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The remarkable growth of unmanned aerial vehicles (UAVs) has also sparked
concerns about safety measures during their missions. To advance towards safer
autonomous aerial robots, this work presents a vision-based solution to ensuring
safe autonomous UAV landings with minimal infrastructure. During docking
maneuvers, UAVs pose a hazard to people in the vicinity. In this paper, we propose
the use of a single omnidirectional panoramic camera pointing upwards from a
landing pad to detect and estimate the position of people around the landing
area. The images are processed in real-time in an embedded computer, which
communicates with the onboard computer of approaching UAVs to transition
between landing, hovering or emergency landing states. While landing, the
ground camera also aids in finding an optimal position, which can be required in
case of low-battery or when hovering is no longer possible. We use a YOLOv7-
based object detectionmodel and a XGBooxtmodel for localizing nearby people,
and the open-source ROS and PX4 frameworks for communication, interfacing,
and control of the UAV. We present both simulation and real-world indoor
experimental results to show the efficiency of our methods.

KEYWORDS

unmanned aerial vehicle (UAV), safe landing, deep learning, object detection, panoramic
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1 Introduction

Recently, unmanned aerial vehicles (UAVs, or drones) have seen an unprecedented rise
in their adoption rate, primarily thanks to technological advancements improving their
availability and dependability (Nex et al., 2022).They have been vital components inmultiple
civil applications, ranging from remote sensing applications (Xiang and Tian, 2011) to aerial
delivery (Song et al., 2018).

One of the key issues stopping wider adoption of UAVs for civilian applications in urban
areas is safety and security (Milano et al., 2022). Autonomous UAVs flying over populated
areas pose inherent hazards. The risk increases significantly during take-off and docking
maneuvers, with potential risks for nearby passers. This paper seeks to address the safety
of persons near a landing area and define a framework for safety-aware autonomous UAV
landing with minimal ground infrastructure.

Specifically, the aim is to first design and develop a solution with minimal infrastructure
footprint and commercial off-the-self components. Then, we validate the functionality of
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FIGURE 1
Envisioned system.

the system through a series of experiments in the Gazebo simulator
and our 9× 8× 5m indoor test area. Our goal is to provide a
solution that can further enhance the safety of autonomous UAV
landing operations. One of the fundamental aspects of UAV landing
safety is the avoidance of potential hazards on the landing path.
While the concept of hazards avoidance during UAV landing is vast,
we narrow the scope to protecting pedestrians near the landing
area.

Leveraging on the recent rapid development of deep-learning-
enabled computer vision on embedded hardware (Bhowmik and
Appiah, 2018) and the high potential of 360° panoramic sensors, we
approach the problem with an on-ground vision-based system for
landing area monitoring to identify people who are at risk from the
landing UAV. Our envisioned system is a lightweight landing pad
with a single panoramic camera in the center providing a bottom-
view that gives the system a 360° view of the surroundings. An
embedded computing unit processes the information to generate
relevant information, and packages them as lightweight, efficient
messages to send to the UAV to adjust its landing trajectory.
Figure 1 illustrates our envisioned system and the intended
behavior.

On-ground approach for safe UAV landing have two significant
advantages over its onboard counterpart. First, it widens the options
for computing platforms and sensors. UAV payloads are limited, so
for tasks such as aerial delivery, every gram of weight that can be

saved by replacing heavy companion computers and sensors with
more lightweight options is directly transferred to the weight that
their primary task requires them to carry. The solution described
and implemented in this paper does not involve a very high-end
computing platform. Second, ground-based solutions are potentially
more robust to limited environment observability from UAVs, and
can also serve as a redundant way of ensuring safety in such critical
scenarios.

Moreover, we design and implement the safe UAV landing
software based on open-source libraries. Our software components
include the detection module, which consists of an object detector
and a distance estimator to identify and localize people in a two-
dimensional space, and an autonomous flight program that safely
allows the UAV to land while maintaining complete autonomy
by using the information about the surroundings provided by the
detection module. The functionality of each software component
and the communication between them is facilitated by the free and
open-source Robot Operating System (ROS), which has become
the de facto standard for robotic applications in recent years. The
popular autopilot library PX4 is also utilized for high-level UAV
control and integration of autonomous flight algorithms.

The rest of this paper is organized as follows. Section 2
introduces related works in computer vision for panoramic sensors,
and vision-based approaches used in UAV landing. Section 3
introduces our methodology for a ground-based vision-based safe
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UAV landing framework. Section 4 then reports our experimental
setup and results. Finally, Section 5 concludes the work.

