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Objective: In emergency medicine, airway management is a core skill that
includes endotracheal intubation (ETI), a common technique that can result
in ineffective ventilation and laryngotracheal injury if executed incorrectly. We
present a method for automatically generating performance feedback during
ETI simulator training, potentially augmenting training outcomes on robotic
simulators.

Method: Electret microphones recorded ultrasonic echoes pulsed through the
complex geometry of a simulated airway during ETI performed on a full-size
patient simulator. As the endotracheal tube is inserted deeper and the cuff is
inflated, the resulting changes in geometry are reflected in the recorded signal.
We trained machine learning models to classify 240 intubations distributed
equally between six conditions: three insertion depths and two cuff inflation
states. The best performing models were cross validated in a leave-one-subject-
out scheme.

Results:Best performancewas achieved by transfer learningwith a convolutional
neural network pre-trained for sound classification, reaching global accuracy
above 98% on 1-second-long audio test samples. A support vector machine
trained on different features achieved a median accuracy of 85% on the full label
set and 97% on a reduced label set of tube depth only.

Significance: This proof-of-concept study demonstrates amethod ofmeasuring
qualitative performance criteria during simulated ETI in a relatively simple way
that does not damage ecological validity of the simulated anatomy. As traditional
sonar is hampered by geometrical complexity compounded by the introduced
equipment in ETI, the accuracy of machine learning methods in this confined
design space enables application in other invasive procedures. By enabling better
interaction between the human user and the robotic simulator, this approach
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could improve training experiences and outcomes in medical simulation for ETI
as well as many other invasive clinical procedures.

KEYWORDS

medical simulation training, endotracheal intubation, acoustic sensing, machine
learning in healthcare, convolutional neural network (CNN), support vector machine
(SVM), audio classification, transfer learning

1 Introduction

Airway management is critically important in emergency
medicine and critical care (Trueger, 2013). Endotracheal
intubation (ETI) is a widely used technique in intensive care
units (Narendra et al., 2016) for unconscious or semi-conscious
patients who cannot maintain breathing independently (Trueger,
2013; Kovacs and Sowers, 2018). This invasive non-surgical
procedure involves the insertion of an endotracheal tube to
establish an artificial airway, securing the airway and preventing
aspiration while allowing healthcare practitioners to control
ventilation.

However, ETI carries risks, such as laryngotracheal injury
(Tikka and Hilmi, 2019), and hypoxia or even brain damage and
death if a free airway is not established in critical care settings.
Consequently, adequate training in laryngoscopy and ETI is crucial
for safe and accurate procedural execution. Patient simulators
play an important role in this training, complementing procedural
competence and failure mode awareness before practicing on real
patients.

In simulation-based training for clinical skills and procedural
routines, such as ETI, the equipment should demand similar
cognitive and psychomotor loading as performing the routines
would on real patients (McGaghie et al., 2006). This is considered
by the ecological validity of simulation, meaning that the simulated
procedure should facilitate repeated practice of relevant tasks by
using sufficient equipment for trainees to realistically perform
them (Kushniruk et al., 2013). The design of simulators should,
therefore, provide lifelike experiences for both skilled and novice
medical practitioners in training, which is essential to mitigate
sources of false learning and achieve familiarity effects for skills and
experiences to transfer into clinical practice. Replicating relevant
anatomy accurately is often complex, yet critical for practitioners to
develop the skills and knowledge required to perform procedures
such as ETI safely.

Providing actionable and descriptive feedback during and after
training events is paramount (Issenberg et al., 2005;McGaghie et al.,
2006). Quality performance metrics and feedback should integrate
within and enhance simulated training models, crucially without
compromising simulator realism. This would require sensors or
other foreign elements to not cause visual or tactile disturbances,
limiting training validity. Replicating the tactile sensation of ETI
while providing performance feedback is a significant challenge
in ETI simulation; a design objective with anatomical constraints,
tactile compliance requirements, and obstructed visibility of the
procedure.

