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Introduction: Geometric pattern formation is crucial in many tasks involving
large-scale multi-agent systems. Examples include mobile agents performing
surveillance, swarms of drones or robots, and smart transportation systems.
Currently, most control strategies proposed to achieve pattern formation in
network systems either show good performance but require expensive sensors
and communication devices, or have lesser sensor requirements but behave
more poorly.

Methods and result: In this paper, we provide a distributed displacement-based
control law that allows large groups of agents to achieve triangular and square
lattices, with low sensor requirements and without needing communication
between the agents. Also, a simple, yet powerful, adaptation law is proposed to
automatically tune the control gains in order to reduce the design effort, while
improving robustness and flexibility.

Results: We show the validity and robustness of our approach via numerical
simulations and experiments, comparing it, where possible, with other
approaches from the existing literature.

KEYWORDS

multiagent systems, pattern formation, distributed control, swarm robotics, collective
dynamics

1 Introduction

Many robotic applications require—or may benefit from—one or more groups of
multiple agents to perform a joint task (Shi and Yan, 2021); this is, for example, the
case of surveillance (Lopes and Lima, 2021), exploration (Kegeleirs et al., 2021), herding
(Auletta et al., 2022) or transportation (Gardi et al., 2022). When the number of agents
becomes extremely large, the task becomes a swarm robotics problem (Brambilla et al.,
2013; Heinrich et al., 2022). Typically, in these problems, it is assumed that the agents are
relatively simple, and thus have limited communication and sensing capabilities, and limited
computational resources; see, for example the robotic swarms described in Hauert et al.
(2009); Rubenstein et al. (2014); Gardi et al. (2022). Sometimes, to cope with such big
ensembles,macroscopicmethods exploiting partial differential equations can be also suitable
(Biswal et al., 2021; Maffettone et al., 2023a, b).

In swarm robotics, typical tasks of interest include aggregation, flocking, navigation,
spatial organisation, collaborative manipulation, and task allocation (Brambilla et al., 2013;
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Bayindir, 2016). Among these, an important subclass of spatial
organisation problems is geometric pattern formation, where the
goal is for the agents to self-organize their relative positions
into some desired structure or pattern, e.g., arranging themselves
to form multiple adjacent triangles or on a lattice. Pattern
formation is crucial inmany applications (Oh et al., 2017), including
sensor networks deployment (Kim et al., 2014; Zhao et al., 2019),
cooperative transportation and construction (Rubenstein et al.,
2013; Mooney and Johnson, 2014; Gardi et al., 2022), and 2D or 3D
exploration and mapping (Kegeleirs et al., 2021) or area coverage
(Wang and Rubenstein, 2020). Moreover, the formation of patterns
is common in many biological systems where agents, such as
cells or microorganisms, form organized geometric structures, e.g.,
Tan et al. (2022).

There are twomain difficulties associated with achieving pattern
formation. Firstly, as there are no leader agents, the pattern must
emerge by exploiting a control strategy that is the same for all agents,
distributed and local (i.e., each agent can only use information about
“nearby” agents). Secondly, the number of agents is large and may
change over time; therefore, the control strategymust also be scalable
to varying sizes of the swarm and robust to uncertainties due to its
possible variations.

This sets the problem of achieving pattern formation apart
from the more classical formation control problems (Oh et al.,
2015) where agents are typically fewer and have pre-assigned roles
within the formation. Moreover, note that geometric formations
can also emerge as a by-product of flocking algorithms as those
described inOlfati-Saber (2006);Wang G. et al. (2022).Nevertheless
in such cases often the focus of the control strategy is to achieve
coordinated motion rather than desired regular formations to
emerge.

To classify existing solutions to pattern formation, we employ
the same taxonomy used in Oh et al. (2015), and later extended
in Sakurama and Sugie (2021), which is based on the type of
information available to the agents. Namely, existing strategies can
be classified as being (i) position-based when it is assumed agents
know their position and orientation and those of their neighbours,
in a global reference frame; (ii) displacement-based when agents can
only sense their own orientation with respect to a global reference
direction (e.g., North) and the relative positions of their neighbours;
(iii) distance-based when agents can measure the relative positions
of their neighbours with respect to their local reference frame. In
terms of sensor requirements, position-based solutions are the most
demanding, requiring global positioning sensors, typically GPS,
and communication devices, such as WiFi or LoRa. Differently,
displacement-based methods require only a distance sensor (e.g.,
LiDAR) and a compass, although the latter can be replaced by a
coordinated initialisation procedure of all local reference frames
(Cortés, 2009). Finally, distance-based algorithms are the least
demanding, needing only the availability of some distance sensors.

A pressing open challenge in pattern formation problems
is that of devising new local and distributed control
strategies that can combine low sensor requirements
with consistently high performance. This is crucial in
swarm robotics, where it can be generally cumbersome,
or prohibitively expensive, to equip all agents with GPS
sensors and communication capabilities, e.g., Rubenstein et al.
(2014).

2 Related work and main
contributions

Next, we give a brief overview of the existing literature before
expounding our main contributions. Notice that most of these
control strategies are based on the use of virtual forces (see Khatib,
1985), an approach inspired by Physics, where each agent is
subject to virtual forces [e.g., Lennard-Jones and Morse functions
(Brambilla et al., 2013; D’Orsogna et al., 2006)] from neighbouring
agents, obstacles, and the environment.

