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Introduction:Our work introduces a real-time robotic localization and mapping
system for buried pipe networks.

Methods: The system integrates non-vision-based exploration and navigation
with an active-vision-based localization and topological mapping algorithm. This
algorithm is selectively activated at topologically key locations, such as junctions.
Non-vision-based sensors are employed to detect junctions, minimizing the use
of visual data and limiting the number of images taken within junctions.

Results: The primary aim is to provide an accurate and efficient mapping of the
pipe network while ensuring real-time performance and reduced computational
requirements.

Discussion: Simulation results featuring robots with fully autonomous control in
a virtual pipe network environment are presented. These simulations effectively
demonstrate the feasibility of our approach in principle, offering a practical
solution for mapping and localization in buried pipes.
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1 Introduction

The development of indoor robot localization technology has gained substantial interest
from researchers, industry, and a large user base (Jensfelt, 2001). Pipeline localization is
also witnessing increased attention, driven by the need for more efficient and cost-effective
maintenance and repair of critical infrastructure such as oil and gas pipelines, water and
sewage systems, and electrical transmission lines (Mounce et al., 2021). However, unlike
most indoor settings, there remain significant challenges in miniaturizing and making
pipeline robots autonomous. Such autonomous robots must have accurate and dependable
sensors for data collection and decision-making, as well as efficient and compact power
sources and actuators. Inspection, localization and navigation algorithms must operate
in real-time, while also being computationally efficient to reduce power requirements
and minimize hardware needs. Existing infrastructure maps may not accurately represent
the current state of pipeline networks due to changes that occur over time. As a result,
relying solely on traditional maps can lead to outdated information, potentially hindering
maintenance and repair operations. To overcome this challenge, autonomous mapping
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techniques offer a solution by providing real-time updates, ensuring
the most accurate and up-to-date information. However, accurate
localization and navigation are crucial for robots to efficiently
maneuver through the pipeline network and carry out tasks at
specific locations. Traditional maps, which primarily focus on
geometric features, may not provide sufficient information for
autonomous robot navigation and decision-making. This limitation
necessitates the use of topological maps that capture not only
the geometric features but also the connectivity and relationships
between pipeline components, such as junctions and manholes.
By leveraging topological maps, robots can plan optimal paths,
navigate complex networks, and perform advanced computations,
such as semantic reasoning and planning. Therefore, to address
these challenges and improve the efficiency and effectiveness of
pipeline inspection and maintenance, we propose a topological
mapping algorithm. Topological representations are compact as
well as straightforward and intuitive (Kortenkamp and Weymouth,
1994), providing a clear understanding and interpretation of the
environment. Indoor robots utilize mapping and localization to
determine their position within an environment, even when direct
or relative location sensing is unavailable. A commonly used
technique is Simultaneous Localization and Mapping (SLAM),
which employs geometric representations to construct maps of
unknown environments while simultaneously determining the
robot’s location on the map (Mur-Artal et al., 2015; Rugg-Gunn and
Aitken, 2022).

Compared with a map of geometric features, a topological
map is more efficient in terms of storage and computation, and
insensitive to error accumulation. Topological maps provide an
abstraction of the physical environment and a more sophisticated
spatial representation. These abstractions are well suited to built
environments, both indoor and underground, allowing robotic
systems to perform advanced computations such as semantic
reasoning and planning. Furthermore, as suggested by Chrastil
and Warren (2013), topological maps align with human spatial
intuition, facilitating more natural human-computer interactions.
Our work presents an algorithm for topological localization and
mapping in buried pipe networks, enabling autonomous navigation
for lightweight robots over extended periods.