This paper presents a proof of concept of amethod that combines
acoustic measurement and artificial intelligence (AI) to classify ETI
user performance on patient simulators in terms of endotracheal

intubation depth and cuff inflation status. This method transmits
inaudible ultrasonic pulses into the simulated manikin airway and
records the sound in a location away from the trachea. As the
airway geometry is highly complex, traditional sonar methods
are difficult to implement without sacrificing anatomical accuracy.
Instead, machine learning classifiers are trained on the reflected
audio's spectral content to detect subtle changes in reflected sound
resulting from altered airway geometry acoustics. The method
is non-intrusive and avoids tracheal instrumentation that could
interfere with procedure realism.

To demonstrate the feasibility of this proof of concept, expert
users performed 240 intubations on a patient simulator to generate
a dataset for training and validating our model. To investigate the
effect of equipment location, two configurations were used for both
the sound source and microphone. Two classification approaches
were employed: support vector machine (SVM) and convolutional
neural network (CNN)with transfer learning. By using two different
approaches, we aimed to enhance the robustness of our findings
and prompt deeper understanding of the integration problem as
well as underlying patterns in the data. SVM provides a solid
baseline for audio classification performance (Cortes and Vapnik,
1995; Laput et al., 2015), while CNN transfer learning, leveraging
pre-trained models, captures more complex relationships within
the data, leading to potentially better performance (Pan and Yang,
2010; LeCun et al., 2015). The best-performing model was tested
using a leave-one-intubation-out cross-validation scheme, achieving
a median best performance of 98% global accuracy on 1-s audio
recordings.

This approach provides a valuable tool for classifying
endotracheal intubation training performance on patient
simulators.The system is flexible and easily integrated,with potential
applications beyond intubation training. By demonstrating the
success of this initial proof of concept, we hope to enable integration
in medical simulation, where providing quality performance
metrics and feedback can support better training experiences and
outcome.

2 Materials and methods

2.1 Intubation procedure

Intubation is a crucial procedure in airway management,
involving the administration of anesthesia and muscle relaxants
to the patient, followed by preoxygenation with 100% oxygen
via a mask and bag (Butterworth et al., 2013; Wiengand, 2016).
The endotracheal tube is then inserted using a laryngoscope to
expose the vocal cords, with the tube's depth indicated by markings
on the tube (Haas et al., 2014). Once the tube is in place, the
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cuff is inflated sufficiently to ensure a proper seal and prevent
movement during the procedure (Artime and Hagberg, 2020;
Hagberg, 2022). The endotracheal tube's cuff serves two main
purposes: preventing gastric content and other substances from
entering the airways and avoiding airflow leakages around the tube
(Nejla et al., 2017).

Incorrect cuff inflation can lead to complications.
Underinflation may result in microaspiration (Stewart et al., 2003;
Gunasekera and Gratrix, 2016; Nejla et al., 2017) or laryngeal and
tracheal complications due to tube movement (Jougon et al., 2000).
Overinflation can cause tracheal mucosal damage (Tu et al., 1999;
Gunasekera and Gratrix, 2016), ischemia, ulceration, inflammation,
tracheal rupture, granulation, and tracheal stenosis (Ganner, 2001;
Fan et al., 2004; Butterworth et al., 2013).

Proper endotracheal tube placement minimizes risk of
airway injury (Mort et al., 2013). Shallow placement can damage
the upper airway structures, including vocal cord paralysis,
ulceration, or dysfunction (Lu et al., 1999; Butterworth et al., 2013;
Mort et al., 2013). Deep placement can impact the carina, leading
to hypertension, tachycardia, and bronchospasm (Varshney et al.,
2011). Moreover, endobronchial intubation, or unintended
placement of the tube in the left or (more commonly) right
main bronchi, can result in one-lung ventilation (De Marchi,
2014; Lohser and Slinger, 2015; Heyne et al., 2022), causing
injury to both lungs. The ventilated lung can suffer from
tension pneumothorax (Salem and Baraka, 2013) and reduced
residual air (Lohser and Slinger, 2015), while the unventilated
lung may experience atelectasis, hypoxemia, and hypercapnia
(Lohser and Slinger, 2015).