2.1 Position-based approaches

In Pinciroli et al. (2008), a position-based algorithm was
proposed to achieve 2D triangular lattices in a constellation of
satellites in a 3D space. This strategy combines global attraction
towards a reference point with local interaction among the agents
to control both the global shape and the internal lattice structure of
the swarm. In Casteigts et al. (2012), a position-based approach was
presented that combines the common radial virtual force [also used
in Spears et al. (2004), Hettiarachchi and Spears (2005), Torquato
(2009)] with a normal force. In this way, a network of connections
is built such that each agent has at least two neighbours; then, a
set of geometric rules is used to decide whether any or both of
these forces are applied between any pair of agents. Importantly,
this approach requires the acquisition of positions from two-
hop neighbours. In Zhao et al. (2019), a position-based strategy is
presented to achieve triangular and square patterns, as well as lines
and circles, both in 2D and 3D; the control strategy features global
attraction towards a reference point and re-scaling of distances
between neighbours, with the virtual forces changing according to
the goal pattern. Therein, a qualitative comparison is also provided
with the distance-based strategy from Spears et al. (2004), showing
more precise configurations and a shorter convergence time, due to
the position-based nature of the solution. Finally, a simple position-
based algorithm for triangular patterns, based on virtual forces
and requiring communication between the agents, is proposed in
Trotta et al. (2018) to have unmanned aerial vehicles perform area
coverage.

2.2 Displacement-based approaches

In Li et al. (2009), a displacement-based approach is presented
based on the use of a geometric control law similar to the one
proposed in Lee and Chong (2008). The aim is to obtain triangular
lattices but small persisting oscillations of the agents are present
at steady state, as the robots are assumed to have a constant non-
zero speed. In Balch and Hybinette (2000a, b), an approach is
discussed inspired by covalent bonds in crystals, where each agent
has multiple attachment points for its neighbours. Only starting
conditions close to the desired pattern are tested, as the focus is
on navigation in environments with obstacles. In Song and O’Kane
(2014) the desired lattice is encoded by a graph, where the vertices
denote possible roles the agents may play in the lattice and edges
denote rigid transformations between the local frames or reference
of pairs of neighbours. All agents communicate with each other and
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are assigned a label (or identification number) through which they
are organised hierarchically to form triangular, square, hexagonal or
octagon-square patterns. Formation control is similarly addressed
in Coppola et al. (2019). The algorithm proposed therein is made
of a higher level policy to assign positions in a square lattice
to the agents, and a lower level control, based on virtual forces,
to have the agents reach these positions. The algorithm can be
readily applied to the formation of square geometric patterns, but
not to triangular ones. Notably, the reported convergence time is
relatively long and increase with the number of agents. Finally, a
solution to progressively deploy a swarm on a predetermined set
of points is presented in Li et al. (2019). The algorithm can be used
to perform both formation control and geometric lattice formation,
even though the orientation of the formation cannot be controlled.
Moreover, this strategy requires local communication between the
agents and the knowledge of a common graph associated to the
formation.

2.3 Distance-based approaches

A popular distance-based approach for the formation of
triangular and square lattices, named physicomimetics, was proposed
in Spears and Gordon (1999) and later further investigated in
Spears et al. (2004); Hettiarachchi and Spears (2005). In these
studies, triangular lattices are achieved with long-range attraction
and short-range repulsion virtual forces only, while square lattices
are obtained through a selective rescaling of the distances between
some of the agents. The main drawback of the physicomimetics
strategy (Spears andGordon, 1999; Spears et al., 2004; Hettiarachchi
and Spears, 2005; Sailesh et al., 2014) is that it can produce the
formation of multiple aggregations of agents, each respecting the
desired pattern, but with different orientations. Another problem,
described in Spears et al. (2004), is that, for some values of the
parameters, multiple agents can converge towards the same position
and collide.

Similar approaches are also used to obtain triangular lattices
when using flocking algorithms (Olfati-Saber, 2006; Wang et al.,
2022b, a). An extension to achieve the formation of hexagonal
lattices was proposed in Sailesh et al. (2014), but with the
requirement of an ad hoc correction procedure to prevent agents
from remaining stuck in the centre of a hexagon.

In Torquato (2009), an approach exploiting Lennard-Jones-
like virtual forces is numerically optimised to locally stabilise a
hexagonal lattice. When applied to mobile agents, the interaction
law is time-varying and requires synchronous clocks among the
agents. A stability proof for the formation of triangular (or
3D lattices) under the effect of virtual forces control algorithm,
was recently published in Giusti et al. (2023). In Lee and Chong
(2008), a different distance-based control strategy, derived from
geometric arguments, was proposed to achieve the formation of
triangular lattices. An analytical proof of convergence was given
to the desired lattice exploiting Lyapunov methods. Robustness
to agents’ failure and the capability of detecting and repairing
holes and gaps in the lattice are obtained via an ad hoc procedure
and verified numerically. A 3D extension was later presented in
Lee et al. (2010).

2.4 Main contributions

Our main contributions can be listed as follows.

1. We introduce a novel distributed displacement-based local
control strategy to solve geometric pattern formation problems
in swarm robotics that requires no communication among
the agents or any need for labelling them. In particular, to
achieve triangular and square lattices, we employ two virtual
forces controlling the norm and the angle of the agents’ relative
position, respectively.

2. We show that the strategy performs significantly better than
distance-based algorithms (Spears et al., 2004) when achieving
square lattices, in terms of precision and robustness.

3. We propose an adaptive strategy to select the control gains
automatically in order for the agents to organize themselves and
switch from one desired pattern to another, without the need of
off-line tuning of the control gains.

4. We present an exhaustive numerical and experimental validation
of the proposed strategy showing its effectiveness even in the
presence of actuator constraints and other more realistic effects.

When compared to the control strategies in the existing
literature, our approach (i) is able to achieve both triangular
and square lattices rather than just triangular ones [e.g., as in
Lee and Chong (2008), Casteigts et al. (2012)] (ii) yields more
precise and robust square lattices with respect to distance-based
algorithms (e.g., Spears et al., 2004; Sailesh et al., 2014), with only
a minimal increase in sensor requirements (a compass); and (iii)
does not require the more costly sensors and communication
devices used for position-based strategies (e.g., Zhao et al., 2019),
nor labelling of the agents (Song and O’Kane, 2014; Coppola et al.,
2019).