2 Related works

2.1 Vision-based systems for autonomous
UAV landing

In the literature, research for vision-enabled autonomous
landing systems for UAVs, primarily multi-rotor vehicles, can
be divided into two main categories: onboard and on-ground.
According to the survey by Kong et al. (2014), the former approach
is the more predominant and well-studied approach, with multiple
systems developed for landing on known, unknown and moving
areas, while works done for on-ground vision-based landing systems
are still scarce. Most of the research to date presenting vision-based
control approaches assume that vision sensors are located on the
UAV (Kendoul, 2014; Ho et al., 2017; Zhang and Zhao, 2017).

A common point among on-ground systems is that they utilize
a diverse range of sensing units because these systems are not
restricted by UAV payload. However, most of the work in this
category focuses on the pose estimation and control of the UAV
rather than the monitoring of the landing site. In one of the earlier
research on on-ground monitoring systems, Wang et al. (2006)
introduced a computer control camera platform to identify square
markers with known size patched on micro aircraft to measure
their three-dimensional coordinates. The main limitation of this
method was the camera’s narrow field of view (FOV) and reliance
on a step motor to shift its orientation to access other viewpoints.
Martínez et al. (2009) later introduced a system that can estimate
UAV’s position based on onboard key features in real-time by
extracting information provided by a trinocular camera system
on the ground. Alternatively, instead of standard RGB cameras,
Yang et al. (2016) presented a ground-based guidance system
utilizing an array of near-infrared cameras, which significantly
increases the detection range to detect, track, and autonomously
land a fixed-wingUAVwithout reliance onGPS data. Other ground-
based systems for detecting and tracking of UAVs based on 3D
lidars have also been recently introduced (Catalano et al., 2023a;
Catalano et al., 2023b; Sier et al., 2023).

Several other works have also presented onboard methods that
select safe landing zones by detecting potential hazards on the
landing path (Alam and Oluoch, 2021). In these papers, the authors
utilize lightweight convolutional neural networks such as YOLO
(Safadinho et al., 2020) and MobileNet (Castellano et al., 2020) to
detect safe landing zones, which are away from individual or groups
of people in populated areas (Tovanche-Picon et al., 2022), or flat
and obstacle-free areas (Marcu et al., 2018).

Overall,most on-ground approaches for safeUAVdocking focus
on the detection and localization of incoming vehicles and are
reliant on large compositions of sensing units. On the other hand,
current onboard methods emphasize safe landing area selection by
exploiting the large FOV from the UAVs’ perspective. Additionally,
thanks to the rapid development of embedded hardware and more
efficient algorithms such as MobileNet (Howard et al., 2017), deep
learning models have been the method of choice for safe landing
systems. Nevertheless, we have found no previous works utilizing

a panoramic sensor as the primary sensing unit. An advantage of
360° panoramic sensors that we aim to exploit is the wide FOV
that they provide and their compact footprints (e.g., the dimensions
of the single-lens PICAM360 module used in our work is
85× 56× 50 mm.

2.2 Object detection on panoramic images

Object detection on panoramic images is a topic that is also
less well-studied than its pinhole counterpart within the literature.
One concept that has been researched to adapt object detection
models to fisheye imagery, which frequently has oriented and
radially distorted objects, is alternative representations for standard
bounding boxes. Rashed et al. (2021) explored the usage of curved
boxes, oriented boxes, ellipses, and polygons. YOLOv3 (Redmon
and Farhadi, 2018) was adapted and modified to output these
different representations. The results show that 24-sided polygons
achieved the most reasonable tradeoffs between model complexity
and accuracy. Further analysis also reports no drops in inference
speed when increasing the number of vertices. Alternatively,
(Xu et al., 2021), proposed a simple framework for oriented box
representation by gliding each vertex of the original horizontal
box on its corresponding side to get more accurate coverage of
the detected object and demonstrated the method’s effectiveness in
object detection on aerial images, texts, and pedestrians in fisheye
images.

Zhu et al. (2019) presented a localization method by leveraging
top-view fisheye images from aUAV and altitude data.The proposed
framework first involves acquiring pixel positions of objects using
an object detection model implemented based on the RetinaNet
model (Lin et al., 2017) with MobileNet (Howard et al., 2017)
backbone for more efficient computing. Then, by fusing the camera’s
parameter and height data from other sensors, a series of coordinate
transforms is performed to obtain the object’s position in world
coordinates.

