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Deciphering the connection
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in seal whisker array sensing
using interpretable neural
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This study presents a novel method that combines a computational fluid-
structure interaction model with an interpretable deep-learning model to
explore the fundamental mechanisms of seal whisker sensing. By establishing
connections between crucial signal patterns, flow characteristics, and attributes
of upstream obstacles, the method has the potential to enhance our
understanding of the intricate sensing mechanisms. The effectiveness of the
method is demonstrated through its accurate prediction of the location and
orientation of a circular plate placed in front of seal whisker arrays. The model
also generates temporal and spatial importance values of the signals, enabling
the identification of significant temporal-spatial signal patterns crucial for the
network’s predictions. These signal patterns are further correlated with flow
structures, allowing for the identification of important flow features relevant for
accurate prediction. The study provides insights into seal whiskers’ perception
of complex underwater environments, inspiring advancements in underwater
sensing technologies.

KEYWORDS

bioinspired flow sensing, wake identification, seal whisker, interpretable machine
learning, fluid-structure interaction

1 Introduction

Given the limitations of the current underwater navigation systems, there has been a
growing interest in advancing underwater sensing capabilities. The increasing scientific,
military, and commercial demands, along with the exploration of the uncharted underwater
world, have been the driving force behind these developments. Underwater robots
employ various navigation systems, including inertial, geophysical, and acoustic systems,
to estimate their position, velocity, and acceleration (Stutters et al., 2008; Chutia et al.,
2017). However, these systems rely heavily on seafloor maps to prevent collisions and
have limited capabilitiesin surveilling, navigating, and maneuvering safely in unpredictable
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deep waters, while avoiding obstacles and hazardous environments
(Kinsey et al., 2006; Leonard and Bahr, 2016).

To address these challenges, different types of sensors are
utilized on underwater robots (Chutia et al., 2017; Elshalakani et al.,
2020). Camera-based sensors, relying on vision, are commonly
used for monitoring the nearby environment and object detection.
However, their effectiveness is much lower in dark deep waters,
necessitating the use of artificial light sources. This further reduces
the sensor’s range and reveals its location, posing a significant
disadvantage, particularly in military applications (Yang et al., 2006;
Jiang et al. 2019; Jiang et al. 2020). In environments with poor
water clarity, the images captured by these sensors suffer from low
quality and cloudiness due to light dissipation (scattering) over
long distances (Kröger, 2008; Lee et al., 2012). To overcome the
limitations of vision-based sensors, sonar sensors are commonly
employed to estimate object locations by transmitting acoustic
waves (Akyildiz et al., 2004). However, similar to vision sensors,
sonar sensors have drawbacks such as high-power consumption
and the risk of revealing the sensor’s location (Akyildiz et al., 2004;
Elshalakani et al., 2020). Furthermore, the use of sonar sensors can
have detrimental effects on various underwater species by altering
their natural habitats (Schrope, 2002).

In recent years, there has been significant research on exploring
the sensing abilities of phocid seals to address challenges in
underwater sensing. These seals possess remarkable whisker
arrays that enable them to detect and distinguish hydrodynamic
disturbances caused by potential prey. Studies have shown that
seals can detect disturbances with speeds as low as 245 μm/s and
frequencies ranging from 10 to 100 Hz (Dehnhardt et al., 1998).
Behavior studies have demonstrated the seals’ capability to discern
the shape and size of upstream objects, track the travel direction of
vortex rings, detect miniature submarines, and even follow other
seals, by only using their whisker arrays (Dehnhardt et al., 2001;
Müller and Kuc, 2007; Wieskotten et al., 2010; 2011). Notably, seals
can track objects at considerable distances and detect weak vortices
from past movements (Müller and Kuc, 2007). These findings
highlight the extraordinary sensitivity, accuracy, and intelligence of
seal whisker arrays in detecting hydrodynamic cues.The remarkable
sensing abilities of seal whiskers have sparked great interest
and inspiration for applications in underwater navigation, object
tracking, and object detection. Several biomimetic sensors has
already been designed, fabricated and tested in the laboratories
(Beam et al., 2013; Kottapalli et al., 2015; Eberhardt et al., 2016;
Sayegh et al., 2022; Wang et al., 2022; Zheng et al., 2022; Liu et al.,
2023).

Previous studies on the fundamental mechanism of seal whisker
sensing have mostly focused on the geometric effects, revealing that
the whisker’s unique undulated shape can suppress self-induced
vibrations by disrupting the Kármán vortex street in the wake
(Hanke et al., 2010; Hans et al., 2013; Beem, 2015; Kottapalli et al.,
2015; Morrison et al., 2016). Our recent study (Liu et al., 2019b)
further elucidated that the suppression of the vibration is primarily
due to the 180° phase shift of the axes of the elliptical cross-sections
of seal whisker, which generates stable three-dimensional hair-pin
vortices in the wake. Additionally, Beem and Triantafyllou, (2015)
found that seal whisker geometry is able to generate large-amplitude
“slaloming” motions in vortical flows by extracting energy from
passing vortices, thereby enhancing wake capturing sensitivity.

While these findings confirm the high sensitivity of seal whisker
sensing, the fundamental mechanism of wake identification and
tracking remains largely unknown. Seal whiskers are arranged in
a stereotyped grid pattern known as the vibrissa array, and the
resulting bend moments at the root of the whiskers collectively
form sensory inputs. Recent studies have suggested that seals
may correlate temporal-spatial patterns of whisker array signals
with surrounding flow patterns for intelligent perception. Various
flow features, such as highest velocities, velocity gradients, and
wake spatial extension, have been proposed as potential cues for
object perception (Wieskotten et al., 2011). Artificial whisker array
experiments have also indicated that cross-correlation of bending
signals can be used to detect vortices (Glick et al., 2021). Our
previous computational studies have shown that whisker array
signals can reflect the strength, timing, and trajectories of upstream
vortex-induced jets (Liu et al., 2021).Machine-learningmodels have
been used to infer the position of upstream objects based on
whisker tip displacements (Elshalakani et al., 2020). However, many
questions remain unanswered, including the correlation between
mechanical whisker signals and external flow disturbances, the
specific flow features seals can sense, and how they interpret flow
features to perceive the environment. Further research is needed
to unravel these mysteries and advance our understanding of seal
whisker sensing.