3 Mathematical preliminaries

Notation.We denote by ‖ ⋅ ‖ the Euclidean norm. Given a set B,
its cardinality is denoted by |B|. We refer to ℝ2 as the plane.

3.1 Planar swarms

Definition 1: (Swarm). A (planar) swarm S : = {1,2,…,N} is a set of
N ∈ ℕ>0 identical agents that can move on the plane. For each agent
i ∈ S , xi(t) ∈ ℝ2 denotes its position in the plane at time t ∈ ℝ.

Moreover, rij(t): = xi(t) − xj(t) ∈ ℝ2 is the relative position of
agent iwith respect to agent j, and θij(t) ∈ [0,2π] is the angle between
rij and the horizontal axis (see Figure 1).

Definition 2: (Neighbourhood). Given a swarm and a sensing
radius Rs ∈ ℝ>0, the neighbourhood of agent i at time t is

Ni (t) : = {j ∈ S ⧵ {i} :‖rij (t)‖ ≤ Rs} . (1)

Definition 3: (Adjacency set). Given a swarm and some finite
Rmin,Rmax ∈ ℝ>0, with Rmin ≤ Rmax, the adjacency set of agent i at
time t is (see Figure 2).

Ai (t) : = {j ∈ S ⧵ {i} :Rmin ≤ ‖rij (t)‖ ≤ Rmax} . (2)
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FIGURE 1
Schematic diagram of two agents, i and j, showing the key variables
used in the paper to describe the agents’ position and their
geometrical relationship.

Notice that if Rmax ≤ Rs thenAi ⊆Ni.

Definition 4: (Links).A link is a pair (i, j) ∈ S ×S such that j ∈Ai(t)
(or equivalently i ∈Aj(t)). Moreover, E(t) is the set of all links existing
at time t.

Clearly, it is possible to associate to the swarm a time-varying
graph G(t) = (S ,E(t)) (Latora et al., 2017); S and E(t) being the set
of vertices and edges, respectively1.

Finally, given any two links (i, j) and (h,k), we denote with
θhkij (t) ∈ [0,2π] the absolute value of the angle between the vectors
rij and rhk.

3.2 Lattice and performance metrics

Definition 5: (Lattice). Given some L ∈ {4,6} and R ∈ ℝ>0, a (L,R)-
lattice is a set of points in the plane that coincide with the vertices of an
associated regular tiling (Engel et al., 2004); R is the distance between
adjacent vertices and L is the number of adjacent vertices each point
has.

In Definition 5, L = 4, and L = 6 correspond to square and
triangular lattices,2 respectively, as portrayed in Figure 2.We say that
a swarm self-organises into a (L,R)-lattice if (i) each agent has atmost
L links, and (ii) ∀(i, j) ∈ E and ∀(h,k) ∈ E it holds that θhkij is some
multiple of 2π/L. To assesswhether a swarm self-organises into some
desired (L,R)-lattice, we introduce the following two metrics.

Definition 6: (Regularity metric). Given a swarm and a desired
(L,R)-lattice, the regularity metric eθ(t) ∈ [0,1] is

1 Formally, G(t) is a directed graph, even though E(t) is such that the existence
of (i, j) implies the existence of (j, i).

2 Regular tilings exist only for L ∈ {3,4,6}. The case L = 2 corresponds
more trivially to a line, rather than a planar structure. The case L = 3,
corresponding to hexagonal tilings, where vertices appear in two different
spatial configurations (one with edges at angles π/2, 7/6π, 11/6π, and one
with edges at angles π/6, 5/6π, 3/2π—plus an optional offset). Hence, the
control strategy we propose here would need to be extended to select one
or the other of the possible hexagonal configurations.

FIGURE 2
(L,R)-lattice formations. (A) shows a triangular lattice (L =6), and (B)
shows a square lattice (L =4). Red dots are agents in the adjacency set
(Ai) of the generic agent i depicted as a black dot.

FIGURE 3
Interaction functions. (A) shows the radial function and (B) shows the
normal interaction function. Red dots highlight zeros of the functions.
Parameters are taken from Table 2.

eθ (t) : =
L
π
⋅ θerr (t) , (3)

where, omitting the dependence on time,

θerr: =
1

|E |2 − 2|E |
∑
(i,j)∈E
∑
(h,k)∈E

min
q∈ℤ
|θhkij − q

2π
L
| . (4)

The regularity metric eθ, derived from Spears et al. (2004),
quantifies the incoherence in the orientation of the links in the
swarm. In particular, eθ = 0 when all the pairs of links form
angles that are multiples of 2π/L (which is desirable to achieve
the (L,R)-lattice), while eθ = 1 when all pairs of links have
the maximum possible orientation error, equal to π/L. (eθ ≈ 0.5
generally corresponds to the agents being arranged randomly.)

Definition 7: (Compactness metric). Given a swarm and a desired
(L,R)-lattice, the compactness metric eL(t) ∈ [0, (N− 1− L)/L] is

eL (t) : =
1
N

N

∑
i=1

||Ai (t) | − L|
L
. (5)

The compactness metric eL measures the average difference
between the number of neighbours each agent has and the one
they are ought to have if they were arranged in a (L,R)-lattice.
According to this definition, eL reaches its maximum value,
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eL, max = (N− 1− L)/L, when all agents are concentrated in a small
region, and links exist between all pairs of agents, while eL = 1 when
all the agents are scattered loosely in the plane, and no links exist
between them, and, eL = 0 when all the agents have L links (typically
we will require that eL is below some acceptable threshold, see
Section 5.1.1). It is important to remark that, if the number N of
agents is finite, eL can never be equal to zero, because the agents
on the boundary of the group will always have less than L links
(Figure 2). This effect gets less relevant as N increases. Note that a
similar metric was also independently defined in Song and O’Kane.
(2014).We remark that the compactnessmetric inherently penalizes
the presence of holes in the configuration and the emergence of
detached swarms, as those scenarios are characterized by larger
boundaries.