In addition, some public fisheye image datasets were published
to facilitate the development of this field of research. Most
noticeable is the Woodscape dataset (Yogamani et al., 2019) for
autonomous driving, comprising over 100,000 images from four
surrounding cameras. Later, in 2022, the KITTI-360 dataset
(Liao et al., 2022) was released as a successor to the popular KITTI
dataset (Geiger et al., 2012). It expanded on the original work
with more data for suburban driving from multiple sensor units,
including two 180° fisheye cameras on each side of the station
wagon.

3 Methodology

3.1 Detection module

To identify whether the landing spot is safe, we implement
a system that detects people around the area and estimates their
distances to the camera. For the rest of this work, we will refer to this
combination of human detection and distance estimation system as
the detection module.
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3.1.1 Human detection
The human detection approach must operate with tight

latency bounds while maintaining satisfactory accuracy to ensure
safety for UAV landing operations. Since its inception, YOLO
has been the de facto standard for real-time object detection
(Redmon et al., 2016; Zou et al., 2019). Thanks to its unified
network structure, the training process is end-to-end, significantly
simplifying transferring the model to other datasets. Furthermore,
the model makes a small sacrifice in prediction accuracy but
significantly improves computational speed thanks to the low
overhead in the detection phase. Previous successes in robotic
vision have substantiated YOLO’s real-time detection capability
(Qingqing et al., 2020; Safadinho et al., 2020). This project’s baseline
object detection model is YOLOv7, the latest culmination of the
YOLO series of object detection by the time of writing this paper.
From the reported results, it has significantly outperformed its
previous iterations regarding inference speed and accuracy. For
more information about the details of YOLOv7, we refer the reader
to the original work (Wang et al., 2022).

The official YOLOv7 project provides different model versions
with varying sizes and complexity. The standard models are the
tiny version, which optimizes for high throughput and minimal
footprint to run on edge GPU; the normal version, namely YOLOv7,
for regular consumer-grade GPUs; and the more powerful, cloud
GPU-oriented YOLOv7-W6. To further optimize YOLOv7-tiny for
edge GPUs, the authors use Rectified Linear Unit (ReLU) as the
activation function. On the other hand, for other versions, Sigmoid-
weighted Linear Unit (SiLU) (Elfwing et al., 2018) is used as the
activation function. For this work, we mainly consider the tiny and
the normal versions of YOLOv7, as empirical testing shows they are
more suitable for deployment on our embedded platform.

3.1.2 Distance estimation
Monocular depth estimation is a challenging topic that has

received much attention recently. In our envisioned system, the
camera is placed in a stationary position. Therefore, algorithms
that rely on the camera’s motion (Ho et al., 2017) are unsuitable
for our implementation. The most common approach for stationary
monocular depth estimation is to train a deep learning model to
predict depth from an arbitrary input image (Ranftl et al., 2020;
Zhao et al., 2020).The training data can be frommultiple measuring
tools like LIDAR, RGB-D, and stereo cameras. Unfortunately, most
public datasets only have depth images in perspective view. To our
knowledge, no available pre-trained monocular depth estimation
models trained on data with the same characteristics as ours exist.
Another possible approach that has been studied is integrating
a distance estimator head into the object detector’s architecture
(Vajgl et al., 2022).

The goal for the system is not to prioritize precisely predicting
the distance of the person to the camera but instead to get a
rough estimate of whether the person is close or far away from the
camera to determine if the surrounding area is safe for UAV landing.
Therefore, we choose amore straightforward solution that integrates
well with the rest of our system and requires little computational
power during inference time. Specifically, we leverage the bounding
boxes information from the object detector as input for a regression
model to predict the people’s distance to the camera. The regression
model of choice is the gradient-boosted decision trees algorithm

implemented with the XGBoost library (Chen and Guestrin, 2016).
The input for the distance estimator model is the bounding box
representation of each object of interest, i.e., the person, and the
output is their distance to the camera (for more details about data
preparation, we refer the reader to Section 4.1).We adopt the format
{x,y,w,h} to represent each bounding box, where {x,y} is the center
coordinate of each box, and {w,h} are its dimensions.

While previously shown in Figure 6 that the bounding box areas
are correlated to the distance, better results can be obtained when
inferring with other bounding box details, including its center point
coordinates and its dimensions, since two pictures showing the
same person at the same distance to the camera can have different
bounding box shapes when the orientation changes. Furthermore,
varying poses, e.g., crouching and sitting, can drastically change the
shapes of the bounding boxes as well.