In this study, we aim to develop a novel method that combines
a computational fluid-structure interaction (FSI) model with an
interpretable deep-learning model to investigate the fundamental
mechanisms underlying seal whisker sensing. The novelty of
the method lies in its ability to establish connections between
crucial signal patterns, flow characteristics, and attributes of
upstream obstacles, thereby enhancing our understanding of the
intricate sensing mechanisms. The effectiveness of the method is
demonstrated through its ability to accurately predict the location
and orientation of a circular plate positioned in front of seal
whisker arrays. To achieve this, we placed a circular plate within
a free stream, located upstream of the seal’s head. Two whisker
arrays were integrated onto the seal’s head, replicating the realistic
location, structure, geometry, and orientation observed in reported
data. A one-way FSI model was employed to compute the plate-
induced wake and subsequent dynamics and signals of the whiskers,
represented by the root bending moment. By systematically varying
the plate’s location and orientation, we generated diverse wake
characteristics and whisker signals.

We further developed and trained an interpretable neural
network model to learn and accurately predict the location and
orientation of the upstream plate based on the whisker signals.
Importantly, the model produces temporal and spatial importance
values, allowing for the identification of crucial temporal-spatial
signal patterns contributing to the network’s predictions. We
then correlated these patterns with flow structures, enabling
the identification of important flow features for prediction.
The outcomes of this study provide novel insights into seal
whiskers’ ability of perceiving and interpreting complex underwater
environments, which have the potential to advance the development
of underwater sensing technologies.

The rest of the paper is organized as follows: Section 2
introduces the computational model including the governing
equations and numerical method, whisker array model, and
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parametric simulations setup. Section 3 introduces the interpretable
deep learning network, including the network architecture, input
preparation and training configuration. Section 4 presents the
results of parametric simulations and network prediction and
interpretation as well as the connection between signals and flow
features. Section 4 presents the summary of the results and general
conclusion.

2 Computational model

2.1 Governing equations and numerical
method

Theflow field is modeled using unsteady incompressible Navier-
Stokes equations:

∂ui
∂xi
= 0

∂ui
∂t
+
∂uiuj
∂xj
= −

∂p
∂xi
+ 1

Re
∂2ui
∂xj∂xj

where ui represent the velocity components in the three directions
and p is pressure. Re is the Reynolds number, defined as U∞

ν
, where

U∞ is the incoming flow speed, D is the characteristic length, and ν
is the kinetic viscosity of water at 20°C. The presence of the whiskers
in the flow field is ignored in this study.

The current study employs an in-house immersed boundary
method based incompressible flow solver, as described by
Mittal et al. (2008). The solver discretizes the spatial terms using
a cell-centered collocated arrangement of the primitive variables
ui and p. To integrate the equations in time, a three sub-steps
fractional step method based on Van Kan (1986) is employed. In
the first sub-step, an intermediate velocity field, u*, is determined
by solving a modified momentum equation without the pressure
term. The convective terms in this equation are discretized using a
second-order Adam-Bashforth scheme, while the diffusion terms
are discretized using an implicit Crank-Nicholson scheme to
remove the viscous stability constraints. In the second sub-step,
the pressure corrections are computed by solving a pressure Poisson
equation, and in the final step, the pressure field and velocity field
are updated using the obtained pressure corrections. To treat the
immersed boundaries, a multidirectional ghost-cell methodology is
employed, resulting in both local and global second-order accuracy.
The solver used in this study has been successfully applied to
various biological applications, including human phonation, insect
flight, fish swimming, and seal whiskers inspired flow sensing
(Geng et al., 2017; Liu et al., 2018; Liu et al., 2019b; Bodaghi et al.,
2021a; Bodaghi et al., 2021b; Liu et al., 2021). Details of the solver
can be found in Mittal et al. (2008).

Each whisker is modeled as elastic structure and dynamics of
whisker is governed by the Navier equation:

∂2di
∂t2
= 1
ρw

∂σij
∂xj
+ fi

where di, ρw, σij and fi are displacement vector, whisker density,
stress tensor and body force vector, respectively. An in-house
finite element method code is utilized to solve the equation for

di based on the hydrodynamic loads obtained from the flow
solver. This solver was fully validated by Liu et al. (2019a) and was
successfully employed for different biological simulations, including
fish swimming (Liu et al., 2018) and seal whiskers (Liu et al., 2021).

Upon solving the dynamic equation at each time step, the
hydrodynamic loadings along each whisker are estimated based
on the local flow speeds using a simplified drag-lift model.
To achieve this, each individual whisker is discretized into a
series of whisker segments, each one spanning one segment. The
hydrodynamic force acting on each segment is computed using
(FD,FL) = (CD,CL) ∙ 0.5ρU2Are f , where FD and FL are the drag and
lateral forces along the primary and minor axis of the cross section,
respectively. ρ is flow density, U is local flow speed and Are f
is referenced cross section area. CD and CL are the drag and
lateral force coefficients of the whisker segment and depend on
local Reynolds number and angle of attack of the segment. We
obtained these coefficients by using a tabulated function from our
previous numerical parametric study. The resulting hydrodynamic
loadings are then applied the centroid points of each segment,
together driving the motion of the entire whisker. The details of
hydrodynamic load calculation can be found in Liu et al. (2021).

