
TYPE Original Research
PUBLISHED 22 November 2023
DOI 10.3389/frobt.2023.1230086

OPEN ACCESS

EDITED BY

Thomas Platz,
University of Greifswald, Germany

REVIEWED BY

Giacinto Barresi,
Italian Institute of Technology (IIT), Italy
Joachim Liepert,
Kliniken Schmieder, Germany

*CORRESPONDENCE

Raviraj Nataraj,
rnataraj@stevens.edu

RECEIVED 28 May 2023
ACCEPTED 06 November 2023
PUBLISHED 22 November 2023

CITATION

Liu M, Wilder S, Sanford S, Glassen M,
Dewil S, Saleh S and Nataraj R (2023),
Augmented feedback modes during
functional grasp training with an
intelligent glove and virtual reality for
persons with traumatic brain injury.
Front. Robot. AI 10:1230086.
doi: 10.3389/frobt.2023.1230086

COPYRIGHT

© 2023 Liu, Wilder, Sanford, Glassen,
Dewil, Saleh and Nataraj. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Augmented feedback modes
during functional grasp training
with an intelligent glove and
virtual reality for persons with
traumatic brain injury

Mingxiao Liu1,2, Samuel Wilder1,2, Sean Sanford1,2,
Michael Glassen3, Sophie Dewil1,2, Soha Saleh3 and
Raviraj Nataraj1,2*
1Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States,
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Introduction: Physical therapy is crucial to rehabilitating hand function needed
for activities of daily living after neurological traumas such as traumatic brain
injury (TBI). Virtual reality (VR) can motivate participation in motor rehabilitation
therapies. This study examines how multimodal feedback in VR to train grasp-
and-place function will impact the neurological and motor responses in TBI
participants (n = 7) compared to neurotypicals (n = 13).

Methods: We newly incorporated VR with our existing intelligent glove
system to seamlessly enhance the augmented visual and audio feedback to
inform participants about grasp security. We then assessed how multimodal
feedback (audio plus visual cues) impacted electroencephalography (EEG)
power, grasp-and-place task performance (motion pathlength, completion
time), and electromyography (EMG) measures.

Results: After training with multimodal feedback, electroencephalography (EEG)
alpha power significantly increased for TBI and neurotypical groups. However,
only the TBI group demonstrated significantly improved performance or
significant shifts in EMG activity.

Discussion: These results suggest that the effectiveness of motor training with
augmented sensory feedback will depend on the nature of the feedback and
the presence of neurological dysfunction. Specifically, adding sensory cues
may better consolidate early motor learning when neurological dysfunction is
present. Computerized interfaces such as virtual reality offer a powerful platform
to personalize rehabilitative training and improve functional outcomes based on
neuropathology.

KEYWORDS

traumatic brain injury, virtual reality,motor rehabilitation, sensory feedback, hand grasp,
physical therapy
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1 Introduction

Trauma to the brain can severely impair motor function to
perform activities of daily living (Colantonio et al., 2004). For
affected individuals, rehabilitation of hand function, especially
reaching and grasping, is critical for environmental access
(Chaabani et al., 2014). Physical therapy is a primary option to
rehabilitate hand function; however, traditional therapy involves
intensive and repetitive movement training (Connell et al., 2018).
Feelings of rigor during training are naturally detrimental to efficient
gains in function; thus, methods fostering greater engagement are
needed to overcome the monotony of physical practice (Lohse et al.,
2013). Newer approaches to physical therapy are seeking to utilize
advanced technologies, such as virtual reality (VR) (Howard, 2017)
and instrumented wearables (Simone et al., 2007), to motivate
participation in therapy.

Computerized technology, especially virtual reality, is
increasingly employed in motor rehabilitation to facilitate greater
motivation and to provide customizable training options, including
enhanced feedback (Merians et al., 2006). Computerized interfaces
can provide robust movement guidance (Gorgey, 2018) and leverage
cognitive elements of physical training that can accelerate motor
learning after neurological traumas (Mulder and Hochstenbach,
2005). Given their vast programmable features, virtual reality
environments are well suited to personalize rehabilitative training
that maximizes user engagement and functional outcomes based
on neural processes (Holden and Todorov, 2002). Integrating
advanced technologies with motor rehabilitation creates a user-
computer interface that can motivate with colorful and immersive
environments while also providing real-time guidance using
enhanced sensory-driven feedback to facilitate motor recovery
(Mulder and Hochstenbach, 2005). Thus, virtual environments can
optimize motor learning by manipulating training conditions, e.g.,
guidance cues, for a given user profile, e.g., pathological features, to
broadly affect motivational, cognitive, motor, and sensory learning
mechanisms (Levin et al., 2015).