3.1.3 Vision-based localization
Thebounding boxes from the object detector can provide insight

into the relative orientation of a detected person to the camera, and
the distance predicted by the XGBoost model can estimate how far
they are from the camera. Fusing these two pieces of information
allows a person to be sufficiently localized in a two-dimensional
space. Initially, the image coordinate system must be transformed
to one that matches the camera’s coordinate system. To simplify
the experiment, we position the camera and vehicle to align their
coordinate axes with the world coordinate system (in this case,
the coordinates of the MOCAP system). In the standard image
coordinate system, the origin lies in the top left corner, with a
horizontal x-axis from left to right and a vertical y-axis pointing
downwards. To transform the image coordinates (in pixels) to the
camera coordinate system depicted in Figure 2, the transformations

FIGURE 2
Image and camera coordinate systems.
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are as follows:

xcam_pix = −yimage +
wimage

2

ycam_pix = −ximage +
himage

2

(1)

Suppose the camera is not aligned with the world coordinate
system. In that case, the offset angle between the world’s and
the camera’s coordinate system must be pre-known, and a two-
dimensional rotation transformation must be performed to obtain
the coordinates of the detected people with respect to the world
coordinate system on which the vehicle’s local position and
orientation are based.

From the transformed coordinate system, the orientation of
the directional vector pointing to detected people can be obtained.
For simplicity, we define this directional vector as the normalized
vector from the camera coordinates origin to the center point of
the corresponding bounding box. Then, the predicted distance from
the XGBoost model is used to scale this vector to an approximate
position of the detected person in two-dimensional space. We
denote the coordinates of a person in the world coordinate system
as Xp for simplicity, and the formula for calculating it is:

Xp = [

[

xp
yp
]

]
= dpred

[

[

xcam_pix

ycam_pix

]

]

‖

‖

[

[

xcam_pix

ycam_pix

]

]

‖

‖

+[

[

dx_cam
dy_cam
]

]
(2)

dx_cam and dy_cam are the camera’s position in the world coordinate
system, and dpred is the distance prediction result from the distance

estimator. Figure 3 summarizes the localization process, from
acquiring the people’s coordinates in a frame to projecting them into
the world coordinates.

3.2 Safe landing program

3.2.1 System behavior
In our deployment, both in the Gazebo simulation and in a

real-world indoor experiment, the vehicle operates in PX4’s offboard
mode, which allows full autonomy. We refer the reader to the
PX4 paper or related documentation for more details about flight
mode descriptions and their requirements (Meier et al., 2015). Our
proposed system is designed with the assumption that the vehicle’s
flight stack, PX4, receives a steady stream of positional data to
operate at all time. In cases of failure during our experiments, such
as drifting or loss of positional data, we revert to position or altitude
mode to attempt manual landing. In indoor environments, the UAV
utilizes local coordinates for localization and determining mission
setpoints. The experimental flight mission consists of four phases:
taking off, performing the flight mission, pre-landing, and landing.
The first, second, and last phases are self-explanatory, while the pre-
landing phase activates the safe landing mechanism. We define pre-
landing as going to a setpoint at a height safe for complete landing
while continuously communicating over a ROS network with the
detection module on the ground for information of the surrounding
as shown in Figure 4.

During pre-landing, the vehicle will retreat to a safe position
and hover if the detection module detects a person within a

FIGURE 3
Illustration of how image coordinates are transformed to positions of detected people. Because of the panoramic nature of the sensor, images are
heavily distorted near the ground level or image edges.
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predefined safe threshold. After a set period, the vehicle switches
to adaptive emergency landing mode and searches for an optimal
landing position. The vehicle can also resort to this behavior in
circumstances where hovering is impossible, e.g., when the payload
is over a threshold or when the battery is low. We assume that
aside from people around the landing area, there are no other direct
threats to the landing procedure.

3.2.2 Adaptive emergency landing
When the vehicle can no longer hover at a safe position andmust

land immediately, the optimal position for landing, Xo = {xo,yo}),
considering the vehicle’s current position, which is also the camera’s
position, must satisfy multiple criteria. Firstly, it must move as far
away from the surrounding people as possible. Secondly, its landing
position must be away from each person by a specific range. Last but
not least, wemust ensure that the landing position is within a certain
threshold, so the search range needs to be limited. To satisfy all
requirements mentioned above, we reformulate the optimal landing
position search into an optimization problem and utilize a solver to
get the results. We implemented the landing spot search with SciPy’s
minimize function with the optimization method Sequential Least
Squares Programming (SLSQP), which is suitable for constrained
optimizations. Figure 5 illustrates how we approach the problem.