2.2 Whisker arrays model

The seal whisker array model, depicted in Figure 1A, is adopted
from our previous study (Liu et al., 2021), which closely replicates a
real harbor seal’s whisker array. The model comprises of two arrays,
each containing 44 individual whiskers, placed on the muzzle of a
realistic harbor seal head model. The length, curvature, tapering,
location, and orientation of eachwhisker are taken from the reported
data of realistic harbor seal whisker arrays (Murphy, 2013; Graff,
2016) and are illustrated in Figures 1B, C. The undulated geometry
of each whisker is constructed using a simplified elliptical cylinder

FIGURE 1
(A) Whisker array model of a harbor seal, (B) location of the base of
each whisker, (C) Shape of an individual whisker, and (D) Side and front
view of one wavelength segment of the seal whisker. The green and
blue ellipses are the cross-section at the peak and the trough position,
respectively.
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model, superimposed with two sinusoidal undulations with a 180°
phase shift of the axes of the elliptical cross-sections (Figure 1D)
(Rinehart et al., 2017). The material properties of the whiskers are
also determined using experimental data (Hans et al., 2014). For
more detailed information, please refer to Liu et al. (2021).

2.3 Simulation setup and parametric space

Figure 2 illustrates the simulation setup. A circular plate with
a diameter of 40 mm is placed 30 cm in front of the nasal tip of a
seal head. This diameter is determined based on previous studies
(Wieskotten et al., 2011; Liu et al., 2021) for generating typical-size
vortices of prey. The seal head and the plate are immersed into a
900mm× 1000mm× 950mm flow domain. A uniform flow speed
of 20 cm/s from left to right is applied as far field conditions on
left, top, bottom, front and back boundaries of the flow domain and
the outflow condition is implemented on the right boundary of flow
domain with zero velocity gradient and zero pressure gradient. To
reduce the computational time, we increased the kinematic viscosity
of fluid to 4× 10−5m2/s, leading to a reduced Reynolds number of
ReD = 200, defined using the diameter of the circular disk. To ensure
grid independence, two different grids were tested, with resolutions
of 128× 128× 256 and 256× 256× 256 grid cells in the x, y, and
z directions, respectively. The highest grid density is concentrated
near the circular disk, its wake region as well as the whisker arrays,
with minimum grid cell sizes of 3.2mm× 4.4mm× 2.6mm and
1.6mm× 2.2mm× 1.3mm for the coarse and fine grids, respectively.
The grid independence study shows that using the coarse grid
results in less than 0.5% difference in the drag force experienced
by the circular disk and 1% difference in the vortex shedding
period compared to the fine grid. Considering the significant
reduction of computational cost, the 128× 128× 256 coarse grid is
chosen for the study, as depicted in Figure 2B. The flow simulations
are executed on the XSEDE Expanse cluster (AMD EPYC 7742
type CPU, clock speed: 2.25 GHz, and flop speed: 4608 GFlop/s)

using 16 processors. The simulations are run for 5,000 time steps
to capture three steady vortex shedding cycles, resulting in an
average computational cost of 224 CPU hours per case for the flow
simulation.

The whiskers are discretized using ten-node tetrahedral cells,
resulting in a range of 9,700–34,100 cells depending on the length
of the whiskers. The whiskers are fixed at the base, preventing any
movement or rotation. The solid simulations are performed on the
same XSEDE Expanse cluster, with one processor allocated for each
whisker. Thus, for each parametric case that includes 88 whiskers,
the average computational cost for the solid simulation is 184 CPU
hours.

A group of parametric simulations were conducted by
systematically varying the location (X, Y) and orientation (α, β)
of the circular plate, as defined in Figure 2A. The ranges of these
parameters were determined to ensure the wakes would intersect
at least one of the whiskers. The selected parameters are: X from
−120 mm to 120 mm with an interval of 60 mm, Y from 0 to
200 mm with an interval of 50 mm, with an interval of 50 mm,
α from −45° to 45° with an interval of 22.5°, and β from −45° to 45°
with an interval of 22.5°. This results in a total of 625 simulation
cases.

3 Interpretable deep learning network

3.1 Network architecture

Vision Transformer (ViT) (Vaswani et al., 2017;
Dosovitskiy et al., 2020) has demonstrated effective structural
interpretation of spatial correlations between pixels in images by
dividing raw images into multiple image patches and leveraging
comprehensive imaging information. Flexibility of ViT to handle
various input sequences allows for the utilization of video
information in addition to image information. In this study, we
propose a network architecture called Video Transformer (VT)
as a straightforward extension of ViT, designed specifically for

FIGURE 2
(A) Schematics of the upstream plate and X, Y, α and β parameters, and (B) Side view of the computational domain.
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video processing. VT initially splits the video into spatio-temporal
tokens and applies a self-attention model using spatial and temporal
blocks to extract features based on spatial and temporal changes
of moments. These features are then optimized by passing through
transformer blocks to determine the target position and orientation.
In this section, we first introduce ViT, followed by a discussion on
tubelet embedding for video processing (Arnab et al., 2021), and
finally, we present the self-attention model for video processing
(Arnab et al., 2021).