Augmented feedback with sensory cues informing individuals
about performance achievements or errors during training is
proven to enable motor learning (Sigrist et al., 2013). Augmented
feedback activates sensory modalities (e.g., visual, audio, haptic)
to guide performance during training (Sigrist et al., 2013). With
“multimodal” augmented feedback,more than one sensorymodality
is activated concurrently to hasten motor learning trajectories
by broadening the areas of neural activation and exceeding
neural activation thresholds earlier during repeated practice
(Sigrist et al., 2013; Seitz and Dinse, 2007). Thus, multimodal
feedback in VR motor rehabilitation training is a promising
approach to recovering motor function after neurological traumas.
Our lab has shown how motor performance is sensitive to
features in augmented feedback (Sanford et al., 2020) using
computerized interfaces for either motion (Sanford et al., 2021)
or myoelectric control tasks (Sanford et al., 2022; Walsh et al.,
2021).

Still, it remains unclear if persons with neurological damage,
such as traumatic brain injury (TBI), respond similarly to
augmented feedback approaches as neurotypicals. Given disturbed
brain connectivity after TBI (Hayes et al., 2016), the ability to

process sensory cues (Folmer et al., 2011) and subsequently apply
them with functional capabilities (Ciccarelli et al., 2020) can be
compromised. Another potential challenge in utilizing augmented
sensory feedback with TBI is a possible deficiency in synchronizing
cues with the functional task being practiced (Ghajar and Ivry,
2008). Accurately inferring times of cues relative to task actions is
especially critical to ensuremotor trainingwith augmented feedback
will be effective.

Our lab has previously developed and verified the potential
of training with an intelligent glove system capable of providing
augmented sensory cues for a functional grasp task while also
inducing a sense of agency (Liu et al., 2021). Sense of agency, or
perception of control, is a cognitive measure highly associated
with motor function (Moore, 2016). Intentional binding is an
implicit measure of agency (Moore and Obhi, 2012), which
manifests from the compression of one’s perception of the time
between a voluntary action and an expected outcome. Our
lab has shown positive relationships between implicit measures
of agency and movement performance (Nataraj et al., 2020a;
Nataraj et al., 2020b; Nataraj and Sanford, 2021; Nataraj et al., 2022)
and seeks to leverage such connections for better rehabilitation
approaches.

In our training paradigm with the glove system, we facilitate
a sense of agency through intentional binding by progressively
reducing the delay between the user’s action of a “secure” grasp
and the outcome of sensory cues from the onboard modules.
The glove system includes onboard force and flex sensors and a
processor for an artificial neural network to identify secure grasp,
as detailed in (Liu et al., 2021). Participants are cued about their
action of securely grasping an object based on sensory-activation
modules (visual: LED light, audio: beeper) onboard the glove
and then proceed to complete the grasp-and-place task. During
training, there is a progressive reduction of the delay between the
action and consequential sensory cue to stimulate a perception
of greater binding and, therefore, stronger feelings of agency. In
our previous study with the intelligent glove system (Liu et al.,
2021), we reported that neurotypicals demonstrated improved
performance of a grasp-and-place task using “binding” feedback
during training compared to no feedback or immediate (no delay)
feedback. However, it was unclear if participants with neurological
impairment may respond similarly, given potential challenges with
discerning timing or processing augmented sensory feedback in
VR.

The current study seeks to establish how participants with
neurological dysfunction (i.e., TBI) will respond using this glove
system when augmented sensory feedback is provided in the
following ways: 1) progressively binding feedback to actions during
training as done in (Liu et al., 2021), 2) further enhancing the
sensory cues through VR, and 3) comparing the effects between
providing unimodal (audio only) and multimodal (audio plus
visual) cues. Responses in the presence of TBI will be characterized
along domains of neural activation (electroencephalography,
EEG), functional motor performance, and muscular engagement
(electromyography, EMG) and compared against neurotypical
responses. We hypothesized that multimodal feedback in VR will
support greater neural (EEG) and muscular (EMG) activation
and improve performance (reduced motion pathlengths, reduced
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completion times) of a grasp-and-place task for persons with
TBI.

2 Materials and methods

2.1 Participants

Persons with TBI (n = 7) were recruited for a funded
study (New Jersey Health Foundation, Research Grant PC 53-
19) and tested at Kessler Foundation. These participants signed
an informed consent form approved by the Institutional Review
Board (IRB) at Kessler. The committee, composed of persons not
associated with a given study, reviews and approves all human
research studies at Kessler annually. They assure the safety of study
participants, patients and healthy volunteers, including the use
of clear language in the consent form. These participants were
diagnosed as having moderate-to-severe TBI with upper extremity
deficits.