2.2 Data acquisition

2.2.1 Acoustic equipment
A full-size patient simulator (SimMan, Laerdal Medical,

Norway) was outfitted with two small electret condenser
microphones (EM272, Primo, Japan) and a small piezoelectric
buzzer (MCUST10P40B07RO, Farnell, United States). The
microphones are small enough to be built into space-constrained
environments and are sensitive to ultrasonic frequencies. The
usable frequency range extends to approximately 60 kHz, but with
strong attenuation above approximately 40 kHz. The two mono
microphones were connected in stereo to an audio A/D interface
(Xonar U5, ASUS, Taiwan) and recorded at a sample rate of 192 kHz
to aMacBook as separate audio channels using open-source software
(Audacity 3.2.5, Audacity Team).

The piezo buzzer has a peak sound pressure at 40 kHz, but
also a reasonable output from about 10 kHz to 60 kHz. During the
experiment, the buzzer was driven using an arbitrary waveform
generator (UTG 2025A, Uni-Trend, China). A few different
waveforms were tried, but in the end we followed the suggestion
of earlier work (Laput et al., 2015) and used a repeating sinusoidal
linear sweep from 20 kHz to 60 kHz with a sweep duration of 100 m.
The resulting output was inaudible and seemed to provide good
classification performance in our setting.

One microphone was fixed in the manikin's head, above the
airway, while the other was fixed in a tube below the airway
(Figure 1). Two series of recordings weremade. In the first series, the
piezo buzzer was placed in the chest cavity of the manikin, outside

FIGURE 1
Diagram of the airway showing intubation tube placement and instrumentation. (A) Three progressively deep intubations in the simulated airway. Top:
shallow intubation. The tube has correctly entered the trachea but at insufficient depth. Middle: correct placement deep into the trachea, but not at risk
of impacting the carina. Bottom: deep intubation. The tip of the tube is hitting the carina, and the tube is on its way into the right bronchus. (B)
Illustration of the location of the two microphones, M1 above the airway in the nasal cavity and M2 below the airway in the left bronchus. The two
buzzer configurations, B1 inside the right bronchus and B2 outside the airway in the chest cavity. Note that B1 was not in place when B2 was active,
and vice versa.
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TABLE 1 Data breakdown.

Class Recordings Seconds

Shallow 80 2000

Shallow, inflated cuff 80 2000

Correct 80 2000

Correct, inflated cuff 80 2000

Deep 80 2000

Deep, inflated cuff 80 2000

the airway assembly, while in the second series, the buzzer was fixed
directly in the airway tube across from the second microphone.

2.2.2 Recording protocol
Intubations were recorded in six distinct categories derived

from the combination of tube placement depth (correct, deep, and
shallow) and cuff inflation status (inflated/deflated).

Prior to recording, an expert user performed the intubation
procedure using a laryngoscope and standard ET tube. Following
manikin manufacturer recommendations, a purpose-made silicone
lubricant was applied before intubating. With the endotracheal tube
in place, 25 s of audio were recorded while the buzzer was active.
The tube's cuff was then inflated, and another 25 s of audio were
recorded.

In both series, 40 intubations were made in each of the three
positions (shallow, correct, deep), resulting in 120 intubations per
buzzer configuration and 240 intubations in total. With and without
inflation, the total recorded data set consists of 480 recordings,
divided equally among the six classes. A total of 12,000 s of audio
were recorded (Table 1).

2.3 SVM model

2.3.1 Preprocessing and feature extraction
SVMs are robust models for complex ultrasound sound

characterization (Temko and Nadeu, 2006; Laput et al., 2015).
To train the SVM classifier, recordings from configuration B1,
M2 (Figure 1) were first split into testing (20%) and training
cohorts. Audio was highpass filtered using a Butterworth filter
with a 20 kHz passband, emphasizing the inaudible portion of
the spectrum, and normalized before being split into 0.5-second-
long segments resulting in a total of 9,600 training and 2,400
test segments. For each segment, we extracted a set of features
consisting of the zero-crossing rate, 2-norm, root-mean-square
values, spectral centroids as well as the magnitude of the discrete
FFT. The dimensionality of the resulting feature vector was reduced
via principal component analysis. The first 1,000 components
were kept, containing more than 99.9% of the explained data
variance.

Features including mel-frequency cepstral coefficients and
wavelet scattering coefficients resulted in worse performance
(Supplementary Figure S1).