3.1.1 ViT
Initially, ViT processes a 2D image, I ∈ ℝH×W×C, where (H,W)

represents the resolution of the original image, and C is the
number of channels. The standard ViT extracts M non-overlapping
image patches, ΡATCH = {patch i}

M
i=1 ∈ ℝ

M×(h×w×c), where (h,w)
represents the resolution of each image patch, and c is the
number of patch channels. The value of M is determined by
M = (H/h) × (W/w). These image patches are then flattened into
1D tokens,Q = {qi}

M
i=1 ∈ ℝ

M×g, where g = (h×w× c). These flattened
tokens serve as the effective input sequence tokens for ViT. A
constant latent vector size G is defined in ViT across all network
layers, projecting the flattened 1D token g into a G-dimensional
vector using a trainable linear projection. The output of this
projection is considered as token embeddings. Similar to BERT’s
token (Devlin et al., 2018), an optional learnable classification
token qclass is prepended to the sequence of embedded patches.
Additionally, standard learnable 1D position embeddings E′pos are
added to the token embeddings to preserve positional information,
which aids in learning the spatial relationship between whiskers.
Finally, the sequence of token embeddings and position embeddings
is passed through a transformer encoder (Vaswani et al., 2017),
consisting of L transformer blocks. Each block 𝓁 comprises

alternating layers of layer normalization (LN), Multi-Headed Self-
Attention (MSA), and Multi-Layer Perceptron (MLP), with a
residual connection after MSA and MLP (Baevski and Auli, 2018;
Wang et al., 2019). Therefore, the transformer encoder can be
expressed as:

Z0 = [qclass; q1E
′; q2E′;⋯;qME′] +E

′
pos,

E′ ∈ ℝg×G,E′pos ∈ ℝ(M+1)×G,

Ż𝓁 =MSA(LN(Z𝓁)) +Z𝓁, 𝓁 = 0…1,

Z𝓁+1 =MLP(LN(Ż𝓁)) + Ż𝓁, 𝓁 = 0…1,

where MLP consists of two layers with a GELU non-linearity
(Hendrycks and Gimpel, 2016). Finally, an MLP is employed to
classify the output of L transformer blocks, which can be expressed
as:

target =MLP(LN(ZL))

3.1.2 Tubelet embedding
Given the flexibility of ViT to accommodate any sequence

of input tokens Z0 ∈ ℝ
M×G, we can leverage this property to

convert image information into video information. For a video
V ∈ ℝT

′×H×W×C, where T′ represents the temporal dimension,
compared to image information I ∈ ℝH×W×C, the video data
introduces an additional temporal dimension. Our goal is to map
the video data to a sequence of tokensQv ∈ ℝnt′×nh×nw×g. As depicted
in “embed to token” in Figure 3, the process of tokenizing video
information involves extracting non-overlapping spatio-temporal
tubes from the input.These tubes are then projected to a sequence of
tokens Qv ∈ ℝnt′×nh×nw×g, extending the embedding approach of ViT
to a 3D setting.

In this context, we define a tubelet with dimensions t′ × h×w,
where tokens are derived from the temporal dimension t′ and the

FIGURE 3
Video transformer network structure.
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spatial dimensions h and w. This allows us to obtain nt′ = ⌊
T′

t′
⌋,

nh = ⌊
H
h
⌋, and nw = ⌊

W
w
⌋ frames. It is worth noting that smaller

tubelets in any dimension result in an increase in computational cost
during the training process, as more tokens are generated. Through
tubelet embedding, the spatio-temporal information from video
data can be directly fused into a transformer encoder, eliminating
the need for the transformer to fuse temporal information from
different frames.

3.1.3 Factorized self-attention model
The factorized self-attention model (Ho et al., 2019;

Weissenborn et al., 2019; Bertasius et al., 2021) described in the
transformer block of Figure 3 processes the spatio-temporal tokens
Z0 obtained through the tubelet embedding method. Within
each transformer block, the spatial self-attention block is initially
applied to learn the spatial relationship among all tokens with
the same temporal index, denoted as T′ni . Subsequently, the
temporal self-attention block is employed to learn the temporal
relationship among all tokens from the same spatial index, denoted
as {patch i}

M
i=1. This enables effective learning of spatiotemporal

interactions within each transformer block.
Specifically, the spatial self-attention block calculates the

spatial relationship by reshaping the tokens Z𝓁 ∈ ℝ
nt′×nh×nw×g to

Zs′

𝓁
∈ ℝnt′×(nh∙nw∙g).Then, the output of the spatial self-attention block

Żs′

𝓁
∈ ℝnt′×nh×nw×g is reshaped to Zt′

𝓁
∈ ℝ(nh∙nw)×(nt′∙g) and used as the

input for the temporal self-attention block to calculate the temporal
relationship.The factorized self-attentionmodel can be summarized
as follows:

Żs′

𝓁
=MSA(LN(Zs′

𝓁
)) +Zs′

𝓁
, 𝓁 = 0…1,

Z̈t′

𝓁
=MSA(LN(Zt′

𝓁
)) +Zt′

𝓁
, 𝓁 = 0…1,

Z𝓁+1 =MLP(LN(Z̈t′

𝓁)) + Z̈
t′

𝓁
, 𝓁 = 0…1,

Unlike previous approaches, this model does not utilize a
classification token since it can handle token reshaping across spatial
and temporal dimensions without introducing ambiguities.

3.2 Network input preparation

The primary input signal for the network is derived from the
time history of the bending moment at the base of each whisker.
The total bending moment is decomposed in two components: Mx′

and My′ , where x′ and y′ denotes body-fixed coordinates of each
whisker, as depicted in Figure 1C. Based on the direction of x′ and
y′,Mx′ represents the bending moments resulting from the lift force
while My′ represents the bending moments resulting from the drag
force. Please note that an additional simulation of the freestream
passing the seal head without an upstream plate was conducted
and the bending moments obtained from this simulation were then
subtracted from the bending moments observed in the other cases
where wakes were present. The process is to eliminate the influence
of the freestream and solely examine the effect of the wakes.

Tactile vibrissal systems in general possess two distinct
types of mechanoreceptors in their whiskers, namely Merkel

cells (SAI mechanoreceptors) and Pacinian corpuscles (PC
mechanoreceptors), specialized in detecting static and dynamic
changes (Zimmerman et al., 2014). Merkel cells are adept at sensing
static stimuli, such as sustained pressure, while Pacinian corpuscles
excel at perceiving dynamic changes, including vibrations and
rapid movements. To emulate the underlying nerve system, we
further decompose the bending moments into two components:
time-averaged (DC) components, denoted as MDC, and oscillatory
components (AC), denotes as MAC. This yields a four-component
vector: (MDC,x′ ;MAC,x′ ;MDC,y′ ;MAC,y′), obtained from each whisker
for the network input.