Participants with TBI were classified based on the TBI Model
Systems National Database (Dijkers et al., 2010), where one of
the following criteria must be met: (a) loss of consciousness
for 30 min or more; (b) posttraumatic anterograde amnesia for
24 h or more; (c) lowest Glasgow Coma Score (GCS) (Sternbach,
2000) in the first 24 h ≤ 15 (unless due to intubation, sedation,
or intoxication); or (d) evidence of significant neurological
injury on CT/MRI (e.g., subdural hematoma, cerebral contusion,
subarachnoid hemorrhage). Severity was further defined using the
following GCS score criteria: mild (14–15), moderate (9–13), or
severe (3–8). Injury severity was confirmed from medical records
when possible; in the absence of medical records, severity was
determined by family member attestations of the length of loss
of consciousness/coma.

Another group of neurotypical participants (n = 13) was
recruited among a pool of students at Stevens Institute of Technology
and compensated using funds from the Charles V. Shaefer, Jr. School
of Engineering and Science at Stevens.These participantswere tested
at Stevens after signing an informed consent form approved by the
Stevens IRB. The Stevens IRB is composed of members internal and
external to the institution, and it reviews and approves all human
research studies at Stevens annually. Neurotypical participants did
not report nor indicate complications involving cognition or upper
extremity function.

Study enrollment did not require participants to undergo
clinical function assessments; thus, limited data were available
to infer the degree of motor impairment for TBI participants.
However, two participants were sampled from a participant pool
having undergone timed tasks for the Wolf Motor Function tests
(Lin et al., 2009). The average time score was 31 ± 13 s, which
correlates to an upper-extremity Fugl-Meyer score of approximately
40 according to (Hodics et al., 2012), which denotes mild-to-
moderatemotor impairment (Woytowicz et al., 2017). Furthermore,
the average maximum voluntary contraction (MVC) for EMG-
recordedmuscles of the TBI group was 72% ± 40% for the respective
muscles of the neurotypical group. MVC exercises included index-
thumb gripping (close- and open-grip directions) and wrist flexion-
extension. Overall, we presume that TBI participants for this study
have relatively high motor function.

2.2 Instrumented glove system to detect
secure grasp

The glove system hardware (Figure 1) included a compression
glove embedded with force (Interlink Electronics) and flex (Spectra
Symbol) sensors across each digit, aligned on the palmar dorsal
side, respectively.The sensors were connected to an instrumentation
board (Teensy) programmed with Arduino. The board and wired
connections were housed in a custom 3D-printed enclosure with a
wrist-strappedmount. Sensorymodules onboard the glove included
an LED and sound beeper used for visual and audio cues in
our previous study (Liu et al., 2021). The function of these sensor
modules is now replaced (and enhanced) in this study using
VR (details described in Section 2.3). The glove with onboard
instrumentation has a mass of under 100 g. API code inMATLAB®
(Mathworks) read sensor data via serial communication at 40 Hz
and was processed on an Intel desktop computer (Xeon® 3.20 GHz,
32 GB RAM, Windows 10 Pro). The board is programmed to run
a trained two-layer feedforward artificial neural network (Neural
Network Toolbox, MATLAB® , Mathworks) to compute (predict)
whether hand grasp upon an object is secure (or not) based on
inputs from the onboard force andflex sensors.Thenetwork creation
and training procedures are detailed in (Liu et al., 2021). During
each training trial, the glove 1) identifies the achievement of a
“secure” grasp onto an object, 2) informs the user by activating a
feedback module, and 3) facilitates agency via greater “binding” by
progressively reducing the delay (from 1 to 0 s across all training
trials) between grasp action and feedback cue. A surgical glove was
placed over the sensor glove to ensure a better fit to the hand.

2.3 Experimental protocol

All participants donned our custom-built instrumented glove
on their self-selected dominant side (left- and right-hand versions
available) to perform a functional (grasp-and-place) task for all
trials. At Stevens, neurotypical participants wore a 32-channel
scalp-surface cap for EEG recording (USBamp, g. tec) and skin-
surface EMG electrodes (Delsys Trigno) at hand and forearm
muscles. EMG recordings were taken at the following seven muscle
sites: flexor carpi radialis (proximal flexor), extensor carpi radialis
brevis (proximal extensor), flexor digitorum superficialis (distal
flexor), extensor digitorum communis (distal extensor), abductor
pollicis brevis (thumb abductor, palmar-side recording), adductor
pollicis (thumb adductor, dorsal-side recording). At Kessler, TBI
participants wore a 64-channel scalp-surface cap for EEG recording
(actiCHamp Plus, BrainVision) and seven EMG electrodes (Power
Lab/30 Series) at the same locations as neurotypical participants.
Protocols at Kessler and Stevens were identical except for the
number of trials collected in each block (explained below).