For the sake of brevity, in what follows we will omit dependence
on time when that is clear from the context.

4 Control design

4.1 Problem formulation

Consider a planar swarmS whose agents’ dynamics is described
by the first order model

ẋi (t) = ui (t) , ∀ i ∈ S , (6)

where xi(t) was given in Definition 1 and ui(t) ∈ ℝ2 is some input
signal determining the velocity of agent i 3.

We want to design a distributed feedback control law ui =
g({rij}j∈Ni

,L,R) to let the swarm self-organise into a desired
triangular or square lattice, starting from any set of initial positions
in some disk of radius r, while guaranteeing the control strategy to
be:

1. robust to failures of agents and to noise;
2. flexible, allowing dynamic reorganisation of the agents into

different patterns;
3. scalable, allowing the number of agents N to change dynamically.

We will assess the effectiveness of the proposed strategy by
using the performance metrics eθ and eL introduced above (see
Definition 6 and Definition 7).

4.2 Distributed control law

To solve this problem we propose a distributed displacement-
based control law of the form

ui (t) = ur,i (t) + un,i (t) , (7)

where ur,i and un,i are the radial and normal control inputs,
respectively. The two inputs have different purposes and each

3 First order models like (6) are often used in the literature Lee and Chong
(2008); Lee et al. (2010); Casteigts et al. (2012); Zhao et al. (2019). In some
other works Spears et al. (2004); Sailesh et al. (2014) a second order model
is used, given by mẍi +μẋi = ui, where ui is a force, m is a mass and μ
is a viscous friction coefficient. Under the simplifying assumptions of small
inertia (m‖v̇i‖≪ μ‖vi‖) and μ = 1, the two models coincide.

TABLE 1 List of simulations and experiments reported in this paper with
indication of the section and figures were the results are presented.

Scenario Section Figure

Control law (7),(8),(11)

Tuning 5.2 4

Validation 5.2 5

Robustness to faults 5.3.1 6

Robustness to noise 5.3.2 7

Flexibility 5.3.3 8

Scalability 5.3.4 9

Comparison with established algorithm 5.4 10

Adaptive gain tuning (22)

Validation 6 11

Robustness analysis 6.1 12

Robotarium experiment 7 13

TABLE 2 Simulation parameters.

Parameter Description Value

R Desired link length 1 m

Rmin Minimum link length 0.6 m

Rmax Maximum link length 1.1 m

Vmax Maximum speed 5 m/s

tmax Maximum simulation time 200 s

Δt Integration step 0.01 s

Tw Time window 10 s

a Radial interaction function f r(⋅) 0.15

b ” 0.15

c ” 5

comprises several virtual forces. The radial input ur,i is the
sum of attracting/repelling actions between the agents, with the
purpose of aggregating them into a compact swarm, while avoiding
collisions. The normal input un,i is also the sum of multiple
actions, used to adjust the angles of the relative positions of the
agents.

Note that the control strategy in (7) is displacement-based
because it only requires each agent i (i) to be able to measure the
relative positions of the agents close to it (in the setsNi andAi), and
(ii) to possess knowledge of a common reference direction. Next, we
describe in detail each of the two control actions in (7).

4.3 Radial interaction control

The radial control input ur,i in (7) is defined as the sum of several
virtual forces, one for each agent inNi (neighbours of i), each force
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FIGURE 4
Tuning of the control gains Gr and Gn. (A) shows the result for the
triangular lattice (L =6), and (B) shows the result for the square lattice
(L =4). The black dots correspond to (G*

r ,G*
n)L=6 and (G

*
r ,G*

n)L=4,
minimising the metric C defined in (20). The black curves delimit the
regions where C ≤1.

being attractive (if the neighbour is far) or repulsive (if the neighbour
is close). Specifically, we set

ur,i = Gr,i ∑
j∈Ni

fr (‖rij‖)
rij
‖rij‖
, (8)

where Gr,i ∈ ℝ≥0 is the radial control gain. Note that ur,i is
termed as radial input because in (8) the attraction/repulsion
forces are parallel to the vectors rij (see Figure 1). The
magnitude and sign of each of these forces depend on the
distance, ‖rij‖, between the agents, according to the radial
interaction function fr:ℝ≥0→ℝ. Here, we select fr as the
Physics-inspired Lennard-Jones function (Brambilla et al., 2013),

given by

fr (‖rij‖) =min{( a
‖rij‖2c
− b
‖rij‖c
), 1}, (9)

where a,b ∈ ℝ>0 and c ∈ ℕ are design parameters. In (9), fr is
saturated to 1 to avoid divergence for ‖rij‖→ 0. fr is portrayed in
Figure 3A.

4.4 Normal interaction

For any link (i, j), we define the angular error θerrij ∈ −
π
L
, π
L
as the

difference between θij and the closestmultiple of 2π/L (see Figure 1),
that is,

θerrij : = θij −
2π
L
argmin

q∈ℤ
{|θij − q

2π
L
|} , (10)

Then, the normal control input un,i in (7) is chosen-as

un,i = Gn,i ∑
j∈Ai

fn (θ
err
ij )

r⊥ij
‖rij‖
, (11)

where Gn,i ∈ ℝ≥0 is the normal control gain. Note that each of the
normal virtual forces is applied in the direction of r⊥ij , that is the
vector normal to rij, obtained by applying a π/2 counterclockwise
rotation (see Figure 1). The magnitude and sign of these forces
are determined by the normal interaction function fn: [−

π
L
, π
L
] →

[−1,1] , given by

fn (θ
err
ij ) = −

L
π
θerrij . (12)

fn is portrayed in Figure 3B.