The subsequent step involves a data transformation process
aimed at consolidating the inputs from individual whiskers to
generate a signal map, as depicted in Figure 4. Initially, the base
locations of each whisker were extracted from the model and then
topologically mapped onto a 9× 22 two-dimensional rectangular
grid based on their relative positions. Subsequently, each grid point
was treated as a pixel and associated with the bending moment
vector of the corresponding whisker. Each moment component was
considered a distinct channel, with the intensity of each channel
determined by the magnitude of its respective moment component.
As a result, a “representative sensing image” comprising four
channels was created. In cases where a pixel lacked correspondence
to any whisker, a NULL (0) value was assigned. Given that bending
moments exhibit temporal variations, the resulting data ultimately
takes the form of a video file, reflecting the dynamic nature of the
sensory input.

3.3 Training configuration

The network training process involves regression training for
1,000 epochs using the Adam optimizer. A batch size of 25 and
an initial learning rate of 0.001 are used, along with a multi-step
learning rate scheduler. The input samples are divided into train
and validation groups using the 5-fold method, with 500 samples
for training and 125 samples for validation. Each video sample has
a size of 80× 9× 22× 4, representing the temporal dimension (80,
corresponding to the last 1,500 flow time steps to only consider
the steady vortices), the whisker array dimensions (9× 22), and the
moment channels (4). To capture the relationships between each
whisker, the model parameters are initialized as follows: t′ = 8,h = 1
and w = 1, with L = 4 and G = 96.

The implementation of the method utilizes PyTorch 1.12.1 and
Skorch 0.11.0 (Tietz et al., 2017) frameworks.The training process is
performed using anNVIDIAGeForce RTX 2080 Ti GPUwith 11GB
memory.

4 Results and discussion

This section begins with a comprehensive examination of
the influence of the plate’s location and orientation on both the
flow field and whisker signals. Subsequently, the outcomes of
the interpretable deep learning network are presented, including
accuracy measurements and importance value maps of the signals.
Lastly, the correlation between the importance value maps, whisker
signals, and flow field is analyzed, while also investigating the
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FIGURE 4
Data transformation process to generate the network signal map input from each individual whisker’s data.

TABLE 1 Definition of the exemplary cases.

Case X Y α β

X60 60 mm 0 0 0

Y50 0 50 mm 0 0

α22.5 0 0 22.5° 0

β22.5 0 0 0 22.5°

α45β22.5 0 0 45° 22.5°

underlying mechanisms. To facilitate the discussion, five exemplary
cases are selected for a detailed investigation, which are summarized
in Table 1.

4.1 Characteristics of the flow field

Figure 5 shows the wake structure induced by the plate in
the exemplary cases, determined by the λ2 criterion, viewed from
different viewpoints: 3D, top view, and side view. To aid the
comparison, the baseline case is added in the figure. Except for
α45β22.5 case, the wake displays two distinct vortex rings that
alternate between the upper and lower sides (X60, Y50, and β22.5
cases) or the left and right sides (α22.5 case), with a phase difference
of 180°. In the baseline case, where the plate is directly in front of
the seal’s nose, the wake interacts with all whiskers. As the plate
moves upward in theX60 case and rightward in theY50 case, thewake
translates accordingly without changing the pattern. In the α22.5
case, where the plate tilts to the left, the wake inclines in the same
direction. Additionally, due to plate rotation, the vortex ring forming
on the left side is stronger than the one on the right side. In the
β22.5 case, where the plate tilts upward, thewake also inclines upward
accordingly, and the rotation generates a stronger vortex ring on the

upper side than the lower side. In contrast, the α45β22.5 case does not
exhibit vortex shedding but instead displays two streamwise vortex
legs attached to the plate’s sides.

The vortex shedding frequency also changes with the orientation
of the plate. To illustrate the relationship, Figure 6A presents the
vortex shedding frequency in the parametric space of α and β.
When vortex shedding is absent, a zero value is assigned. The plot
reveals that the vortex shedding frequency increases symmetrically
along both the α and β axes. When one orientation angle is at
its maximum while the other is non-zero, no vortex shedding
occurs. To account for the changes in both the vortex shedding
frequency and the frontal area of the plate, the Strouhal number was
calculated for each case using the formula StL′ = fL′/U∞, where f
represents the vortex shedding frequency, U∞ denotes the inflow
velocity, and L ′ is the hydraulic diameter of the frontal area of the
plate. Figure 6B demonstrates the change in the Strouhal number
with orientation, mirroring the behavior of the vortex shedding
frequency.Themaximum increase in the Strouhal number is 80%. A
similar observation was reported by Chen and Fang (1996), where
a decrease in the angle of attack of an inclined plate (comparable to
increasing α and/or β in our study) resulted in an increase in the
Strouhal number of its vortex shedding.

4.2 Whisker signals

We partition the whisker arrays into four regions: LT (left
top), LB (left bottom), RT (right top), and RB (right bottom)
whiskers, and calculated the average signals,Mx′ andMy′ , across the
whiskers within each region. Figure 7 presents the phase-averaged
time history of Mx′ and My′ in each region in each exemplary
case. Note that Mx′ is mostly negative values in all the cases, while
My′ exhibits both positive and negative values. The behaviour of
the signals aligns with the temporal and spatial dynamics of the
vortices in each case, (e.g. Frequency). In the X60 case, the signals
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FIGURE 5
Plate induced wake structure determined by the λ2 criterion from viewpoints of 3D, top view, and side view, in the baseline, X60, Y50, α22.5, β22.5 and
α45β22.5 cases.

FIGURE 6
(A) Vortex shedding frequency, and (B) Strouhal number; in the parametric space of α and β.