The motor task for each trial entailed reaching and grasping
a small cubic object, lifting it from an “Initial” location, and
then moving and placing the object onto a “Target” location
(Figure 2). Participants were asked to grasp the object with a
precision pinch, i.e., using index finger and thumb (Nataraj et al.,
2014). Participants with TBI were encouraged to adapt their grasp
strategy as needed to perform the task successfully. However, all
TBI participants could achieve a precision pinch grasp without
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FIGURE 1
Instrumented glove includes force and flex sensors providing inputs to artificial neural network that predicts when secure grasp on object is achieved
and triggers augmented sensory feedback cue. Note: Glove is right-handed shown from dorsal side with thumb inverted to show force-sensitive
resistor on palmar side (i.e., thumb-pad).

discernible adaptation. Participants were informed that they were
assessed for performance primarily on minimizing the object’s
motion pathlength and secondarily on placing it accurately on the
designated target and completing the task promptly.

In adding VR feedback to our glove system, participants
experienced mixed-mode reality. They manipulated a real object
while viewing a VR environment (Unity) through a headset (HTC
Vive) displaying virtual representations of the object and the gloved
hand. These representations were identified and translated into VR
using a motion controller (LEAP). Calibration procedures were
performed to synchronize the positions of the virtual and real cubic
objects and have them coincide with the participant’s perspective at
the start of each trial. Secure grasp was still detected based on glove
sensor inputs to the onboard neural network processor.

In VR, the audio feedback was naturally enhanced when
provided through the headset’s earpiece. In addition, the visual cues
were enhanced by having the entire virtual object change color
(red to green) during secure grasp. Augmented feedback cues about
secure grasp were only provided during training trials. During
training, participants received augmented sensory feedback upon

and during secure grasp in VR. Augmented feedback was delayed
upon detecting a secure grasp. However, the delay progressively
reduced from1 to 0 s overall training trials to induce agency through
binding (Moore and Obhi, 2012). The earpiece provided unimodal
feedback as a singular beep (“audio cue”). The beep was short
(100 m sec duration) with moderate tone and pitch. Formultimodal
feedback, the virtual object additionally changed color (“visual cue”)
from red to green. The color change activated concurrently with
the audio cue, but it was persistently active during secure grasp
and would inactivate (i.e., the virtual object turned red again) upon
release of the object. Providing multimodal feedback in this way,
i.e., persistent visual cue and audio with a single beep, was most
effective (least distracting) to participants based on a series of pilot
experiments to validate this training approach with neurotypicals
initially (Liu et al., 2021).

In each session, a participant executed three blocks of trials:
1) an initial block of trials without feedback to establish baseline
performance (i.e., “pre” training), 2) a block of trials to train with
augmented feedback at progressively shorter time delay intervals
(1–0 s) after “secure” grasp to induce binding, 3) a block of trials
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FIGURE 2
Flow diagram shown for experimental procedure for mixed-mode reality grasp-and-place task. Participant wears instrumented glove (under surgical
glove) in grasping and moving cubic object while receiving augmented sensory feedback during training.

FIGURE 3
Representative relative change in regional brain activity (EEG alpha power) after feedback training of a grasp-and-place task. Results shown for
neurotypicals and participants with traumatic brain injury (TBI) under two conditions of training with augmented sensory feedback (unimodal: audio
only; multimodal: audio plus visual).

without feedback to determine effects after (i.e., “post”) training. For
pre/train/post blocks, neurotypical participants underwent 15/25/15
trials, respectively, and TBI participants underwent 25/50/25 trials,
respectively. More trials were undertaken for TBI participants since
clinical collaborators had suggested more trials would be better
elicit an effect in this population. For neurotypical participants,
we followed trial-level procedures according to our previous work
with this glove system (Liu et al., 2021). The three blocks of trials
were repeated for each of two different feedback conditions during
the training block: 1) unimodal feedback (audio cues only), 2)
multimodal feedback (concurrent audio and visual cues). These
two training conditions were presented in random order for each
participant session completed within a single day.

2.4 Data analysis

All metrics were computed as trial averages for each participant
before determining the effects of the participant group (TBI versus

neurotypical) or feedback condition (unimodal or multimodal).
Metrics for performance included the 3-D motion pathlength of the
cubic object being transported and the task completion time (i.e.,
the time the object is being moved from initial to target positions).
In both cases, performance is better when the metric is lower.
Participants consistently placed the object at the target location;
thus, accuracy measures were not evaluated. Instead, the primary
performancemetric was computed as the object’smotion pathlength
while transported from initial to target locations, with completion
time serving as a supplementary performance metric.