The positions of detected people are denoted as X1,…,Xnp , and
the position of the camera, which is also the hovering position of
the UAV, is denoted as Xc. We define a search zone as a circular area
with radius rl where the optimizer can search for a landing spot.
Around each detected person is a danger zone with range rd, which
the vehicle should avoid. Finally, the scan zonewith range rs is where
all the people are considered to be in danger and should be avoided.
The scan zone is also the area in which the emergency state for the
flight controller is triggered, causing it to retreat the vehicle to a safe
position and hover initially. To ensure that the vehicle does not go
out of the scan zone, where the camera and the detection module
do not provide enough information to conclude whether there are
people, we restrict that rl ≤ rs.

Because we want the UAV to land as far as possible from the
people standing in close vicinity of the camera, i.e., the UAV’s initial
landing spot, for np humans detected in the scan zone, the function
that the optimization solver must maximize is as follows:

argmax
xo,yo∈[−rl,rl]

np

∑
i=1
‖Xo −Xi‖ (3)

Then, to ensure the solution is not within the danger zone, the
first constraint is formulated as:

‖Xo −Xi‖ ≥ rd, ∀i ∈ {0,…,np} (4)

Lastly, the selected landing position must be in the predefined
search zone:

‖Xo −Xc‖ ≤ rl (5)

While maximizing the function 3 results in a landing position
that is the furthest from all detected people, it is sometimes safer to
emphasize the people who are closer to the camera, which is also the
hovering position of the UAV. To do so, we introduce another term
to address how close a person is to function 3, and rewrite it as:

argmax
xo,yo∈[−rl,rl]

np

∑
i=1

1
‖Xi −Xc‖

α ‖Xo −Xi‖ (6)

Algorithm 1. Safe landing algorithm.

The parameter α controls how much the distance of each
detected person in the scan zone to the UAV’s current position
impacts the selection of the landing spot. In other words, the higher
α is, the more the UAV tries to avoid people close to it.

3.3 Offboard navigation

Algorithm 1 summarizes the safe landing program on the UAV’s
companion computer. It amalgamates the visual-based localization
algorithm (see Section 3.1.3), the adaptive emergency landing
algorithm (see Section 3.2.2), and a simple finite state machine
determining each mission phase’s setpoint (the phases are explained
in detail in Section 3.2.1).

Several parameters related to the flight mission must be pre-
determined, including the take-off height, the mission waypoints,
the retreat position, and the pre-landing position above the landing
pad. Furthermore, the parameters for adaptive emergency landing
mentioned in Section 3.2.2 should be tuned for different situations,
including varying reliability of the detection module at different
ranges, the available flight space, and the size of the UAV.

The condition mentioned in line 1 of the algorithm is used for
the simulated and indoor experiments, which only sets a timeout
period for the UAV’s hovering. This condition can be extended
to adapt to more types of emergencies that require immediate
landing.

4 Experimental results

4.1 Data preparation

The inputs for the detector described in Section 3.1 are image
frames collected from a single PICAM360 panoramic camera
module.The images are retained in their original circular panoramic
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FIGURE 4
Communication between the detection module and the flight controller over a ROS network. Only the detection and position estimation results are
sent to the UAV.

FIGURE 5
Optimization problem to solve to obtain safe landing position.

form to minimize the amount of pre-processing required and
streamline implementation on embedded platforms. Our dataset
comprises a training set with 5,062 images from 7 ROS bags and a
test set with 2,030 images from 2 ROS bags.

To further enrich the dataset, data augmentation is a viable
option that has proven effective in improving deep learning
models’ performance in various domains, including computer vision
(Shorten and Khoshgoftaar, 2019; Kaur et al., 2021). We applied
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FIGURE 6
Relationship between normalized bounding box area and distance
between the object to the camera. It is worth noting that high position
accuracy is not needed; instead, a high recall in the detection (low
probability of false negatives) and good classification accuracy (safe or
unsafe distances) are more important.

rotational transformations to the original training and test sets with
angle θ ∈ [90°,180°,270°]. Conventionally, augmenting the test set
is not advisable because it is crucial to maintain the authenticity
of the unseen data that the model might encounter in the real
world. However, rotating a circular fisheye image is valid in the
context of this work as it simulates changes in the camera placement
angle, which is very likely to happen in our application. Unlike
pinhole cameras that have to be upfront when taking regular photos,
the panoramic camera in this setup does not have to be in any
specific orientation. Furthermore, while people are moving around
the camera when the dataset is collected, the background does not,
so hypothetically, this will also enhance the robustness of the trained
models.

Another requirement for this project is estimating the distance
between each detected human and the camera module. We
experimented with two methods to get this information: Decawave’s
ultra-wideband (UWB) module DWM1001 and the Optitrack
MOCAP system. Each person in the experiment holds a UWB
module or a set of reflective markers; another module will be
placed where the camera is. The distance between the person
to the camera is calculated as the Euclidean distance in two-
dimensional space between the module they are holding and the
camera.