FIGURE 7
Phase-averaged time history of Mx′ and My′ averaged over the LT (left top), LB (left bottom), RT (right top), and RB (right bottom) whiskers for X60, Y50,
α22.5, β22.5 and α45β22.5 cases.

are evenly distributed across the regions since the vortices impact
the seal head at the center. In the Y50 case, where the wake translates
rightward, both Mx′ and My′ are stronger on the right whiskers.
The right bottom whiskers experience stronger signals compared
to the right top whiskers because of the impact location of the

vortices. In the α22.5 case, the left whiskers experience stronger
signals than the right whiskers, consistent with the plate rotation
that generates stronger vortices on the left side. Additionally, the
left bottom whiskers experience stronger moments than the left top
whiskers. In the β22.5 case, interestingly, despite the upper vortex
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FIGURE 8
(A) Mean squared error loss of the training and validation groups, and (B) Ground truth and predicted values for the validation group.

FIGURE 9
Temporal importance map of X60, Y50, α22.5, β22.5 and α45β22.5 cases in the trained network.

ring being stronger than the bottom one, the bottom whiskers
experience stronger Mx′ than the top whiskers. This is attributed
to the upward inclination of the wake, causing the upper vortex
ring moving away from the whiskers. Also interestingly, different
from Mx′ , My′ shows no variation across the regions in this
case. In the α45β22.5 cases, both Mx′ and My′ are almost constant
with time while the left bottom whiskers have stronger moments
compared to the other whiskers due to the stronger wake in this
region.

Overall, the signals at the root of the whisker arrays exhibit
temporal and spatial patterns that align with the dynamics of the
vortices. There is a clear correlation between the arrival of the
vortices and the temporal variation in the signals.The regions where
the vortices directly impact the whiskers tend to exhibit stronger
signal amplitudes. The distinct vortex dynamics in each case result
in different temporal and spatial patterns of the signals, providing an
explanation for the discernible differences among the cases.

4.3 Network results

The neural network was trained successfully to predict the
location and orientation of the upstream plate. Figure 8A illustrates
the best mean squared error (MSE) losses of the training and

validation groups over 1,000 epochs, indicating the convergence
of the network. The final MSE loss for the training and validation
corresponding to the best fold is 0.0255 and 0.1064, respectively.The
decision to limit the epochs to 1,000 was based on the observation
that the drop in MSE loss for both groups during the last 100 epochs
is less than 0.1%.The accuracy of the trained network corresponding
to the best fold is depicted in Figure 8B through a comparison
of the ground truth and predicted locations and orientations of
the upstream plate in the validation cases. The accuracy metric is
quantified using the following formula:

Accuarcy =(1−
∑( |yGT−yPr|

Range
)

N
)× 100

where yGT represents the ground truth value, yPr denotes the
predicted value, Range represents the range of changes of yGT, and
N is the number of validation cases. The obtained 5-fold-average
accuracy of the parameters X, Y, α, and β is 91.4± 1.1%, 91.0± 1.1%,
84.8± 2.6%, and 83.3± 0.6%, respectively, resulting in an average
accuracy of 87.6± 0.7% for the network.

An essential capability of the interpretable network is its ability
to generate temporal and spatial importance of the signals within
the trained network, allowing for the identification of significant
temporal-spatial signal patterns that contribute to the network’s
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predictions. In our study, as outlined in Section 3.3, we utilized a
temporal dimension of 80 and a time interval of t = 8, resulting in
10 distinct time patches for the prediction. In the X60 and Y50 cases,
these 10 time patches correspond to two consecutive cycles, while in
the α22.5 and β22.5 cases, they correspond to three consecutive cycles.

In Figure 9, we present the temporal importance (TI) analysis
of the signals in each representative case. Except for the α45β22.5
case, the results highlight that the temporal importance is not
uniformly distributed across all time instances. Instead, certain time
points exhibit significantly higher importance values, while others
demonstrate relatively lower importance values. This disparity
suggests that specific time instances play a crucial role in the
prediction process, while others have a lesser impact. Furthermore,
it is noteworthy that the temporal importance patterns differ across
all the cases. Each case exhibits a unique distribution of importance
values across the time patches. In the α45β22.5 case where vortex
shedding is absent, the temporal importance is nearly uniform
acorss the time patches within a cycle. It is because the flow field
remains nearly unchanged with time.

The variation in temporal importance patterns highlights the
importance of considering the temporal dynamics and their specific
correlations with the underlying flow structures when interpreting
the prediction process. To illustrate this relationship, we present the
vortex structures determined by the λ2 criterion and contours of
flow velocitymagnitude at two planes intersecting thewhisker arrays
at the first five individual time patches in each representative case
in Figure 10. Note that the flow velocity in the case of freestream
passing the seal head without an upstream plate was subtracted from
the flow velocity in other cases where wakes were present to focus
on the disturbance induced by the wake. To facilitate analysis, the
temporal importance map is also included in each case. These five
patches cover either one or more than one cycle of the wake. The
α45β22.5 case is not included as the temporal importance and flow
structure remains unchanged in this case.

In the X60 case, time patch 1 exhibits significantly higher
importance compared to the other time patches. This observation
corresponds to the vortex dynamics, where at time patch 1, the
lower vortex ring actively interacts with the whiskers. In contrast,
at the other time patches, either the top vortex ring arrives in the
whisker area but lacks strong interaction due to its distance from
the whiskers, or the bottom vortex ring has already moved past the
whiskers.The flow velocity contour reveals that the flow disturbance
is strongest at time patch 1 around the whisker compared to other
time patches.