We present a hybrid approach integrating vision- and non-
vision-based strategies in a single fully autonomous framework. In
particular, we usenon-vision-based exploration andnavigationwhile
our localization and mapping rely on an active-vision algorithm,
which is only activated at topologically key (landmark) locations.
Nguyen et al. (2022) describe an autonomous robot for pipeline
inspection which they use to demonstrate exhaustive non-vision-
based exploration of a physical pipe network. The small size of
the robot (70 g, navigating through 150 mm pipes) imposes severe
limitations on sensors, motors and battery power. Instead of using a
camera, the robot uses distance sensors to navigate through the pipes
and to execute turns and maneuvers at junctions and dead ends.
Here, we propose to add localization and mapping capabilities to
this platform. We implement this robot in a simulated pipe network
to develop and test our active vision, localization and mapping
algorithm. In our work, we focus primarily on junctions, as these
are sufficient for the topological mapping of the network. Once
the robot arrives at a junction, it uses its camera to collect an
image dataset of the location. The robot localizes by comparing

the images from its current location with the data in its database.
This localization step includes orientation matching, i.e., calculating
the robot’s rotation relative to the orientation in the database. An
active vision step is included to increase the accuracy and robustness
of the localization. Finally, the robot either identifies its location
based on a good match with an existing location in the database
or defines its location as novel, adding the location information
and the associated image set to the database and the topological
map.

This paper is organized as follows.The remainder of this section
discusses related work. In addition to the creation of topological
maps such as mentioned above, we have also developed control
algorithms for the fully autonomous navigation of the robot in our
experiments, so that the robot can generate topological maps in
real-time as it explores the pipeline. The methods are described in
Section 2, including a brief overview of the autonomous control of
the simulation robot presented byNguyen et al. (2022) (Section 2.1).
Although the physical robot was successful in exploring the pipe
network, this study relies on a motorized camera that has yet
to be implemented. Hence, the experiments with localization and
topologicalmapping are conducted in a simulated environment.The
results are presented in Section 3, including simulations of the robot
recognizing junctions in real-time and constructing a topological
map as itmoves through the pipeline (Section 3.6). Finally, the paper
concludes with a discussion in Section 4.

1.1 Related work

Localization in robotics involves both relative and absolute
positioning methods. Absolute positioning relies on directly
obtaining coordinate information through methods like GPS or
satellite positioning (El-Rabbany., 2002). However, such methods
are not available in the underground pipe networks and therefore
are not useable. While relative positioning, also known as dead
reckoning, estimates the current position relative to the initial
point using sensors such as wheel encoders (Aqel et al., 2016).
However, odometry, a common method for dead reckoning in
wheeled robots, has limitations such as tire slippage, meandering
trajectories, and intrinsic noise (Wang et al., 2015). On the other
hand, lidar and camera vision positioning technologies offer better
stability and accuracy, but each has its advantages and disadvantages
(Nistér et al., 2004; Wang et al., 2017).

In the context of pipeline localization, various approaches
have been proposed. Hertzberg and Kirchner (1996) introduced
landmark features in pipelines, although the reliability of landmark
classification may be questionable. Vision-based localization has
been implemented in pipelines by leveraging topological features
such as elbows and branches (Lee et al., 2009). These approaches
utilize image analysis to extract information about landmarks and
update the robot’s records for localization purposes. Some studies
have focused on utilizing onboard sensors, such as IMU, gyro, and
leak sensors, to localize robots inwater pipes (Wu et al., 2019).Other
works combine visual odometry and pipeline topological mapping
for localization in sewage systems (Alejo et al., 2019).

Localization techniques have been employed in diverse robotics
environments. Lopes et al. (2020) developed a reconfigurable
robotic miner prototype that utilizes various sensing techniques,
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including tactile, conductivity, and inertial measurements, for
localization and mapping during mining operations. They employ
advanced probabilistic sensor fusion techniques for localization
in the absence of a globally fixed coordinate frame. Topological
mapping and localization have also been extensively studied in
urban environments (Kortenkamp and Weymouth, 1994; Blaer and
Allen, 2002).