4.2 Human detector training details

4.2.1 Evaluation metric
The trained object detector should be able to reliably detect

potential hazards to the landing operation, in this case, people
around the landing site. Detecting people near the landing site is
more critical as they pose a direct danger to the operation while

simultaneously the UAV poses a hazard to nearby passers. Because
the dimensions of the experimental flight zone are 9× 8m2, and
the camera is placed near the middle of it during data collection
and slightly shifted to the side during experiments, the furthest
possible distance to the camera is approximately 5m. We select
3m as the safe range for the experiment, i.e., the distance that
a detected person is considered close to the camera. To evaluate
the trained model’s performance on people at different ranges,
we use a slightly modified version of COCO’s AP across object
size metric. Examining the distance data illustrated in Figure 6
shows that this distance negatively correlates with the normalized
area of the corresponding bounding box, so it is reasonable to
use the box area as a rough estimate to separate instances that
are close to or far from the camera. The median bounding box
area of samples within 3± 0.2m vicinity of the camera from
the dataset is approximately 0.0135, so the metrics that we use
are:

• APF: AP for far objects, bounding boxes with
area ≥ 0.0135himwim
• APN: AP for near objects, bounding boxes with
area ≤ 0.0135himwim
• APall: AP for all objects

4.2.2 Fine-tuning on panoramic dataset
To leverage the well-initialized weights of the pre-trained

models, we use them as the foundation and fine-tune them on
our training set. With this technique, it is possible to obtain a
model capable of performing in the target environment with
a relatively small amount of data compared to the large-scale
COCO dataset. As mentioned in Section 3.1.1, we focus on
training two model versions, YOLOv7-tiny and YOLOv7. Both
models are trained with base inference size 640 and multi-
resolution. Multi-resolution training is a technique that varies
the training resolution to ±50{%} of the base resolution, which
should improve the model’s robustness to scaling changes and
prediction performance on small objects. Previous research has
reported promising results on this training technique’s effectiveness
in improving object detection models’ resolution scalability
(Yan et al., 2013; Tian et al., 2022).

4.2.3 Ablation studies
We now analyze the effect of data augmentation and multi-

resolution training in the performance of the trained model.

4.2.3.1 Rotational augmentation
When forming the dataset, we apply rotational augmentation to

enrich the dataset. We conducted this ablation study by evaluating
the performance of the fine-tunedmodels on both the unaugmented
and augmented datasets. Table 1 shows that the models trained on
the augmented dataset outperform those trained only on unrotated
data in all test cases.

4.2.3.2 Multi-resolution training
We utilized multi-resolution training to improve inference

accuracy and robustness to scaling changes during the training
process. As shown in Table 1 this training method improves the
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TABLE 1 Performance of the fine-tuned (FT) models and ablation study on the effect of multi-resolution (MR) training and training on rotationally augmented
data (Aug). As highlighted, bothYOLOv7-tiny andYOLOv7models perform better than their baseline counterparts when fine-tuned on our rotationally
augmented dataset withmulti-resolution training.

Model APall APN APN50 APN75 APF APF50 APF75

Unaugmented test set

YOLOv7-tiny (baseline) 0.068 0.173 0.361 0.115 0.019 0.041 0.013

YOLOv7-tiny (FT) 0.316 0.529 0.937 0.531 0.238 0.490 0.201

YOLOv7-tiny (FT + Aug) 0.388 0.528 0.955 0.527 0.327 0.603 0.337

YOLOv7 (baseline) 0.133 0.321 0.661 0.263 0.045 0.117 0.032

YOLOv7 (FT) 0.393 0.535 0.941 0.545 0.327 0.664 0.301

YOLOv7 (FT + Aug) 0.415 0.572 0.961 0.615 0.343 0.601 0.377

Augmented test set

YOLOv7-tiny (baseline) 0.098 0.174 0.392 0.118 0.066 0.160 0.044

YOLOv7-tiny (FT) 0.306 0.490 0.927 0.453 0.230 0.478 0.182

YOLOv7-tiny (FT + Aug) 0.380 0.513 0.944 0.519 0.318 0.576 0.340

YOLOv7-tiny (FT +MR + Aug) 0.394 0.532 0.966 0.534 0.334 0.602 0.354

YOLOv7 (baseline) 0.187 0.324 0.663 0.267 0.126 0.287 0.085

YOLOv7 (FT) 0.368 0.510 0.936 0.485 0.303 0.594 0.287

YOLOv7 (FT + Aug) 0.419 0.560 0.974 0.594 0.354 0.630 0.376

YOLOv7 (FT +MR + Aug) 0.426 0.572 0.969 0.612 0.359 0.629 0.390

TABLE 2 Frequency of /yolov7/boundindboxes_dist ROS topic at inference time with Pytorch andTensorRT implementations on an NVIDIA Jetson Xavier NX.