5 Numerical validation

In this section, we assess the performance and the robustness of
our proposed control algorithm (7) through an extensive simulation
campaign. The experimental validation of the strategy is later
reported in Section 7. First in Section 5.2, using a numerical
optimisation procedure, we tune the control gains Gr,i and Gn,i
in (8), (11), as the performance of the controlled swarm strongly
depends on these values. Then in Section 5.3, we assess the
robustness of the control law with respect to (i) agents’ failure,
(ii) noise, (iii) flexibility to pattern changes, and (iv) scalability.
Finally in Section 5.4, we present a comparative analysis of
our distributed control strategy and other approaches previously
presented in the literature. The simulations and experiments
performed in this and the next Sections are summarised in
Table 1.

5.1 Simulation setup

We consider a swarm consisting of N = 100 agents (unless
specified differently). To represent the fact that the agents are
deployed fromaunique source (as typically done in the literature, see
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FIGURE 5
Snapshots at different time instants of a swarm of N =100 agents being controlled to form a triangular lattice (A–D) and a square lattice (F–I). For each
snapshot, we also report the values of eθ and eL. (E–J) show the time evolution of the metrics eθ and eL for L =6 and L =4, respectively. When L =6, we
set (Gr,Gn) = (G*

r ,G*
n)L=6; when L =4, we set (Gr,Gn) = (G*

r ,G*
n)L=4. (See Section 5.2 for details on how the gains were tuned).

e.g., Spears et al. (2004), their initial positions are drawn randomly
with uniform distribution from a disk of radius r = 2 centred at the
origin4, 5.

Initially, for the sake of simplicity and to avoid the possibility of
some agents becoming disconnected from the group, we assume that

4 That is, denoting with U([a,b]) the uniform distribution on the interval
[a,b], the initial position of each agent in polar coordinates xi(0): = (di,ϕi)
is obtained by independently sampling ϕi ∼ U ([0,2π[) and di is chosen
according to the probability density function pl(ξ):[0, r] ↦ ℝ≥0 defined as
pl(ξ) = 2ξ/r2.

5 We also considered different deployment strategies (e.g., agents starting
uniformly distributed from a larger disk or several disjoint disks) and verified
that the results are qualitatively similar.

Rs in (1) is large enough so that

∀i ∈ S , ∀t ∈ ℝ≥0, Ni (t) = S\{i} ; (13)

i.e., any agent can sense the relative position of all others. Later,
in Section 5.3, we will drop this assumption and show the validity
of our control strategy also for smaller values of Rs. All simulation
trials are conducted in MATLAB6, integrating the agents’ dynamics
using the forward Euler method with a fixed time step Δt > 0.
Moreover, the speed of the agents is limited to Vmax > 0. The

6 Simulations are performed using SWARMSIMV1, a software platform we
developed to simulate swarms of mobile agents. The code is available
at https://github.com/diBernardoGroup/SwarmSimPublic/tree/SwarmSi
mV1.
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FIGURE 6
Robustness to agents’ removal. (A–D) show snapshots at different time
instants of a swarm agents achieving a square lattice. Initially, there are
N =100 agents with 30 agents being removed at t =30 s. (E) shows the
time evolution of the metrics; dashed vertical lines denote the time
instant when agents are removed. Here L =4, and (Gr,Gn) = (G*

r ,G*
n)L=4.

values of the parameters used in the simulations are reported in
Table 2.

5.1.1 Performance evaluation
To assess the performance of the controlled swarm, we exploit

themetrics eθ and eL given in Definition 6 andDefinition 7. Namely,
we select empirically the thresholds e*θ = 0.2 and e*L = 0.3, which are
associated to satisfactory compactness and regularity of the swarm.
Then, letting Tw > 0 be the length of a time window, we say that eθ is
at steady-state from time t′ = kΔt (for k ∈ ℤ) if

|eθ (t′) − eθ (t′ − jΔt) |≤ 0.1 e*θ, ∀j ∈ {1,2,…,⌊
Tw

Δt
⌋}. (14)

We give an analogous definition for the steady state of eL (using e*L
rather than e*θ).Then,we say that in a trial the swarm achieved steady-
state at time tss if there exists a time instant such that both eθ and
eL are at steady state, and tss is the smallest of such time instants.
Moreover, we deem the trial successful if eθ(tss) < e*θ and eL(tss) < e*L.
If in a trial steady-state is not reached in the time interval [0, tmax],
the trial is stopped (and deemed unsuccessful). We define

essθ : =
{
{
{

eθ (tss) , if steadystate isachieved,

eθ (tmax) , otherwise.
(15)

essL : =
{
{
{

eL (tss) , if steadystate isachieved,

eL (tmax) , otherwise.
(16)

Finally, to asses how quickly the pattern is formed, we define.

Tθ: =min{t′ ∈ ℝ≥0: eθ (t′) ≤ e*θ, ∀t ≥ t
′} , (17)

TL: =min{t″ ∈ ℝ≥0: eL (t″) ≤ e*L, ∀t ≥ t
″} , (18)

T: =max{Tθ,TL} . (19)

5.2 Tuning of the control gains

For the sake of simplicity, in this section we assume thatGr,i = Gr
and Gn,i = Gn, for all i ∈ S ; later, in Section 6, we will present an
adaptive control strategy allowing each agent to independently vary
online its own control gains. To select the values of Gr and Gn
giving the best performance in terms of regularity and compactness,
we conducted an extensive simulation campaign and evaluated,
for each pair (Gr,Gn) ∈ {0,1,…,30} × {0,1,…,30}, the following cost
function, averaged over 30 trials, starting with random initial
conditions:

C(essθ ,e
ss
L ) = (

essθ
e*θ
)

2

+(
essL
e*L
)

2

. (20)

The results are reported in Figure 4 for the triangular (L = 6) and
the square (L = 4) lattices; in the former case, the pair (G*

r,G*
n)L=4

minimising C is (22,1), whereas in the latter case it is (G*
r,G*

n)L=6 =
(15,8). Both pairs achieve C ≤ 1, implying essθ ≤ e

*
θ and essL ≤ e

*
L.