2.3.2 Model training
A linear kernel SVM classifier with one vs. rest decision function

was trained on the training data with two sets of labels using libsvm
(Chang and Lin, 2011; Pedregosa et al., 2011). In the first label
set, audio segments were only labeled according to depth of tube
insertion, making three classes. In the second set, segments were
additionally labelled with cuff inflation status, making six classes.

2.4 Transfer learning

In addition to the SVM classifier we employed a transfer
learning approach using a pre-trained deep learning model,
YAMNet (Hershey et al., 2017). YAMNet is a convolutional neural
network (CNN) trained on the Audioset-YouTube corpus of labeled
audio signals (Gemmeke et al., 2017) designed for relatively low-
memory environmental sound classification. YAMNet has been
demonstrated to be effective in transfer learning applications
(Tsalera et al., 2021).

2.4.1 Preprocessing
We processed the audio data similarly to the SVM model. Audio

was highpass filtered with a 20 kHz passband, normalized, and
split into 1-s chunks. A sliding-window approach could yield more
spectrograms, but we opted not to do so in order to simplify input
size analysis, additionally assuming the audio signal to be relatively
stationary in our controlled environment.

The signal was resampled to 16 kHz using the MATLAB Signal
Processing Toolbox. The short-time Fourier transform (STFT) was
computed for each downsampled signal using a Hann window
with period 128, FFT length of 512% and 75% overlap. The
STFT was filtered with a 64-band mel-scale filter bank and the
resulting spectrograms divided into 10 m bins, yielding 96 × 64 sized
spectrograms suitable for input to the network (Figure 2).

2.4.2 Model training
The pretrained model was loaded and trained using the Matlab

Deep Learning Toolbox. The last fully connected layer and the
output layer of the network were replaced to Connect a 6-label
classification output layer. We did not freeze layers. Models were
trained on a single GPU (GTX 2080 TI, Nvidia, United States) from
a Windows computer with 16 GB RAM and a 1.7 GHz CPU, using
the adam optimizer with mini batches of size 128 for 5 epochs and
an initial learning rate of 0.001 halving every two epochs. The loss
function was cross-entropy.

Training timewas kept low asmanymodels needed to be trained
for our cross-validation scheme. 5 epochs was decided by observing
that models tended to converge in that time scale.

2.4.3 CNN Cross-validation
We implemented a leave-one-intubation-out cross-validation

approach. One intubation (both deflated and inflated cuff) was
excluded from the training process at a time. For each intubation,
we trained the model on the remaining 239 intubations, and tested
the classifier on the held-out intubation. Training onemodel thisway
took approximately 90 s, or about 6 h for all 240 intubations.

To compare the influence of microphone and buzzer
location, we repeated the training and testing process for each
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FIGURE 2
Illustration of YAMnet preprocessing and resulting spectrograms. (A): A step-by-step depiction of the preprocessing pipeline, including audio
segmentation, normalization, highpass filtering with an 18 kHz passband Butterworth filter, resampling to a 16 kHz sample rate, computing the STFT,
and applying a 64-band mel scale filterbank to generate input spectrograms with 96 frames of 10 m duration. (B): Comparison of mean spectrograms
from 1,000 samples per case, recorded in the lower airway. Left: Buzzer located inside the airway assembly; Right: Buzzer placed in the chest cavity.
The input features exhibit distinct qualitative differences.

of the four microphone and buzzer combinations: microphone
over/under airway (M1, M2), and buzzer inside/outside the
airway (B1, B2) (Figure 1). Total training time was thus about
24 h.

To evaluate the classifier's performance using different audio
input sizes, we selected 1,000 random permutations of the 25
labelled 0.96-s spectrograms within each test intubation set. These
permutations were incremented by 1 s, from 1 to 25 s. The output
class was determined by the mode of the subset of test labels
(Figure 3).

3 Results

3.1 SVM model

For 100 random test-train splits the median global accuracy
was 0.85 (0.70–0.93) on all 6 labels and 0.97 (0.91–0.99) for
the reduced depth-only set of 3 labels. Confusion matrices for
one test-train split using data from buzzer configuration 1 and
microphone configuration 2 are shown in Figure 4.While themodel
has good sensitivity to intubation depth, it seems to have difficulty

distinguishing cuff status. Sensitivity to cuff status during shallow
intubations is particularly poor.