Object detection model Pytorch TensorRT

Visual data sent No visual data sent Visual data sent No visual data sent

YOLOv7-tiny 15 Hz 20 Hz 28 Hz 30 Hz

YOLOv7 ∼ 5 Hz 18 Hz 20 Hz

TABLE 3 Performance comparison between XGBoost models with default
and tuned hyperparameters.

Hyperparameters MAE MedAE MaxErr ExpVar

Default 0.208 0.183 0.933 0.959

Tuned 0.199 0.159 0.825 0.961

model’s performance compared to the model trained with fixed
resolution.

4.2.4 Deployment on embedded platform
When the models are well-trained on the custom dataset

and ready for deployment, they are converted to TensorRT

engines and deployed on the target embedded platform. We select
the NVIDIA Jetson Xavier NX development kit as the platform
for deploying the detection module by virtue of its compact
footprint and high AI performance. When integrating with the
ROS detection node running on the ground computing platform,
the ROS bounding box and distance messages must be published
at a high frequency to address the tight latency requirements
of real-time applications. The maximum frequency this message
can be published is 30Hz, the highest supported framerate of the
PICAM360 module. Because the XGBoost prediction has little to no
effect on the topic’s frequency during our experiments, the essential
factor in the detection module’s speed is the object detector’s
throughput. Table 2 shows the frequency of the bounding box and
distance messages when the ROS node is running on the target
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FIGURE 7
Vision-based localization trajectories in comparison with the trajectories from the Optitrack system (A–C) in the xy plane corresponding to the flight
zone, (D–F) in the x-axis and (G–I) in the y-axis; missed detections are omitted in (D–I).

embedded computer. We gather these measurements using the
rostopic tool.

4.3 Distance estimator training details

We divided the training data into five sets of bounding
box data from 5 different ROS bags. To optimize and validate
the performance of the distance estimator, we keep one
holdout set and perform a randomized search with cross-
validation (Scikit-learn’s RandomizedSearchCV) using
the training set to obtain the optimal hyperparameters as
follows:

• max_depth: 3
• learning_rate: 0.05
• n_estimators: 500
• colsample_bytree: 0.5

• colsample_bylevel: 0.8
• subsample: 0.6

These hyperparameters slightly improve the performance on the
holdout set over the default ones, and the results in mean absolute
error (MAE), median absolute error (MedAE), maximum error
(MaxErr), and explained variation (ExpVar) are shown in Table 3.

4.4 Evaluation of vision-based localization
algorithm

As both components of the detection module have been
trained and tested, we proceed to evaluate the performance of
the localization algorithm base on visual information. To simplify
the evaluation process, we select three datasets with one person
walking around the camera for testing. Three temporary XGBoost
models were also trained without the test sets to avoid high accuracy
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FIGURE 8
Evaluation of vision-based localization method. Each of the labels Ri

represent three different experiments.

due to overfitting. The object detection model used for this test
was the YOLOv7-tiny. After applying the algorithm mentioned in
Section 3.1.3, the resulting trajectories are recorded and visualized
in Figure 7.

We evaluate these results with cosine similarity (Cossim) and
average positioning error (APE) metrics. The former gives insight
into how accurate our method is at determining the direction
in which the person is with respect to the camera. The latter
quantifies how accurate the predicted trajectories in Figure 7 are.
The experimental results are shown in Figure 8. For simplicity, the
missing bounding boxes and the frames without corresponding
Optitrack data are omitted when calculating the metrics.

4.5 Autonomous landing experiments

4.5.1 Simulation
The autonomous flight programs are thoroughly tested in a

simulation environment before deployment to guarantee safety. The
simulation environment was implemented with PX4 Gazebo SITL.
The tests are conducted on a Laptopwith anNVIDIARTX3070GPU
to run the YOLOv7 models on image frames from the PICAM360.
From the simulated results, we validate that both designed behaviors,
hovering and adaptive emergency landing, function correctly during
the pre-landing phase.

4.5.2 Experiments with real UAV
We conduct experiments within our flight zone to test

the system’s performance. The object detection model used in
the detection module is YOLOv7-tiny. The parameters for the
emergency landing algorithm are: rl = 1m, rs = 3m, rd = 0.5m, and
α = 0 (see Section 3.2.2 for more information on the algorithm).