Neural activity was computed as EEG power in the alpha
(8–12 Hz) and beta (13–30 Hz) bands. Additionally, EMG metrics
were calculated as the overall mean amplitude across all seven
muscles recorded and EMG-EEG coherence. EMG-EEG coherence
was computed between an intrinsic hand muscle with the
highest EMG amplitude for that participant group (abductor
pollicis brevis for neurotypicals, abductor pollicis longus for
TBI) and the EEG electrode corresponding to the M1 motor
area. Different muscles expressing, on average, maximum EMG
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FIGURE 4
The relative (percentage) change in EEG power (LEFT = alpha band, RIGHT = beta band) in the performing grasp-and-place task is shown from before
training (baseline) to after training with augmented sensory feedback. Results are compared between feedback conditions (unimodal: audio only;
multimodal: audio plus visual) per participant group (neurotypicals, TBI). Note: *p < 0.05, **p < 0.01, ***p < 0.001 in comparing effects of feedback
condition within each group.

amplitude suggests some variation in grip strategy between the
neurotypical and TBI groups. However, the variations in grip
are likely negligible given abductor pollicis muscles are still
highly recruited and likely will reflect changes in EMG-EEG
coherence primarily based on feedback training conditions, as
designed.

ThemeanEEGpower overall (across all channels) andwithin the
alpha and beta frequency bands were analyzed using “EEGLAB” in
MATLAB®. Mean values for EEG and EMG were computed within
a time window that spanned one second before the achievement of
secure grasp to one second after the release of the object. All metrics
were evaluated as a percentage change from “pre” to “post” blocks to
assess the effects of training.

The Kolmogorov–Smirnov test was applied to confirm sufficient
normality of each data set to be analyzed by a parametric test. A
two-way ANOVA was applied on each measure to determine the
effects of the two main experimental factors: feedback condition
(i.e., unimodal: audio only; multimodal: audio + visual) and
participant group (i.e., neurotypical, TBI). A paired two-sample t-
test was used for assessing the simple effects of feedback conditions
on each measure within participant groups since identifying the
potential impact of feedback conditions for clinical populations
is of primary interest in this study. In addition, a one-sample t-
test was applied for each pairing of group and feedback condition
to determine whether a significant post-training change occurred
from baseline (i.e., a non-zero % change). Finally, linear regressions
were applied to verify dependent relationships between performance
and EEG and whether significant linear trends existed in trial-
by-trial changes of each measure within (during) the training
block.

3 Results

Examples of brain (alpha power) activation plots are shown
for each group (neurotypical, TBI) paired with a training feedback
condition (unimodal, multimodal) in Figure 3. Relatively higher
alpha power is grossly observable with multimodal feedback for
both groups; however, the activation regions appear more diffuse
with neurotypicals. For multimodal feedback in TBI, two areas of
concentrated activation are evident, including one near the primary
motor cortex (M1).

The mean values of the percentage changes (i.e., from pre-to
post-training) for eachmetric and the overall mean value at baseline
(i.e., pre-training) are provided in Table 1. It should be noted that
baseline values were not significantly different between neurotypical
and TBI groups for any metric. In addition, for each measure,
the specific p-values for individual comparisons between feedback
conditions within each group (2-sample t-test), non-zero change
from baseline (1-sample t-test), and aggregate factor-level effects for
group and training feedback condition (2-way ANOVA) are shown
in Table 2. From 2-way ANOVA, only the EEG and EMG-EEG
coherence metrics showed a significant factor-level difference and
only for the factor of training feedback condition. This result further
highlighted the need to examine the simple effects of feedback on
each metric within each group to affirm the critical hypothesis
of this study (i.e., the presence of neurological dysfunction will
alter how multimodal versus unimodal feedback impacts brain
activity, muscle engagement, and functional performance of a
motor rehabilitation task). Thus, individual metric results are
discussed further within the context of feedback conditions with
each participant group in the bar plots shown in Figure 4 through
6.
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FIGURE 5
The relative (percentage) change in performance (LEFT = motion pathlength, RIGHT = completion time) in performing the grasp-and-place task is
shown from before training (baseline) to after training with augmented sensory feedback. Results are compared between feedback conditions
(unimodal: audio only; multimodal: audio plus visual) per participant group (neurotypicals, TBI). Note: *p < 0.05, **p < 0.01, ***p < 0.001 in comparing
effects of feedback condition within each group.

FIGURE 6
The relative (percentage) change in EMG metrics (LEFT = average EMG amplitude across all muscles recorded, RIGHT = EMG-EEG coherence between
intrinsic hand muscle with highest amplitude and M1 brain area) in performing the grasp-and-place task is shown from before training (baseline) to after
training with augmented sensory feedback. Results are compared between feedback conditions (unimodal: audio only; multimodal: audio plus visual)
per participant group (neurotypicals, TBI). Note: *p < 0.05, **p < 0.01, ***p < 0.001 in comparing effects of feedback condition within each group.

Significant post-training changes were observed in neurological
activity (EEG power) within the alpha and beta bands after training
with multimodal versus unimodal feedback (Figure 4). Again,
results are expressed as the percentage change in each measure
after training compared to before, i.e., at baseline. Neurological
activity was significantly (p < 0.05) increased in both groups with
multimodal feedback for both alpha and beta bands. This increase
in activity with multimodal feedback is demonstrated as significant

compared to unimodal feedback and from baseline. Unimodal
feedback did not produce significant changes from the zero baseline
(Table 2).