In Figure 5, we report four snapshots at different time instants of
two representative simulations, together with the metrics eθ(t) and
eL(t), for the cases of a triangular and a square lattice, respectively.
The control gains were set to the optimal values (G*

r,G*
n)L=6 and

(G*
r,G*

n)L=4. In both cases, the metrics quickly converge below
their prescribed thresholds, as T <2.75 s. Moreover, note that eL(t)
decreases faster than eθ(t), meaning that the swarm tends to first
reach the desired level of compactness and then agents’ positions are
rearranged to achieve the desired pattern. Finally, we note that it is
immediate to verify that it is possible to control the orientation of
the resulting lattice simply by applying a uniform offset to the agents’
compasses.

5.3 Robustness analysis

In this section, we investigate numerically the properties that
we required in Section 4.1, that is robustness to faults and noise,
flexibility, and scalability.
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FIGURE 7
Robustness to noise. Value of the metrics essθ and essL , averaged over M =30 trials, when (A) the intensity σa of the actuation noise is varied and (B) the
intensity σm of the measurement noise is varied. The shaded areas represent the maximum and minimum values obtained over the M trials. Here L =4,
and (Gr,Gn) = (G

*
r ,G

*
n)L=4.

FIGURE 8
Flexibility to spatial reorganisation. Time evolution of the metrics essθ
and essL as L changes as shown in the bottom panel. The gains are set
as (Gr,Gn) = (G*

r ,G*
n)L=4.

5.3.1 Robustness to faults
We ran a series of simulations in whichwe removed a percentage

of the agents at a certain time instant, and assessed the capability of
the swarm to recover the desired pattern. For the sake of brevity,
we report only one of them as a representative example in Figure 6,
where, with L = 4, 30% of the agents were removed at random
at time t = 30 s. We notice that, as the agents are removed, eL(t)
and eθ(t) suddenly increase, but, after a short time, they converge

again to values below the thresholds, recovering the desired pattern,
despite the formation of small holes in the pattern at steady-state
that increase essL . Finally, we also considered the case where the faulty
agents stay still in their positions after the fault, with other agents
having to form the lattice around them. We observed that when the
fault takes place after a satisfying structure is formed, themetrics are
not affected by the event (the numerical results are omitted here for
the sake of brevity).

5.3.2 Robustness to noise
We assessed the robustness to noise both on actuation and on

sensing, in two separate tests. In the first case, we assumed that the
dynamics (6) of each agent is affected by additive white Gaussian
noise with standard deviation σa. In the second case, we assumed
that, for each agent, both the distance measurements ‖rij‖ in (8) and
the angular measurements θerrij in (11) are affected by additive white
Gaussian noise (i.i.d. for each i and j) with standard deviation σm and
σm

π
L
, respectively.
In particular, we set L = 4 and varied either σa or σm in intervals

of interest with small increments. For each value of σa and σm,
we ran M = 30 trials, starting from random initial conditions, and
report the average values of essθ and essL in Figure 7. We observe
that, while in the ranges σa ∈ [0,0.45] and σm ∈ [0,0.125] the
strategy guarantees robustness, for large enough noise (σa ≥ 0.45
or σm ≥ 0.125) performance is increasingly worsened with trials
eventually becoming unsuccessful (the swarm never achieving
the desired lattice configuration). Interestingly, we find that
for smaller noise (0 < σa ≤ 0.2 or 0 < σm ≤ 0.1) performance is
actually improved, as small random inputs can prevent the agents
from getting stuck in undesired configurations, including those
containing holes.

We obtained qualitatively similar results when we assumed
the presence of noise on the compass measurements of the
agents (obtained by adding Gaussian noise on the variables θerrij ,
with the noise value being the same for θerrij and θerrkl when
i = k).
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5.3.3 Flexibility
In Figure 8, we report a simulationwhere Lwas initially set equal

to 4 (square lattice), changed to 6 (triangular lattice) at time t = 30 s,
and finally changed back to 4 at t = 60 s. The control gains are set
to (G*

r,G*
n)L=4 and kept constant during the entire the simulation.

Clearly, as L is changed, both eL and eθ suddenly increase, but the
swarm is quickly able to reorganise and reduce them below their
prescribed thresholds in less than 5 s, thus achieving the desired
patterns.

5.3.4 Scalability
We relaxed the assumption that (13) holds and characterised

essL as a function of the sensing radius Rs. The results are portrayed
in Figure 9A, showing that the performance starts deteriorating for
approximately Rs < 6 R, until it becomes unacceptable for about
Rs < 1.1 R. Therefore, as a good trade-off between performance
and feasibility, we set Rs = 3 R. Then, to test for scalability, we
varied the number N of agents (initially, N = 100), reporting
the results in Figure 9B. We see that (i) the controlled swarm
correctly achieves the desired pattern for at least four-fold changes
in the size of the swarm, (ii) compactness (essL ) improves as N
increases, and (iii) the average convergence time T increases as N
increases.

5.4 Comparison with other established
algorithm

As done in related literature (Zhao et al., 2019) (yet for a
position-based solution) we compared our control law (7) to the
so-called “gravitational virtual forces strategy” (see the Appendix)
(Spears et al., 2004), that represent an established solution to
geometric pattern formation problems. In Spears et al. (2004), a
second order damped dynamics is considered for the agents.
Hence, for the sake of comparison, we reduced the model
therein to the first order model in (6), by assuming that the
viscous friction force is significantly larger than the inertial
one.