In the Y50 case, time patch 4 demonstrates significantly higher
importance compared to other time patches. This time patch
corresponds to the instances when the top vortex ring interacts
with the right whiskers. At the other time patches, either the
top vortex ring has not yet reached the whiskers or has already
moved past them. In this case, the bottom vortex ring has minimal
effect due to its distance from the whiskers resulting from the
translation of the upstream plate. The flow velocity contour also
shows that the vortex ring interacts with the right whisker array
and the disturbance is the strongest on most whiskers at time
patch 4.

In the case of α22.5 time patch 4 exhibits the highest importance,
while time patches 1 and 5 are slightly less important, and time
patches 2 and 3 have minimal importance. Interestingly, upon

analyzing the vortex dynamics, it is observed that time patches
2 and 3 capture the interactions between the left whiskers and
the stronger vortex ring from the left side. Conversely, time patch
4 captures the interactions between the right whiskers and the
weaker vortex ring shed from the right edge. Time patches 1 and
5 represent the transitional stages, where the weaker vortex ring is
about to leave and the stronger vortex ring is about to arrive. The
flow velocity contour further confirms that the flow disturbance
is strongest at time patches 2 and 3 due to the presence of the
stronger vortex, whereas it is weaker at time patch 4 attributed to
the weaker vortex ring. One possible explanation for the higher
importance of the weaker vortex in this case is that the stronger
vortex ring shed from the left edge aligns towards the center
of the nose, similar to the vortices observed in other cases. In
contrast, the weaker vortex ring is oriented perpendicular to it
and only interacts with the right whisker arrays. This unique
interaction provides additional crucial orientation information,
making the weaker vortex more influential in the prediction
process.

In the case of β22.5, time patches 1, 4, and 5 exhibit greater
significance compared to time patches 2 and 3. Through vortex
dynamics analysis, it is observed that time patches 1 and 5 capture
the arrival of the top vortex at the whiskers, while time patch
4 captures the interactions between the bottom vortex and the
whiskers. Interestingly, time patch 2 captures the strong interactions
between the top vortex ring and the whiskers, but its contribution
is nearly negligible. This observation is further supported by the
flow velocity contour. The flow disturbance during time patches
1, 2, and 5 is primarily associated with the top vortex, whereas
during time patch 4, it is linked to the bottom vortex. Time
patch 3 presents a scenario where disturbances from both vortex
rings are present. Notably, similar to the α22.5 case, the two vortex
rings differ in strength, with the top ring being stronger than the
bottom one, but the weaker ring plays the most important role in
prediction. It is possible for the same reason that the weaker ring
possesses a unique orientation and only interacts with the bottom
whiskers. However, unlike the α22.5 case, the significance of the other
ring is increased in this case. It may be because the orientation
information provided by the bottom ring is insufficient for accurate
prediction, thereby necessitating the incorporation of additional
information.

The current interpretable deep learning network also provides
the importance of each whisker through spatial importance (SI)
maps at individual time patch. Figure 11 illustrates the locations of
the whiskers with the highest importance values during each of the
first five time patches in each case.These whisker locations generally
exhibit a strong correlation with areas of strong flow disturbance, as
depicted in Figure 10. Furthermore, the spatial distribution of these
importantwhiskers provides insights into the location and size of the
vortex rings in the wake. For instance, in the X60 case, the important
whiskers reflect the vortex ring impacting the center of the seal
head. In the Y50 case, the important whiskers correlate with strong
flow disturbance on the right side, and their extension reflects the
extension of the vortex ring. In the α22.5 case, the important whiskers
capture both vortex rings, with one located on the left side and the
other on the right side. Also, they reveal that the extension of the left
vortex ring is larger than the right one. Similarly, in the β22.5 case, the
important whiskers capture two vortex rings. In this scenario, they
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FIGURE 10
The vortex structures determined by the λ2 criterion and contours of flow velocity magnitude at two planes intersecting the whisker arrays at the first
five individual time patches of (A) X60, (B) Y50, (C) α22.5, and (D) β22.5 cases. Note that the flow velocity in the case of freestream passing the seal head
without an upstream plate was subtracted from the flow velocity in other cases where wakes were present to focus on the disturbance induced by the
wake.

capture that the higher vortex ring is larger and situated near the
center, while the lower vortex ring is smaller and positioned closer
to the bottom.

To gain a deeper understanding of the signals used for
prediction, Figures 12, 13 present the maps of Mx′ and My′ on
the whisker arrays during each time patch for each case. Note
that Mx′ represents the moment generated by the lift force, while

My′ represents the moment generated by the drag force. A strong
correlation between the important whiskers and Mx′ maps is
observed across all cases, indicating the significant role of Mx′

in the prediction process. Conversely, we did not observe any
notable correlation with the My′ maps, suggesting that My′ has
minimal impact on the prediction. Interestingly, the direction
of Mx′ plays a crucial role in the prediction, as the important
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FIGURE 11
The locations of the whiskers with the highest importance values during each of the first five time patches in X60, Y50, α22.5and β22.5 cases.

whiskers consistently correlate with positive Mx′ values across
all cases or, in cases where positive Mx′ values are absent, with
less negative Mx′ values. It is important to note that in our
algorithm, the calculation of Mx′ involves subtracting the moment
induced by the freestream flow. This subtraction is intended to

focus on the moment induced specifically by vortices. Further
studies are needed to clarify whether the direction information
remains important if the original moment, without subtracting the
freestream moment, is used. Nevertheless, the results suggest that
the bendingmoment generated by the lift force plays a crucial role in

FIGURE 12
Contour maps of Mx′ on the whisker arrays during each time patch in X60, Y50, α22.5and β22.5 cases.
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FIGURE 13
Contour maps of My′ on the whisker arrays during each time patch in X60, Y50, α22.5and β22.5 cases.

the prediction process, and the direction of thismomentmay also be
important.