Kalman filter-based methods have been widely utilized for
sensor data fusion in pipeline navigation. Siqueira et al. (2016)
proposed a sensor data fusion technique using the Kalman filter for
pipe navigation. Liu andKrys (2012) explored the use of a laser range
finder for pipe inspection, while Maneewarn and Thung-od (2015)
presented the ICP-EKF localization method for boiler inspection
robots. These studies collectively enhance our understanding of
sensor data fusion, laser range finder utilization, and localization
algorithms, providing valuable insights for the development of
innovative pipe inspection robotics solutions.

SLAM techniques have been successfully applied in pipeline
environments. PipeSLAM, introduced byMa et al. (2017), addresses
the challenges of feature-sparse water pipes by utilizing the Rao-
Blackwellized particle filter to integrate odometry and visual
information. Additionally, Krys and Najjaran (2007) developed
a VSLAM system for pipe inspection robots, demonstrating the
effectiveness of visual-based methods in pipeline localization. By
combining visual information and SLAM techniques, the robot
can simultaneously map the pipe environment and estimate its
position.

Node localization in robotic sensor networks and the
development of smart wireless robotic systems have been significant
areas of research in pipeline inspection. Wu et al. (2015) focused
on node localization in robotic sensor networks for pipeline
inspection. They proposed techniques and algorithms to accurately
determine the location of nodes within the network, enabling
effective monitoring and control of robotic systems in pipeline
environments. Kazeminasab and Banks (2022a) introduced
a size-adaptable in-pipe wireless robotic system. This system
incorporated a two-phase motion control algorithm to navigate
and inspect water distribution systems. By integrating wireless
communication capabilities, smart sensors, and adaptable motion
control algorithms, the SmartCrawler system demonstrated
advancements in the field of pipeline inspection, enhancing the
efficiency and effectiveness of water distribution system monitoring
and maintenance.

Acoustic echo localizationhas emerged as a promising technique
for pipe inspection robots in recent years. Worley et al. (2020)
focused on leveraging acoustic echoes to estimate the location
and geometry of pipes accurately. By analyzing the time-delay
and frequency characteristics of reflected acoustic signals, the
proposed method provided valuable information for localization
and mapping tasks in pipe inspection. This work offering a non-
intrusive and efficient approach to gather essential information
about pipe conditions and geometries.

Kazeminasab et al. (2020) proposed various techniques that
integrated sensor data, such as odometry and inertialmeasurements,
with map information to achieve reliable robot localization within
the intricate pipe network. Additionally, magnetic induction
communication has been utilized for localization in water
distribution systems. Kazeminasab and Banks (2021) synchronized

a wireless sensor module localizer with the motion controller,
enabling long-distance inspection capabilities. Kazeminasab
and Banks (2022b) presented a localization method for in-pipe
robots using a particle filter-based localizer synchronized with a
multi-phase motion controller.

In comparison to these works, our approach aims to combine
low-power exploration (using lower-power distance sensors and
odometry) and vision-based topological localization for pipeline
networks. We utilize low-power distance sensors for maintaining
robot movement within the pipeline, while vision is employed at
junctions for localization and construction of a topological map.
Our focus is on lightweight underground pipeline robots, taking into
consideration power and computation constraints. By integrating
localization and motion control, we aim to achieve accurate and
efficient smart motion for long-distance inspection in pipeline
networks.

2 Materials and methods

Thealgorithm for automatic control is provided byNguyen et al.
(2022), and a detailed method overview can be found there. We
present a brief discussion in Section 2.1. The junction recognition
process uses normalized cross-correlation (NCC) image matching
(Section 2.2). By comparing the current junction with all the
junctions data collected in the database, the robot’s task is to
determine whether the junction has been visited before, and if
so, localize (Section 2.3). Otherwise, this new junction is added
to the image database and the topological map is updated
(Section 2.4).