3.2 CNN model

The transfer learning approach using the pretrained YAMNet
network enhanced performance on the audio classification
task compared to the SVM classifier. Cross-validation results
demonstrated high classification metrics across all categories,
with macro averages for precision at 0.980. Performance metrics
of the CNN model for the best audio configuration (B1, M2)
are presented in Table 2. The classifier achieved a best global
accuracy of 97.57% across the entire feature set of spectrograms
(Figure 3). Per intubation, the trained classifier achieved a best
global accuracy of 98.75% when exposed to the full set of 25 s of
audio for each intubation case during the classification step. Best
case accuracy reached 100% but went back down as classification
set size approached the full classification set, reflecting the
unbalanced distribution of incorrect predictions. Classification
performance improved when pooling longer inputs (Figure 3). For
the best-performing configuration, mean accuracy did not increase
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FIGURE 3
YAMNet classifier performance. (A): left: model training progress from a model representative of the LOTO model training, with an added 15% validation
split. Center: classifier input size sensitivity. Audio from 480 recordings each with 25 s of available audio was divided into 0.96-s segments. For input
lengths ranging from 1 to 25 s, 1,000 random permutations of test features were used for classification. The class was determined by the mode of the
classifications. The figure shows global accuracy for the four combinations of microphone and buzzer locations. Dashed lines represent the range of
classification accuracy for each set size (n = 1–25), with color-coded histogram bins displaying the distribution of the 1,000 permutations per set size.
The central line indicates the mean accuracy per set size. Right: Global accuracy and absolute number of misclassifications for the two top performing
configurations. (B): left: Center: Confusion matrix for the YAMNet classifier on the full feature set of 12,000 s of recordings. Center: Classifier
performance when tested on a random 1-s segment from each intubation. Right: Classification using the mode of 5 one-second segments from each
intubation.

meaningfully with input sizes above 5 s of audio, although the worst-
case classification accuracy did continue to improve until about
15 s.

3.3 Inference time

Preprocessing and inference time for 1-second-long segments of
audio were timed using a Windows laptop with a 1.7 GHz CPU and
16 GB RAM. 100,000 segments were preprocessed and classified by
a trained network, resulting in a combined median execution time
of 27 m (IQR 2 m). Model load time was not considered.

3.4 Equipment configuration

Microphone and buzzer location had a large effect on the
classifier's performance. Microphone location 2 (inside the closed

airway tubing) resulted in a consistently better classification
accuracy. Microphone location 1 (mouth assembly) exhibited much
worse classification accuracy when the buzzer was not placed inside
the airway assembly, but only had slightly decreased performance
with the buzzer in the airway.

4 Discussion

4.1 Equipment configuration and model
performance

Our results demonstrated that the transfer learning approach
using the pretrained YAMNet network outperformed the SVM
classifier, with high classification metrics across all categories. Our
findings indicate that the transfer learning strategy is effective in
accurately classifying audio signals for this application, while the
good SVM performance on the depth-only label set argues against
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FIGURE 4
Illustration of the SVM model pipeline. (A): Flowchart illustrating the SVM pipeline, including splitting of recordings into training and testing cohorts, the
preprocessing step of highpass filtering with a 20 kHz Butterworth filter and normalization, segmenting into 0.5-s intervals, and extraction of various
audio features for input to the classifier. (B): confusion matrices for the SVM classifier. Left: classification using the full 6-label set of both depth and
cuff status. Right: classification on the reduced-size 3 label set of only tube insertion depth.

TABLE 2 Classificationmetrics.

Metric Correct Correct cuffed Deep Deep cuffed Shallow Shallow cuffed Macro AVG

True positive 974 975 999 985 960 984 980

False positive 16 2 0 9 26 70 21

False negative 26 25 1 15 40 16 21

True negative 4984 4998 5000 4991 4974 4930 4980

Precision 0,984 0,998 1,000 0,991 0,974 0,934 0,980

Sensitivity 0,974 0,975 0,999 0,985 0,960 0,984 0,980

Specificity 0,997 1,000 1,000 0,998 0,995 0,986 0,996

Accuracy 0,980 0,980 0,980 0,980 0,980 0,980 0,980

F−measure 0,979 0,986 0,999 0,988 0,967 0,958 0,980

the performance of the CNN model being due to overtraining or
model-specific behaviour.