5 Summary and conclusion

In this study, we developed a novel method that combines
a computational fluid-structure interaction (FSI) model with
interpretable deep-learning models to investigate the fundamental
mechanisms of seal whisker sensing. We demonstrate that
the method is able to accurately predict the location and
orientation of a circular plate upstream of a seal’s head by
using the bending moment signals at the root of whisker
arrays. The algorithm also reveals crucial temporal-spatial
signal patterns utilized in the prediction process, enabling
establishing correlations between important signal patterns, flow
features, and characteristics of upstream obstacles for enhanced
understanding.

The FSI model couples an incompressible flow solver and
structural dynamics solver in a one-way coupling manner. We
generated diverse wake characteristics and corresponding whisker
dynamics by placing a circular plate upstream of a seal’s head and
systematically varying the location and orientation of the plate. Two
types of wake patterns were observed. For most of the cases, the
wake is characterized by two vortex rings shed from two edges of the
plate with a phase difference. The translation of the upstream plate
solely affects the position of the wake, without altering its structures.
However, when the orientation of the plate is changed, it induces
an inclination in the wake’s trajectory, a shift in the orientation
of the vortices, and an increase of the vortex shedding frequency.

Furthermore, the side farther from the inflow corresponds to the
location of the stronger vortex, while the side closer to the inflow
is associated with the weaker vortex. In contrast, for the cases where
one of the orientation angles is the largest while the other is non-
zero, no vortex shedding occurs in the wake. Instead, the wake is
characterized by two streamwise vortex legs attached to the side
of the plate. The whisker signals are represented by the bending
moments at the root of each whisker. The signals exhibit temporal
and spatial patterns that align with the dynamics of the vortices.
There is a clear correlation between the arrival of the vortices
and the temporal variation in the signals. The regions where the
vortices directly impact the whiskers tend to exhibit stronger signal
amplitudes.

We train the networkmodel to learn the location and orientation
of the upstream plate based on the whisker signals. The results
show that the model is able to predict the location of the plate
with the accuracy of 90%–92.0% and the orientation of the plate
with the accuracy between 86% and 89%. The analysis on the
temporal importance of the signals reveals that the prediction
process primarily relies on the time instanceswhen thewake vortices
actively interact with the whiskers. When the vortices are at varying
distances from the whiskers, such as when the upstream plate is
translated, interactions with the vortices in close proximity to the
whiskers have a more significant impact, while interactions with
the distant vortex ring have minimal influence. In the context
of predicting the orientation of the upstream plate, interactions
with all vortices can be important. However, interactions involving
the vortices that carry more orientation information tend to hold
greater significance, even if these vortices do not cause the strongest
disturbance and signals. It suggests that the vortices that provide
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crucial orientation cues play a crucial role in the prediction
process, even if their influence on the overall flow disturbance
and signal strength is not the most pronounced. Spatially, the
whiskers in stronger flow disturbance areas are more important in
the prediction. The spatial arrangement of the important whiskers
not only captures the vortex ring structure in the wake, but also
provides valuable information about the location and size of the
rings. In the context of the signals used for prediction, our results
suggest that the bending moment generated by the lift force plays a
crucial role in the prediction process. The direction of the moment
may also be important as important whiskers are all associated with
the bending moment in one direction.

Taken together, we demonstrate that the developed interpretable
neural network is able to accurately predict the location and
orientation of the upstream object of seal whisker arrays. More
importantly, it allows for the identification of significant temporal-
spatial signal patterns that contribute to the network’s predictions,
which can then be further correlated with flow structures, enabling
the identification of the crucial flow features that are sensed for
accurate prediction. These insights are crucial for the development
of intelligent flow sensors capable of accurately perceiving and
interpreting complex underwater environments.

We would like to acknowledge that our study utilized a
simplified drag-lift model in our one-way coupling approach to
estimate the hydrodynamic loadings along each whisker. This
simplified model does not take into account the feedback effect
of the whiskers on the surrounding flow. In reality, the presence
of the whiskers would influence the surrounding flow, resulting
in different drag and lift values that could potentially affect the
outcomes of our research. However, we believe that the impact of
the whiskers on the surrounding flow would be small due to the
small diameter of the whiskers (with a mean diameter of 0.66 mm).
This diameter is approximately 1-2 orders of magnitude smaller
than the scale of the vortices in the wakes, which range from
20 mm to 120 mm. Considering this scale difference, we believe
that the one-way coupling approach still provides valuable insights
while significantly reducing the computational cost associated
with conducting full FSI simulations. It is important to note that
future investigations could explore the implications of the two-
way coupling between the whiskers and the surrounding flow
for a more comprehensive understanding of the hydrodynamic
interactions.

In all the simulation cases, we observed that the frequency of
the bending moments consistently matched the shedding frequency
of the wake vortices. This behavior is a direct consequence of
the one-way coupling approach, where the feedback effect of
whisker dynamics on the flow was disregarded. It is worth noting,
however, that in our previous research (Liu et al., 2019b), we
discovered that the distinctive undulated geometry of seal whiskers
can effectively mitigate vortex-induced vibration when exposed
to steady flows. This unique characteristic enables the whiskers
to better synchronize with the wake frequency. Nonetheless, it is
important to acknowledge that further investigations are required
to explore the interactions between vortex-induced vibration and
wake-induced vibration. Understanding these complex dynamics

will provide valuable insights into the combined effects and enhance
our comprehension of the overall system behavior.

Finally, seal whisker arrays display distinct spatial grid patterns
combined with variations in whisker length and orientation. These
patterns are believed to play crucial functional roles in enhancing
the seals’ sensing capabilities. For instance, it is believed that longer
whiskers located on the caudal side of the array can provide
a larger detection area, extending the reach and sensitivity to
water movements. Moreover, the variation in whisker length and
orientation may allow for high sensitivity in wide frequency range
and flow direction. Further studies are needed to fully investigate
these effects, particularly by comparing the sensing capabilities
between different whisker arrangements. The current findings are
limited to a single configuration, and more research is necessary to
gain a comprehensive understanding.
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