2.1 Robot control for navigation and
exploration

The miniature robot is equipped with three range sensors, an
inertia measurement unit (IMU), two wheel-leg encoders, and a
camera (800 × 800 Pixels) for sensing. The robot starts at the
entrance of the pipe network and exhaustively explores all the
sections before returning to the starting point. While exploring the
pipe network, the robot encounters all junctions, dead-ends, and
obstacles at least once, using its sensors to autonomously navigate
and maneuver to deal with these conditions based on its estimated
states. In our work and Nguyen et al. (2022), we do not use the
camera for autonomous control of the robot but only fuse the data
of the other three types of sensors to estimate the robot’s state.
Eleven robot-in-pipe states capture different positions at T-junction,
at left/right branches, at left/right corners, at straight pipe centerline,
inclined in straight pipe, at a dead-end, at a cross junction, at
open-space, and finally, to detect when the robot is approaching
a collision. Three time-of-flight range sensors are installed at the
front, front-left, and front-right of the robot to measure distances
from the robot to the surrounding environment. These distances,
combined with IMUdata and their historical data, provide sufficient
information for the algorithm to calculate the current robot’s local
state (Nguyen et al., 2022).

Once the robot confirms its estimated local state, it makes a
high-level decision to turn right or left at an angle, go straight,
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FIGURE 1
The simulated pipe network in the Gazebo simulator (Koenig and Howard, 2004). Pipe diameter 200 mm. Left: External view with the six junctions and
entry point manually labeled. Right: inside view of a pipe with added texture.

or turn around. By default, the robot decides to always take
the right most unexplored branch at any junction to guarantee
an exhaustive exploration of all sections of the pipe network.
Specifically, the robot turns right at a cross junction, T-junction,
right corner, and right branch. It goes straight at a left branch
and in a straight pipe. It turns left at a left corner and turns
around at a dead-end or upon encountering a significant obstacle
(that blocks passage through the pipe cross-section). Depending
on the direction of an impending collision, the robot turns left or
right to move away from the pipe walls or obstacles. A detailed
table of actions taken regarding the robot state was explained in
Nguyen et al. (2022). After making a high-level decision, a low-
level motor controller is called to fine-tune the robot’s direction
and velocity in the pipes. Encoder values and their historical data
are used to calculate the maneuver’s speed and estimated turning
angles.

As described above, the robot uses three distance sensors
mounted on the front to recognize a junction ahead. At this point,
the robot faces the center of the junction ahead. In our work, we
augment the control algorithm in Nguyen et al. (2022) to command
the robot to move forward from the entrance to a junction by a
set distance (equal to the estimated radius of the junction). Once
at the approximate center of a junction, sampling, localization, and
mapping take place, as described in the following sections. Once
complete, the robot returns to the entrance of the junction, and the
original control algorithm resumes.

We noted that the IMU, odometry and laser data are not used
for localization but only for navigation and low-level control. Our
localization method as described in this paper relies on vision
information only.

2.2 Identification of known/unknown
junctions

The robot visits different junctions as it explores the pipe
network (Figure 1). During this exploration, the robot may visit
the same junction multiple times. We call such previously visited
junctions known junctions.We call junctions that are encountered by
the robot for the first time unknown junctions.This section describes
how the robot can identify whether it is currently in a known or
unknown junction.During autonomous exploration and topological
mapping, the database consists only of known junctions. As more
junctions are encountered, the database and map are updated.

When the robot is approximately at the center of a junction
(Figure 2), it collects images all around the junction (See example
in Figure 3). The 360° view of the current junction is obtained by
rotating the camera that is mounted above the robot (Figure 5)
in discrete steps. Given the diameter of the simulated pipe, each
image covers an angular width of about 90°. We want a significant
overlap between images and found that a small set of 6 images
(corresponding to 60-degree rotations between images) is sufficient
for robust localization (see Section 3.2 in the Results). As the robot
explores the environment, it collects images from each junction, and
the stored sets of images are given by:

D = {di}
NumJunctions
i=1

whereD is the database, and NumJunctions is the number of known
junctions at that point in the exploration.

To identify a junction, the robot compares the image set
collected at the current junction, dc, with the image sets of all
known junctions. Given two image sets dc and di, we perform image
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FIGURE 2
Robot (appearing as a light blue rectangle in a top-down and rear view) at the approximate center of junction A.