For performance, both metrics showed improvement (i.e.,
shorter pathlengths, shorter completion time) with multimodal
feedback, compared to unimodal feedback (Figure 5), for the
TBI group. However, these performance trends were reversed
(i.e., performance worsened with multimodal feedback) for
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FIGURE 7
Correlations between participant-level mean values of performance metric (motion pathlength) and neural activity (EEG alpha power) within each
participant group (LEFT = neurotypical, RIGHT = TBI). Results are shown for after training and pooled across both feedback conditions. Correlation
represented through slope parameter for linear regression fitted to data. Slope magnitudes were assessed to be significantly non-zero (p < 0.05).

neurotypicals. Of further note, the change in motion pathlength
was significantly different from zero (baseline) for every pairing
of group and training condition. The change in completion time
was significantly non-zero only for neurotypicals with unimodal
feedback with significantly improved (reduced) completion time
compared to baseline.

EMG metrics did not demonstrate significant differences
in any case for persons with TBI (Figure 6). However, there
was a significant difference in EMG-EEG coherence between
training feedback conditions for neurotypicals. Furthermore,
for neurotypicals, the unimodal feedback condition produced a
significant increase in EMG coherence from baseline after training,
but multimodal feedback produced a significant decrease in
coherence.

When attempting to discover a correlation between
performance and neural activity, a significant non-zero slope
parameter with linear regression was observed in relating motion
pathlength to EEG alpha activity separately for each participant
group across both conditions (Figure 7). Notably, the TBI group
demonstrated improved performance (reduced motion pathlength)
with increased EEG alpha power. However, the neurotypical group
showed worsened performance with increased EEG activity.

When examining trends in each metric during training trials,
at least one significant difference was observed for each metric
pending the specific group or training condition. For both feedback
conditions, EEG metrics significantly increased across training
trials in the TBI group (Figure 8). For performance metrics
(Figure 9), significant improvements (reductions) were observed
in completion time for all four group-condition pairs. Significant
improvements were observed in motion pathlength only for TBI
but with both feedback conditions, leaving non-conclusive trends
in motion pathlength for neurotypicals with both conditions. For
EMG (Figure 10), a significant reduction in EMG amplitude was

observed for TBI and audio-only feedback. In contrast, a significant
increase in EMG-EEG coherence was observed for TBI, but with
multimodal feedback. Training trends for all remaining EMG cases
were inconclusive. The specific slope and associated p-values are
presented in Table 3.

4 Discussion

This study evaluated how varying the nature of augmented
sensory feedback used for motor training with virtual reality
can impact post-training changes in neurological activity, motor
performance, and muscular engagement for a grasp-and-place task.
The central experimental factor was cueing neurotypical and TBI
participants about secure grasp with either unimodal (audio cue
only) or multimodal (audio cue plus visual cue) feedback during
each training repetition. Ultimately, we examined the effects of
training with each feedback condition by comparing EEG power,
motor task performance, and EMG measures immediately after
(post) training compared to before (pre) training, serving as the
comparative baseline for each participant. Our primary finding
was that the effects broadly observed on these measures were
unique depending onwhether participants were neurotypical or had
moderate-to-severe TBI.

Both groups exhibited increased EEG activity, in both
alpha and beta bands, after training with multimodal feedback
compared to unimodal feedback. More robust EEG responses are
generally expected following more exposure to sensory stimulation
(Teplan et al., 2006). However, the relative increases with TBI
were larger than neurotypicals and may have impacted respective
motor outputs accordingly. With multimodal feedback, there
were contradictory findings in performance as TBI participants
significantly improved (reduced) their average motion pathlength
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FIGURE 8
Mean (across participants) of EEG activity (alpha, beta) across sequence of training trials during training with augmented sensory feedback (audio or
audio + visual) for each participant group (neurotypical or TBI). Linear regression fitted to indicate global trend within training block in each case pairing
feedback condition and participant group. Note: p-values indicate non-zero value for slope coefficient (i.e., significant trend present) of linear
regression; *p < 0.05, **p < 0.01, ***p < 0.001.

and completion time; however, the additional visual cueing with
multimodal feedback worsened performance in both metrics
for neurotypicals. This seemingly paradoxical outcome across
groups suggests a difference in how the added visual feedback is
processed and leveraged for motor performance pending functional
neurological states. In particular, multimodal feedback may support
the expedited crossing of neural thresholds to improve learning
as intended with multimodal feedback (Seitz and Dinse, 2007) for
persons having TBI. Yet, for neurotypicals, the additional cueing
may be excessive stimuli interpreted as confounding during task

training and ultimately interferes with performance and learning
progression (Spruit et al., 2016).