FIGURE 9
Experimental setup. For safety reasons during the experiments, the
camera is not located directly where the UAV is landing. This allows for
more experimental setups while staying at a safe distance from the
UAV.

As explained in Section 4.2.1, the safe distance from the camera,
i.e., rs, is 3m based on the size of the experimental zone. We
deliberately choose a small range for the search zone, i.e. rl, to
keep the experimental UAV within the flight zone. Furthermore,
to simplify the experiment, the mission only consists of the UAV
taking off and landing at the same spot afterward because we are
most interested in the latter’s behavior for the scope of this thesis.
Because the safe landing software is still in development, to ensure
the safety of the people involved in the experiments, as well as to
protect the equipment of the on-ground monitoring system, we
place the embedded computer running the detection module and
the panoramic camera away from the UAV during the experiment
and interpolate the positions of the camera and people to the
UAV’s position while analyzing the results. The experimental setup
is described in Figure 9.

4.5.3 Emergency landing experiments
To assess the emergency landing in real-world experiments,

we analyze the behaviour of the UAV in two different scenarios,
with a single person and with two persons approaching the
camera in multiple directions, respectively. It is worth noting
that all computation runs in real-time during the experiments,
including the landing location optimization. Figure 10 presents the
optimal landing position selection results for clearer visualization.
In Figure 10C, while the optimal landing position maximizes the
distance to the detected people, it does not prioritize the closest
person to the UAV. As explained in Section 3.2.2, this behavior can
be altered by modifying the parameter α in Function 3 to increase
the prioritization of the algorithm on the distance of the detected
person to the camera/UAV’s position. This effect is demonstrated in
Figures 10C–F, which shows that increasing α increases the distance
between the landing position and the closest person. In summary,
the hovering and adaptive emergency landing behaviors work as
expected in all experiments.
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FIGURE 10
Optimal landing positions in different experiments with (A, B) one person approaching and (C–F) two people aproaching: (C) α = 0 (D) α = 1 (E) α = 1.5
(F) α = 2.

The experiments, both in simulation and in real-world indoor
environments, are recorded in a video and uploaded at https://www.
youtube.com/watch?v=XdolUS1bUVs.

5 Discussions and conclusion

5.1 Discussions

Thecurrent YOLOv7models in this project were only trained on
datasets consisting of people, which limits the system’s functionality
when dealing with other objects. In future work, we will expand the
capability of the detection module by including more classes in the
dataset. The object detection model in this work represents detected
objects with standard horizontal bounding boxes. While the
prediction performance from experimental results demonstrated
that this representation is good enough for our implementation,
the works of Rashed et al. (2021) and Xu et al. (2021) show that
alternative shapes such as oriented boxes or ellipses can improve
prediction accuracy and object coverage while having minimal
impact on the model’s inference speed. Furthermore, oriented
representations can potentially benefit the distance estimation
method used in this work because, unlike horizontal boxes, the
areas of the boundaries are the same even if the detected object is
oriented.

Another point that can be improved is the adaptive landing
algorithm. We only perform optimization based on the information
obtained before the UAV switches to adaptive emergency landing
mode. While the solution is reliable when surrounding people are
stationary, when they are moving, it would be better to incorporate

tracking data into the formulation of the optimization problem. A
method that can be used for this algorithm and would seamlessly fit
into the current solution is tracking-by-detection (Bochinski et al.,
2017). Tracking-by-detection is an object-tracking paradigm that
leverages detection results from an object detection model like
YOLO to track objects in video streams. Tracking data can enable the
integration of model predictive control (Camacho and Alba, 2013),
which obtains inference of future data points based on observed
samples in the past to control a process. After that, the predicted
positions of surrounding people can replace their current positions
in Function 3.

5.2 Conclusion

In this paper, we propose a novel on-ground vision-based
solution for safe UAV landing by leveraging the omnidirectional
view capability of panoramic sensors. The detection module,
comprising a YOLOv7-based object detector and an XGBoost-
based distance estimator, demonstrates high capability in detecting
and localizing humans near the landing zone while delivering real-
time performance. Furthermore, a series of indoors experiments
has proven the system’s reliability in enabling landing UAVs to avoid
surrounding pedestrians. Rather than completely replacing available
onboard methods (Marcu et al., 2018; Tovanche-Picon et al., 2022),
our solution serves as an extra layer of safety for UAV landing
applications. Our ultimate goal is a collaborative autonomy
approach where sensor and detection data from the micro-
airports is fused with the UAVs’ sensors and computational
capabilities to enhance the system’s reliability, safety, and
efficiency.
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