FIGURE 3
Collected image set from junction A (example of dA).

matching to define the similarity S(dc,di) between the two junctions
(see Algorithm 2 below). We then compute the maximum similarity
score, Smax, across all possible known junctions, to obtain the best
candidate for a known junction, here labeled with index j, using:

(Smax, j) = (max(S(dc,di)) ,argmax
S
)

Finally, we determine whether the current junction is a known
junction or an unknown junction by thresholding this maximum
similarity score Smax, shown in Algorithm 1. If the similarity is
higher than the threshold, we identify the current location as a
known junction j in the database. Otherwise, we perform active
vision A(dc,dj) to better align the image sets (see Section 2.3;
Algorithm 3) and repeat the image-set comparison with junction j
in the database. If the similarity is still lower than the threshold, we
define this junction as an unknown junction and add the current

Algorithm 1. Algorithm for identification of known/unknown junctions.

image set dc to the database as a new junction. We also add this
junction to the topological map, as described in Section 2.4.
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FIGURE 4
A illustration for the image shift I and pixel shift P. (white: currently sampled junction, orange: image set of a known junction from the stored dataset).

Normalized cross-correlation is used to calculate the maximum
similarity, S(dc,di), and corresponding offset between two different
image sets. For greater realism, only grayscale information is used
for image analysis. Image matching is performed for every possible
junction pairing (one corresponding to the robot’s present location
and the other for each ‘target’ junction in the database). There
are six images in each image set, and hence six possible offsets
between two image sets. For a given offset, the normalized cross-
correlation is computed (in the Fourier domain) between all images
in the current location with the candidate matching junction in the
database. For each candidate junction, after finding the image offset
with the maximum similarity, the horizontal pixel offset is set to the
position of the maximum cross-correlation value. Looping through
all possible candidate junctions, the pairwise similarity and the
corresponding image and pixel shifts(offsets) are obtained. Finally,
the highest similarity score is used to pin down a single candidate
junction.The image-matching data for this junction pair is then used
as a basis for the active vision step.

The normalized cross-correlation (NCC) is a commonly used
region-based method in image feature matching. In the absence of
a single 360° panoramic view of the entire junction, here we apply
NCC to one image-pair at a time and increment the possible image
shifts to allow for the robot entering the junction from different pipe
sections, as illustrated in Figure 4. We match the similarity of gray
pixel values in thewhole image field in the two images (I1 and I2). For
I1, we calculate the normalized cross-correlation coefficient between
it and the I2, and the corresponding pixel shift that maximizes the
match.

We exploit the similarity in the formulation of the cross-
correlation to a convolution function, which can be implemented
efficiently with a Fast Fourier Transform (FFT). To perform a cross-
correlation, we perform a convolution between one image and a
second conjugate image (see Algorithm 2). The implementation
uses python3.6, opencv2, Numpy, and fftconvolve function from
scipy.signal.

We note that a preprocessing step is taken before performing the
cross-correlation. Because the lower part of the image contains the

Algorithm 2. Algorithm for computing the similarity of two image sets and
corresponding image shifts, pixel shifts.

robot, which will affect the accuracy of the comparison results, we
crop out the lower half of the image.Next, we subtract themean pixel
intensity.

2.3 Pipeline robot localization using active
vision

As previously mentioned, a minimal change to this control
algorithm was implemented to allow the robot to approach the
approximate center of the junction. In this section, we describe a
second addition to the control algorithm: the implementation of
active vision.
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Algorithm3. Algorithm forusing theactive vision tofind themaximumsimilarity
of two image sets based on image shifts, pixel shifts.