The equipment configuration (microphone and buzzer location)
influenced classification performance. The best performance was

achieved with microphone location 2, inside the closed airway
tubing, and buzzer position 1, inside the opposing tube. This
may be explained by the increased proximity of the buzzer
to the microphone in this configuration. Sound recorded from
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the bronchial pathway could more reliably differentiate between
changing windpipe geometries than the microphone above the
airway, even with the buzzer outside the windpipe assembly. The
difference betweenmicrophone locations was small in the “internal”
buzzer configuration.

The pretrained CNN's ability to classify intentionally inaudible
sound events resampled from a much higher frequency range than
originally trained on is noteworthy.

4.2 Comparison of SVM and CNN models

The pretrained CNN model outperformed the SVM model.
This could potentially be explained by a CNN's particular aptitude
to learn complex patterns in high-dimensional data like audio
signals (LeCun et al., 2015).The differences in performance between
the two models could also be partially attributed to the relative
complexity of the feature extraction process and interpretation.
Future work on this approach could investigate the impact of using
alternative or combined feature extraction techniques on SVM
model performance.

4.3 Relation to other work

Using sound classification on ultrasound recordings to detect
internal geometries has been demonstrated before, see for example
Laput et al. (2015) where a SVM was trained to determine
the geometry of interactive structures as an interactive device.
Ultrasound classification has furthermore seen wide adoption in
various human-computer interaction applications, including tactile
user interfaces (Dahl et al., 2014).

While YAMNet has been used in many transfer learning
applications for audio classification (Tsalera et al., 2021) its use
on ultrasonic signals is not widely adopted. Ghani et al. (2023)
presented an application of acoustic bird classification including
ultrasonic bat calls among other higher frequency signals. They
discuss techniques for transfer learning on ultrasonic signals using
models trained on lower sample rates, such as pitch shifting, or
in one case, simply ignoring the problem. They report reasonable
results, although worse than purpose-built models. By comparison,
we hypothesize that our good results using YAMNet is probably in
no small part due to the controlled signal we create, which is likely
to be much more distinct than bird calls recorded in the wild. Our
controlled environment also allowed us to collect a larger dataset.

In the context of endotracheal tube location in physical patient
simulators, previous approaches have included magnetic detection
using Hall effect sensors outside the esophagus and magnets
fixed to a modified endotracheal tube (Samosky et al., 2011) or
pressure sensors inside modified manikin airways (Sprick et al.,
2011). These techniques involve modifying the geometry of the
airway or the endotracheal tube, which is undesirable as it has the
potential to negatively affect training realism. Another approach has
been confirmation of placement manually using disposable fiber-
optic bronchoscopes inserted through the ET tube (Mitra et al.,
2019). While this latter method was reported to be effective, we
assess that automated placement confirmation is desirable with no
modification to ET equipment or the critical geometry of the airway.

4.4 Network activation

Given the significant compression to a low sampling rate, it
is prudent to examine the features of the compressed signal on
which the CNN operates. Figure 5 presents averaged spectrograms
for each condition with LIME and occlusion sensitivity maps. LIME
(locally interpretable model-agnostic explanations) and occlusion
sensitivity are decision explanation tools that assign a relative
importance to regions of the input data (Kakogeorgiou and
Karantzalos, 2021).Thesemaps help estimate the input data's relative
importance for classification decisions. Notably, even with very
aggressive compression and aliasing, the higher frequency range
remained active, particularly for the “correct” condition. However,
classification performance for shallow intubation was consistently
lower, possibly due to the lack of distinct discriminatory feature
regions in this condition.

4.5 Advantages of acoustic sensing in
medical simulators

The remote nature of acoustic sensing offers flexibility for
designers, allowing them to instrument simulators without altering
the relevant anatomy or compromising the fidelity or validity
of the simulation. As a “black box” solution, our approach
requires minimal implementation effort, and to our knowledge
no comparable AI-based acoustic classification methods have been
reported to similar ends in medical simulators. Although our proof
of concept focused on intubation training, ease of integration implies
it could be extended to other procedures where the introduction of
instruments into the patient's body is involved, such as larynx mask
insertion, phlegm suction, and intravascular procedures.