To select the gravitational gainG and the saturation value Fmax in
the control law from Spears et al. (2004), we applied the same tuning
procedure described in Section 5.2. In particular, we considered
(G,Fmax) ∈ {0,0.5,…,10} × {0,1,…,40}, and performed 30 trials for
each pair of parameters, obtaining as optimal pair for the square
lattice (G*,F*max) = (35,2) (see Figure 10A). All other parameters
where kept to the default values in Table 2.

Then, we performed the same scalability test in Section 5.3.4 and
report the results in Figure 10B. Remarkably, by comparing these
results with ours, we see that our proposed control strategy performs
better, obtaining much smaller values of essθ , regardless of the size N
of the swarm. In particular, the control law from Spears et al. (2004)
only rarely achieves essθ ≤ e

*
θ, implying a low success rate.

6 Adaptive tuning of control gains

Tuning the control gains (here Gr,i and Gn,i) can in general
be a tedious and time-consuming procedure. Therefore, to avoid
it, we propose the use of a simple, yet effective adaptive control

FIGURE 9
Scalability. (A) shows essL averaged over M =30 trials for different values
of Rs. (B) shows the metrics essθ and essL and the convergence time T
averaged over the trials, with varying N, while Rs =3 m, and agents’
initial positions are drawn with uniform distribution from a disk with
radius r = √N/25. The shaded areas represent the maximum and
minimum values over the M trials. Here L =4 and the gains are set as
(Gr,Gn) = (G*

r ,G*
n)L=4.

law, that might also improve the robustness and flexibility of the
swarm. Specifically, for the sake of simplicity, Gr,i is set to a constant
value Gr for all the swarm, while each agent computes its gain Gn,i
independently, using only local information. Letting eθ,i ∈ [0,1] be
the average angular error for agent i, given by

eθ,i: =
L
π

1
|Ai|
∑
j∈Ai

|θerrij |, (21)

Gn,i is varied according to the law.

d
dt
Gn,i (t) =

{
{
{

α (eθ,i (t) − e*θ) , if eθ,i (t) > e*θ,

0, otherwise.
(22a)

Gn,i (0) = 0, (22b)

where α > 0 is an adaptation gain and e*θ (introduced in Section
5.1) is used to determine the amplitude of the dead-zone. Here, we
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FIGURE 10
Representative application of the algorithm from Spears et al. (2004) (see Appendix). (A) shows the tuning of parameters G and Fmax for the square
lattice (L =4). The black dot denotes the optimal pair (G*,F*max). (B) shows the scalability test for the algorithm. The metrics essL and essθ are averaged over
M =30 trials, as N varies, and plotted against our results (in gray) in the same scenario (see Figure 9 for the sake of comparison). Agents’ initial positions
are drawn with uniform distribution from a disk of radius r = √N/25. The shaded area represents the maximum and minimum values over the trials. Here
L =4, and (G,Fmax) = (G*,F*max).

empirically choose α = 3. To evaluate the effect of the adaptation
law, we also define the average normal gain of the swarm Ḡn(t): =
1
N
∑Ni=1Gn,i(t).
In Figure 11, we report the time evolution of eL, eθ, and

of Ḡn for a representative simulation. First, we notice that the
average normal gain Ḡn eventually settles to a constant value.
Moreover, comparing the results with the case in which the gains
Gn,i are not chosen adaptively (see Section 5.2; Figure 5J), here Tθ,
TL and tss are larger (meaning longer convergence time) but essθ
and essL are smaller (meaning better regularity and compactness
performance).

6.1 Robustness analysis

Next, we test robustness to faults, flexibility, and scalability for
the adaptive law (22), similarly to what we did in Section 5.3.

We ran a series of agent removal tests, as described in
Section 5.3.1. For the sake of brevity, we report the results of one of
such tests with L = 4 in Figures 12A–E. At t = 30 s, 30% of the agents
are removed; yet, after a short time the swarm reaggregates to recover
the desired lattice.

We then repeated the test in Section 5.3.3, with the difference
that this time we set Gr = 18.5 (that is the average between the
optimal gain for square and triangular patterns), and set Gn,i
according to law (22), resetting all Gn,i to 0 when L is changed.
The results are shown in Figure 12F. When compared to the non-
adaptive case (Figure 8), here essθ and essL are smaller (better pattern
formation), but Tθ and TL are larger (slower), especially when
forming square patterns. Interestingly, when L = 4, Ḡn settles to
about 5, while when L = 6 it settles to about 0.3, a much smaller
value.

FIGURE 11
Pattern formation using the adaptive tuning law (22). Initial conditions
are the same as those of the simulation in Figure 5. The shaded
magenta area is delimited by maxi∈SGn,i and mini∈SGn,i, while the
average across all agents is depicted by a solid magenta line. Here,
L =4, and Gr =15.

Finally, we repeated the test in Section 5.3.4, setting again the
sensing radius Rs to 3 R and assessing performance while varying
the size N of the swarm; results are shown in Figure 12G. First,
we notice that the larger the swarm is, the larger the steady state
value of Ḡn is. Comparing the results with those obtained for static
gains shown in Figure 9B, here we observe a slight improvement of
performance, with a slightly smaller essθ , while we verified that the
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FIGURE 12
Robustness tests using the adaptive tuning law (22). Panels (A–E) show the results of the simulations when starting from 100 agents, 30 agents are
removed at t =30 s. Initial conditions are the same as those of the simulation in Figure 6. (A–D) show snapshots of the agents’ configurations at
different time instants. (E) shows the time evolution of the metrics eθ and eL, and of the adaptive gain Gn (the shaded magenta area is delimited by
maxi∈SGn,i and mini∈SGn,i while the average value of the gain over all the agents is shown as a solid magenta line). Dashed vertical lines denote the time
instant when agents are removed. Here L =4. (F) refers to the flexibility test. Initial conditions are the same as those of the simulation in Figure 8. (G)
refers to the scalability test. The metrics essθ and essL , and the adaptive gain Gss

n : = Ḡn(tss) are averaged over M =30 trials with varying N. Agents’ initial
positions are drawn with uniform distribution from a disk with radius r = √N/25. The shaded areas represent the maximum and minimum values over
the trials. Here L =4, and Gr =15, Rs =3 m. In all these simulations Gr =15.

convergence time is comparable to the one observed for the static
policy.