Given the image shift I, pixel shift P, as well as the angle between
successive images (2π/6 radians), camera width (2π/4.5), and pixel
widths (800 pixels), the relative angle between the two image sets, is
(I*2π/6+ P*cam_width/pixel_width). To execute the active vision,
we rotate the camera according to this angle, and then move the
robot a little distance forward, backward, left, and right, in turn from
its position (roughly in the center of the junction). We continue
cross-correlating with the same dataset in the database until we find
a direction that increases the similarity. If active vision increases the
similarity sufficiently to exceed to similarity threshold, the junction
can be identified (it is a known junction). Otherwise, it is classified
as an unknown (i.e., new) junction, as described in Section 2.2;
(Algorithm 3).

2.4 Topological mapping

Topological maps capture the relationships between elements of
amap that are represented as nodes (or vertices), connected by edges
(Garcia-Fidalgo and Ortiz, 2015). In our case, the map captures
connectivity between pipe segments and the correct order of these
edges in each junction.While distance information can be important
for some purposes, the adjacency of pipe segments and junction
information suffice for path planning in the network. The key
to constructing topological maps is identifying appropriate spatial
points of interest in the environment as vertices and extracting
sufficient spatial semantic information from these locations. In
addition to their compactness and elegance, topological maps may
be more stable than spatial maps in the face of closed loops (in the
absence of absolute position information). It is possible to consider a
more spatially grounded topological map, in which edges (i.e., pipe

Algorithm 4. Algorithm for processing a junction during topological map
building.

sections) are assigned information (e.g., a distance estimate from
dead reckoning, the time taken to move between two vertices, or the
energy consumed). In our case, however, junctions contain sufficient
semantic information about the scene.

Whether a junction is known or unknown dictates whether the
topological map is up to date. Given an unknown junction, the robot
firstly adds the image set dc to the database D, creates a new vertex
Vn, and adds an edge E between it and the previous vertex the robot
visited Vlast. When moving between two known junctions, the edge
may or may not have been traversed previously. In the absence of
an edge in the map, a new edge will be added between the previous
junction to the current position. Topological maps typically encode
vertices and edges in an adjacency graph. For navigation purposes,
it is also useful to disambiguate the ordering of the edges for each
junction. Here, we use the order in which edges are traversed to
assign them integer labels (W). Whenever a new junction is added,
if the edge used to reach the junction is new as well, it is assigned the
next unused integer as its label.Thus, once themap is complete, each
edge has a unique label (see Algorithm 4). Given the exploration
algorithm (in our case, consistently taking the right-most branch),
it is then possible to determine the relative orientation of the pipe
sections.

3 Results

In this section,we present our experimentwith a simulated robot
in a pipe environment. Our overall goal is to test the performance
of our system by building a topological map doing autonomous
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FIGURE 5
Robot simulated in the pipe network.

FIGURE 6
Assessing junction similarity for different sized image sets. Junction
similarity results for 24 image sets (4 per junction at 90-degree
intervals) under Perfect Center conditions. The similarity is compared
for different numbers of images per image set. Boxplot (showing the
Upper whisker, Upper quartile, Median, Lower quartile, and Lower
whisker from the top to the bottom for the known junction (blue) and
unknown junctions (green).) Applying a threshold of 0.36 (red
horizontal line) would allow for accurate recognition of known
junctions and distinguishing unknown junctions.

control. However, before we present these topological map-building
results in Section 3.6, we will present a set of simpler experiments
that we have performed to test the localization performance of our
robot. The following five experiments will be presented.

1. Perfect Center: Our first experiment tests if the robot can identify
which junction it is in with respect to the junction in the
database when the robot is initialized perfectly at the center
of the junction. In this case, autonomous navigation is not

used. We also use a robot initialized perfectly at the center
of junctions to decide how many images to collect in each
junction. The experiment suggests that six images are sufficient
(see Section 3.2).

2. Noise: To validate that six images suffice even for the imperfect
positioning of the robot in the center of the junction, we repeated
the above experiments such that robot will be located at 3 cm off
center (see Section 3.3).

3. Active: To test the robot’s ability to improve its localization
through active vision, in this set of experiments, the robot is
initialized at the off-center position and uses active vision (see
Section 3.4).