4.6 Implications for designers and training
outcomes

Our acoustic sensing approach offers designers flexibility and
ease of integration, enabling them to incorporate advanced sensing
into existing product architectures without altering simulated
anatomical structures. While we cannot draw definitive conclusions
about the impact on medical training outcomes, improving the
quality of simulator feedback could potentially enhance them. By
providing insights into otherwise invisible processes, our approach
can improve feedback and assessment, supporting better training
experiences and outcomes in medical simulation.

In a training scenario, the proposed classification system must
produce a decision in a time-constrained setting. Given our median
inference time of 27 m, a total execution time for a 5-s inference
of around 100–200 m may be acceptable for real-time evaluation,
depending on the goal of the implementation. For a training
feedback scenario, either intermittently live during performance or
in a post-scenario debrief setting, time constraints may be much
looser, for example.

The hardware we used for timing is comparable to that available
in a live simulation using the patient simulator described in this
work. However, YAMNet models have been used for real-time
sound event detection using low-resource edge devices such as the
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FIGURE 5
LIME and occlusion sensitivity maps across 1,000 averaged input features in the best performing configuration.

Raspberry Pi 4 (Mesa-Cantillo et al., 2023). With concessions to
the higher audio sample rate required for ultrasonic applications,
future applications could be deployed to environments with fewer
computational resources available, for example simpler training
devices with fewer resources available.

4.7 Model design

The proposed feedback model can only provide feedback
on discrete states, not a continuous measurement of insertion
depth. Discrete state classification was chosen due to practical
relevance, reduced complexity, and increased robustness. Discrete
classification aligns with intubation training goals, as it focuses on
distinguishing correct from incorrect tube placement.This approach
simplifies the task of the feedback system, avoiding challenges
associated with the complex airway geometry. Moreover, discrete
classification is likely to be more robust and less sensitive to
measurement noise. It may more easily be generalizable across
different training scenarios where this approach may be relevant.

4.8 Study limitations and future work

The study was conducted in a controlled setting, which may
not accurately represent the variability and challenges encountered
in real-world medical training environments. Factors such as
background noise, differences in equipment, and variations in
patient simulators might impact the performance of our acoustic
sensing method. Secondly, the evaluation of preprocessing methods

and SVM features was not exhaustive. Although our approach
demonstrated promising results using the YAMNet network and
transfer learning, other preprocessing steps and classification
algorithms might yield better performance on more explainable
models and might be more robust outside a controlled lab
setup.

Additionally, our study did not account for potential
confounders such as microphone and buzzer calibration. The
performance of the acoustic sensing method could be influenced
by inconsistencies in the hardware or differences in the acoustics
of the training environment. Future research could evaluate the
robustness and generalizability of this acoustic sensing approach
using different equipment and less controlled environments.

5 Conclusion

Acoustic sensing in combination with machine learning can
capture geometric changes in complex anatomical structures
with high accuracy. This enables collecting valuable feedback on
otherwise hidden processes during skill and procedural training on
simulated anatomy. This study highlights the value of the acoustic
sensing approach in providing a simple and effective solution
for classifying ETI user performance. Remarkably, the method
achieved good results even without serious attempts at equipment
calibration or an exhaustive evaluation of features or algorithms.
This robustness lowers implementation cost and adaptability for
use in various clinical training contexts. Reasonable classification
performance on a secondary machine learning model trained on
different feature types on the samedata set is encouraging, indicating
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that the high performance of the CNN model is not the result of
overfitting.

Our results highlight the effect of microphone and buzzer
positioning on classifier performance, and the significance
of optimal placement to achieve accurate results. We further
illustrate the positive correlation between increased test input
size and classifier accuracy, indicating the potential benefits
of utilizing longer audio segments for improved classification
reliability.

By refining and building upon this initial work, similar acoustic
sensing methods could become a valuable tool for enhancing the
quality of feedback and performance metrics in medical simulation,
contributing to better training experiences and outcomes in critical
airwaymanagement procedures. Further investigationmay focus on
refining the models and examining the potential integration of this
approach into real-time monitoring systems for intubation training
procedures.
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