7 Robotarium experiments

To further validate our control algorithm, we tested it in a real
robotic scenario, using the open access Robotarium platform; see
Pickem et al. (2017); Wilson et al. (2020) for further details. The
experimental setup features 20 differential drive robots (GRITSBot
Pickem et al., 2015), that can move in a 3.2 m × 2 m rectangular
arena. The robots have a diameter of about 11 cm, a maximum

(linear) speed of 20 cm/s, and a maximum rotational speed of about
3.6 rad/s. To cope with the limited size of the arena, distances ‖rij‖ in
(9) are doubled, while control inputs ui are halved. The Robotarium
implementation includes a collision avoidance safety protocol and
transforms the velocity inputs (7) into appropriate acceleration
control inputs for the robots. Moreover, we run an initial routine to
yield an initial condition in which the agents are aggregated as much
as possible at the centre, similarly to what considered in Section 5.

As a paradigmatic example, we performed a flexibility test
(similarly to what done in Section 5.3.3 and reported in Figure 8).
During the first 33 s, the agents reach an aggregated initial condition.
Then we set L = 4 for t ∈ [33,165), L = 6 for t ∈ [165,297), and L = 4
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FIGURE 13
Flexibility test in Robotarium. (A–D) show the swarm at different time
instants. (E) shows the time evolution of the metrics and the
parameter L. The gains are set as (Gr,Gn) = (G*

r ,G*
n)L=4.

for t ∈ [297,429], ending the simulation. We used the static control
law (7)–(8) and (11), and to comply with the limited size of the
arena, we scaled the control gains to the valuesGr = 0.8 andGn = 0.4,
selected empirically.

The resulting movie is available online (https://github.com/diB
ernardoGroup/SwarmSimPublic/tree/SwarmSimV1/Media), while
representative snapshots are reported in Figure 13, with the time
evolution of the metrics. The metrics qualitatively reproduce the
behaviour obtained in simulation (see Figure 8). In particular, we
obtain essθ < e

*
θ, with both triangular and square patterns. On the

other hand, we obtain essL < e
*
L when forming square patterns, but

essL > e
*
L with triangular patterns; this does not mean that the pattern

is not achieved, as it can be seen in Figure 13C showing the pattern
is successfully achieved.This minor performance degradation is due
to (i) the reduced number of agents, (ii) unmodelled dynamics of
the differential-drive robots such as non-holonomic constraints and
finite acceleration, and (iii) additional constraints such as the finite
size of the arena and the size of the robots themselves.

8 Conclusion

We presented a distributed control law to solve pattern
formation for the case of square and triangular lattices, based on the
use of virtual forces. Our control strategy is distributed, only requires
distance sensors and a compass, and does not need communication
between the agents. We showed via exhaustive simulations and
experiments that the strategy is effective in achieving triangular and
square lattices. As a benchmark, we also compared it with the well
established distance-based strategy in Spears et al. (2004), observing
better performance particularly when the goal is that of achieving
square lattices. Additionally, we showed that the control law is robust
to failures of the agents and to noise, it is flexible to changes in the
desired lattice and scalable with respect to the number of agents.
We also presented a simple yet effective gain adaptation law to
automatically tune the gains so as to be able to switch the goal pattern
in real-time.

In the future, we plan to study analytically the stability
and convergence of the control law; results in the case of
triangular lattices, also for higher dimensions, were recently
presented in Giusti et al. (2023). Other possible future extensions
include the ability to obtain other patterns (e.g. hexagonal ones,
or non-regular tilings), move in 3D environments and the
synthesis of a more sophisticated adaptive law, or a reinforcement
learning strategy, able to tune all the control gains at the same
time.
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Appendix

Let us first introduce some useful notation. Given a real-valued
function x(t) and a,b ∈ ℝ with a < b, we introduce the saturation of
x(t) between a and b, given by

[x (t)]ba: =
{{{{
{{{{
{

a, if x (t) < a,

x (t) , if a ≤ x (t) ≤ b,

b, if x (t) > b.

In Spears and Gordon (1999); Spears et al. (2004); Sailesh et al.
(2014), the agent dynamics is described by

{
{
{

ẋi = vi,

v̇i =
1
m
(ui − μvi) ,

∀i ∈ S , (23)

where ui ∈ ℝ2 is the control input, m ∈ ℝ>0 is the mass of the agent
and μ ∈ ℝ>0 is the friction damping factor. Recall that, as described
in Section 4.1, under a few assumptions, (23) can be recast as (6).
The control input ui is given by

ui =
N

∑
j=1

f (‖rij‖)
rij
‖rij‖
, (24)

where f is a gravitational-like virtual force, given by

f (‖rij‖) =

{{{{{{{{{
{{{{{{{{{
{

[G m2

‖rij‖2
]
Fmax

0

, if 0 ≤ ‖rij‖ ≤ R,

−[G m2

‖rij‖2
]
Fmax

0

, if R < ‖rij‖ ≤ 1.5R,

0, otherwise.

(25)

In (25), G,Fmax ∈ ℝ≥0 are tunable control gains, and R ∈ ℝ>0.
The control law given by (24) and (25) was showed to work for

triangular lattices. To make it suitable for square patterns, a binary
variable called spin is introduced for each agent, and the swarm is
divided in two subsets, depending on the value of their spin. Then,
agents with different spin aggregate at a distance of R, while agents
with the same spin do so at a distance of √2R. The extension to
the case of hexagonal lattice is discussed in Sailesh et al. (2014) and
requires communication among the agents.
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