghi Dariush , Wang Yuxing , Liu Geng , Liu Dongfang , Xue Qian , Zheng Xudong TITLE=Deciphering the connection between upstream obstacles, wake structures, and root signals in seal whisker array sensing using interpretable neural networks JOURNAL=Frontiers in Robotics and AI VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1231715 DOI=10.3389/frobt.2023.1231715 ISSN=2296-9144 ABSTRACT=
This study presents a novel method that combines a computational fluid-structure interaction model with an interpretable deep-learning model to explore the fundamental mechanisms of seal whisker sensing. By establishing connections between crucial signal patterns, flow characteristics, and attributes of upstream obstacles, the method has the potential to enhance our understanding of the intricate sensing mechanisms. The effectiveness of the method is demonstrated through its accurate prediction of the location and orientation of a circular plate placed in front of seal whisker arrays. The model also generates temporal and spatial importance values of the signals, enabling the identification of significant temporal-spatial signal patterns crucial for the network’s predictions. These signal patterns are further correlated with flow structures, allowing for the identification of important flow features relevant for accurate prediction. The study provides insights into seal whiskers’ perception of complex underwater environments, inspiring advancements in underwater sensing technologies.