Such a finding suggests the need to optimize a computerized
rehabilitation interface for users with neurological dysfunction.
More specifically, guidance feedback may need to be delivered
with greater sensory stimulation. The disturbed brain networks,
such as after TBI, can alter how sensory feedback is processed for
motor function (Nudo, 2013). Although not analyzed for significant
differences, the brain plots in Figure 3 suggest the disparities in
regional activation betweenTBI andneurotypical participants.Thus,
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FIGURE 9
Mean (across participants) in performance metrics (motion pathlength, task completion time) across sequence of training trials with augmented
sensory feedback (audio or audio + visual) for each participant group (neurotypical or TBI). Linear regression fitted to indicate global trend within
training block in each case pairing feedback condition and participant group. Note: p-values indicate non-zero value for slope coefficient (i.e.,
significant trend present) of linear regression; *p < 0.05, **p < 0.01, ***p < 0.001.

increasing sensory stimulation with guidance feedback, even if
redundantly encoding the same performance information, may
partially compensate for processing dysfunctions with TBI. In
any case, assessing the responses to feedback by neurotypicals
independently from TBI participants is warranted. However, we still
conducted a 2-way ANOVA to determine if each measure is broadly
affected by each of the two main factors of group and feedback
condition. Only the EEG measures (i.e., alpha power, beta power,
and EMG-EEG coherence) demonstrated significant factor-level
effects and only for feedback conditions.

While alpha activity is typically suppressed with active
movements, it can reflect greater motor preparation (Deiber et al.,
2012) and be enhanced by motor training paradigms that increase
cognitive flexibility (Lasaponara et al., 2017). The post-training
increase in alpha-band activity may suggest the foundation for
early and robust consolidation of motor learning features from a
pre-learning state (Henz and Schöllhorn, 2016). This phenomenon
is readily shown with differential learning, characterized by practice
variability to facilitate faster learning rates (Tassignon et al., 2021).
The grasp-and-place task for this study was repetitive as it did
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FIGURE 10
Mean (across participants) in EMG-related metrics (EMG amplitude, EMG-EEG coherence) across sequence of training trials with augmented sensory
feedback (audio or audio + visual) for each participant group (neurotypical or TBI). Linear regression fitted to indicate global trend within training block
in each case pairing feedback condition and participant group. Note: p-values indicate non-zero value for slope coefficient (i.e., significant trend
present) of linear regression; *p < 0.05, **p < 0.01, ***p < 0.001.

not vary between trials; however, participants may perceive more
variability when training with multimodal feedback. In the case of
TBI, this perception of variability may be more effectively leveraged
to improve potential motor learning.

On the other hand, beta activity can indicate increased
alertness, including by visual stimuli (Kamiński et al., 2012),
as done in this study. Regarding motor function, beta waves,
especially over the motor cortex, are associated with strengthened
sensory feedback during movement changes (Lalo et al., 2007).
Thus, the long-term implications of increasing beta activity after

each training session may facilitate learning through higher
sensory-guided attention during movement training. While EMG
metrics in this study were relatively insensitive to changes in
feedback training, EMG-EEG coherence was significantly reduced
for neurotypicals when receiving multimodal feedback. Since
corticomuscular drive, especially in the beta band, indicates a change
in muscle coordination strategy (Reyes et al., 2017), the attenuation
of corticomuscular coherence may suggest that neurotypicals
experienced divided attention (Johnson et al., 2011) in perceiving
the added visual cue.
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TABLE 3 Themean slope value (percentage change per trial repetition) during training block per group-condition pair and p-values indicating non-zero slope.

Metric NT-A NT-AV TBI-A TBI-AV

EEG-alpha −0.34 (p = 0.86) −0.06 (p = 0.95) 0.39 (p = 3.3E-06) 0.41 (p = 1.0E-06)

EEG-beta 0.97 (p = 0.57) −0.28 (p = 0.75) 0.24 (p = 2.6E-03) 0.39 (p = 7.9E = 05)

PERF-pathlength 0.10 (p = 0.14) −0.08 (p = 0.47) −0.31 (p = 1.2E-03) −0.22 (p = 4.2E-03)

PERF-completion time −0.67 (p = 5.0E-04) −0.65 (p = 3.0E-04) −0.58 (p = 1.4E-07) −0.62 (p = 3.1E-03)

EMG-amplitude 0.04 (p = 0.28) −0.07 (p = 0.30) −0.80 (p = 1.1E-07) −0.02 (p = 0.72)

EMG-M1 coherence 0.02 (p = 0.75) −0.02 (p = 0.80) −1.8E-03 (p = 0.93) 0.05 (p = 0.032)

Note: p-values < 0.05 are bolded.