4. Entrance: To more realistically simulate the process of the robot
traveling autonomously in the pipeline, we place the robot on
the edge of the junction in the pipeline, and perform a similar
set of experiments. The robot moves forward a distance of the
junction radius to the center before switching on its camera (see
Section 3.5).

5. Autonomous: The robot is simulated under the fully autonomous
exploration and control mode. A topological map is built (see
Section 3.6).

3.1 Experimental setup

We model the mobile robot in a pipe network (Figure 1), and
test our localization algorithm using ROS (Quigley et al., 2009)
and the physics simulator Gazebo 9 (Koenig and Howard, 2004).
The robot 3D model was designed in Solidworks (see Figure 5;
Nguyen et al. (2022) for details of the design) and imported into
Gazebo. The imported model in Gazebo is shown in Figure 5. The
robot has six wheel-legs, with wheel diameter 28 mm. Three left
wheel-legs are connected and are actuated by a DCmotor. Similarly,
three right wheel-legs are connected and controlled by the second
DC motor. The two motors are independent and controlled by
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TABLE 1 Summary of similarity results across different image sets under different conditions. Note the low similarity obtained for unknown junctions, across all
conditions.

Similarity ± std Perfect center Noise Active Entrance Autonomous

Known junction 0.700 ± 0.157 0.614 ± 0.112 0.675 ± 0.166 0.643 ± 0.150 0.631 ± 0.109

Unknown junction 0.276 ± 0.028 0.276 ± 0.027 0.276 ± 0.024 0.280 ± 0.031 0.273 ± 0.025

TABLE 2 Summary of rotation error across different image sets under different conditions.

Rotation error (radians) Perfect center Noise Active Entrance Autonomous

Known junction 0.054 0.044 0.051 0.047 0.101

Unknown junction 0.377 0.473 0.610 0.717 0.856

two PID (proportional integral differential) controllers. Each motor
controller is implemented in Gazebo-ROS using the ros_control
package (allowing complex joint control algorithm to be applied to
the DC motor instead of standard differential drive).

Figure 5 shows the simulated pipe structure in Gazebo and the
simulated pipe network with the robot. The grayscale texture was
imposed on the simulation environment to ensure that junctions
look distinct.This is an underlying assumption of our work–i.e. that
there is a visual difference between geometrically identical junctions.
In a pipe network of any age, this is likely to be true but needs to
be experimentally verified in future work. The robot is controlled
by sending commands to its two ros_control motor controllers.
The simulation provides an idealized scenario for the robot model,
in which we can develop and test the proposed algorithms for
localization and mapping.

3.2 Initializing the robot at the center of
the junction

We collected images for each junction, sampled with a robot
positioned precisely at the center of each junction as a reference
database. Figure 3 shows sample data collected from one junction.

To determine a robust number of images that would suffice for
localization, we performed a preliminary experiment, in which we
placed the robot in the center of each of the six junctions in our
network. As each image has a view of about 90°, more than four
images would be required to ensure some overlap between adjacent
images. We compared image sets with 6, 9, 18, and 36 images.
For each case, four image sets were collected from each junction,
facing four different directions (at 90-degree intervals) resulting in
24 image sets. We used the same robot to collect all the data sets
required for the experiment at the same position in the pipeline.
Defining the image sets from different robot orientations of the
same junction as “Same” and image sets from different junctions
as “Different.” we calculated the similarity scores to the Same and
Different junctions for image sets with 6, 9, 18, and 36 images.
We present the results in Figure 6. While increasing the number of
images yields higher accuracy, even with only six images, junctions
can be recognized and the rotational error is small (≲ 3°). The result
demonstrates the robustness of the algorithm to the number of

FIGURE 7
Image matching between junctions in the simulated pipe network
(orange line: mean values, lower quartile: median of the lower half of
the dataset, upper quartile: median of the upper half of the dataset,
red line: threshold 0.36). Similarity scores for “Same” are computed as
S(di1 ,di2), where di1 and di2 are different imagesets captured from the
same junction i. Similarity scores for “Different” are computed as
S(di,dj), where di and dj are different imagesets captured from the
different junctions, i and j. Same and different junctions can be
robustly separate by the threshold.

images used, with six images being sufficient to reliably identify
junctions under perfect center conditions.