Although assessing post-training effects across measures of
EEG, performance, and EMG from the pre-training baseline was
the primary objective of this study, we also examined trial-by-trial
trends during training for each measure. This analysis provides
insight into how these measures may be actively manipulated with
each training condition before participants return to independent
(unguided) task performance. Although both neurotypicals and TBI
demonstrated increased post-training neurological activity, only
TBI demonstrated a linear trend towards increased neurological
activity within the training block. There was a significant non-zero
slope towards increased power across sequential training trials in
both the alpha and beta bands.

These findings indicate that TBI participants may have a
more immediate tendency to reformulate neural connections
during training with augmented feedback. Neural reorganization
to facilitate motor recovery is a crucial objective with motor
rehabilitation training, and it is primarily expected with visually
guided actions (Kantak et al., 2012). Comparatively, neurotypicals
may be more limited in their capacity for neural plasticity for a
relatively simple motor task. Furthermore, these training trends in
neural activation were mirrored with the key performance metric of
motion pathlength for both groups. Only TBI participants exhibited
a significant trend in reduced pathlength (better performance)
during training with more trial repetitions. Such correlates between
brain activity and performance can be expected during motor
sequence learning (Orban et al., 2010). While the difference in
the number of training trials for each group may have impacted
the magnitude of the post-training effect, the same trends, i.e.,
progressive changes in metrics (Figures 8–10), for TBI are readily
apparent even halfway through the block of training trials.

For the secondary performance metric of completion time,
both groups demonstrated significant trends in reduction across
training trials with both feedback conditions. This finding
suggests that augmented sensory feedback naturally incentivizes
faster movements with more training repetitions. This finding
is consistent with another study demonstrating that augmented
feedback can impact movement times of reaching movements,
irrespective of fixed task parameters (e.g., movement amplitude)
(de Grosbois et al., 2015). In comparison, training trends with EMG
activity were not as evident. Still, TBI participants did demonstrate a
significant training trend in reduced EMG with unimodal feedback

and increased EMG-EEG coherence with multimodal feedback.
Thus, only the TBI participants appeared to progressively re-
organize neural and motor activity during single-session training
with augmented sensory feedback.

Furthermore, this study revealed a positive linear-level
dependence between higher alpha activity and improved motor
performance for TBI, despite a relatively small sample size. This
finding suggests that designing rehabilitation paradigms to target
increases in alpha activity during the training of persons with
TBI may support better motor performance. Identifying and
understanding such correlations open new pathways to optimize
computerized rehabilitation. For example, control systems can be
developed to adapt (personalize) more intelligently specific VR
design elements, including feedback features and enhancement
levels (e.g., the brightness of color and pitch of sound).The objective
of such control systems would be to modulate neural rhythms in
ways that are more likely to induce targeted plasticity and increased
gains in function.

A presumed limitation of this study is the lack of a more
fundamental control conditionwhereby participants would undergo
no augmented feedback for an entire training block. However, the
primary goal of this work was to examine the differential impact of
multimodal feedback within VR. Thus, this study’s main limitation
is that the scope of the evaluation is restricted to a single training
session. Authentic learning, and gains in function, can only be
ascertained with long-term assessments (e.g., tracking performance
across multiple follow-up sessions). Furthermore, the margins of
improvement with augmented training feedback we observed in
the single session, although significant, likely would not produce
a discernible change in performing activities of daily living. Still,
short-term performance improvements (i.e., immediately after a
single training session) can indicate this approach’s potential for
motor learning (Reyes et al., 2017). Initially developed in (Liu et al.,
2021), our training approach integrates the sense of agency with
augmented sensory feedback cues. Since alpha power may be the
primary neural oscillation in the sense of agency (Kang et al.,
2015), our approach may leverage a cognitive-sensorimotor synergy
in motor training. Furthermore, alpha activity at human M1 for
task-specific involvement indicates the potential for rapid motor
learning (Muellbacher et al., 2001). Thus, increased alpha activity
and improved performance for the TBI group suggest the potency
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of multimodal VR feedback to promote neuroplasticity for more
effective neuromotor rehabilitation.

5 Conclusion

This study demonstrates that training with agency-inspired
augmented feedback in VR can significantly impact post-training
neural activity, motor performance, and muscular engagement,
depending on if the feedback is unimodal or multimodal.
Furthermore, these effects can also depend on whether the person
has a cognitive impairment (e.g., traumatic brain injury). A notably
higher increase in alpha- and beta-band EEG activity after training,
especially in brain regions associated with motor planning and
execution,may offer anunderlying neural explanation for improving
motor performance. Thus, augmented feedback, particularly
multimodal feedback, provided with VR is a promising approach
for rehabilitating motor function after brain injury. Results from
this study should motivate future investigations into optimizing
the delivery of sensory-driven feedback from computerized
rehabilitation interfaces aiming to maximize functional
outcomes.
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