To verify whether we can distinguish between known and
unknown junctions, we collected sets of images for six junctions
within the pipeline under different experimental conditions. For
each experimental condition, we collected 5 imagesets at each
junction giving us a total of 30 imagesets. We then compared
the collected imagesets pairwise. Based on whether these sets of
images originated from the same junctions or different junctions,
we computed similarity results for junctions labeled as “known”
and “unknown”. Notably, each known category comprises 60 data
points(imageset pairs coming from same junction) in its box plot,
while the unknown category encompasses 375 data points(imageset
pairs coming from different junctions). These results are presented
in Tables 1, 2; Figure 7.
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FIGURE 8
Dynamic topological map, generated during autonomous exploration of a simulated pipe network (shown in Figure 1). The six steps correspond to the
six updates, each time a new (unknown) junction is visited. The edge labels represent the order in which the junctions were added to the map, and their
relative orientations were determined with the knowledge of the rule-based exploration algorithm, yielding an ordering consistent with the pipe
network. For visualisation, 90° angles were always assumed between adjacent edges since this is usually the case in real life situations.

3.3 Initializing the robot in the off-center
junction position

To validate that six images suffice even for the imperfect
positioning of the robot in the center of the junction, we
repeated the above experiment for eleven image sets collected
from robots that were located 3 cm off the center from a random
direction (‘Noise’) (Tables 1, 2; Figure 7). Henceforth, all image
sets consist of six images per junction. Next, we tested the
robustness of our junction identification algorithm. To verify that
the identification of ‘known’ junctions was reliable, we also checked
the relative angular offset (obtained from the image and pixel
shifts) and confirmed that these agreed with the different robot
orientations.

3.4 Using active vision

Our next experiment tests the robot’s ability to improve its
localization through active vision. While our noisy experiment still
showed good results, we expect that more realistic pipe conditions
may result in greater slippage or possible errors in estimating the
radius of a junction. To address such conditions, here, we move
the robot’s position to bring it closer to the position at the time of

image set acquisition in the database (corresponding to previous
visits to the known junction). Active vision dramatically improves
the robot’s position recognition accuracy over the ‘noise’ experiment
above.

3.5 Initializing the robot at the entrance of
a junction

After setting up a simulation environment, we applied the
same control methods described in Nguyen et al. (2022) to the
simulated mobile robot. We updated the algorithm so the robot
could move to the center of the junction and execute image
collection for localization and mapping. The robot was able to
explore the simulated pipe network exhaustively in the simulation
environment, but also experienced failure in somemaneuvers due to
sensitivity to positioning, when resuming navigation of the network
after visiting a junction. Here, we focus on results from successful
runs.

To more realistically simulate the process of the robot traveling
autonomously in the pipeline, we place the robot on the edge of the
junction in the pipeline (‘Entrance’).The robot is oriented toward the
center of the junction where its distance sensors detect a junction
ahead while advancing in the pipeline. From this ‘entrance’ point,
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the robot moves forward at a fixed distance, set to be the radius
of the junction. As in previous experiments, we collect image data
at the position where the robot finally stops, which can better
simulate the heading error in the real world. We collected eleven
image datasets of robots after having moved autonomously from
the edge to the center of the junction. A comparison of these
eleven image sets’ data in the database is shown in Tables 1, 2;
Figure 7.

From Table 1 results and using a threshold of 0.36 in the
similarity, the robot can recognize the same junction, even
off-center. In the third step of the active vision experiment,
the robot achieves slightly improved mean similarities
but is subject to larger variability. The robots from the
junction entrance were all identified quite well and were
considerably more accurate than the second and third sets of
experiments.

3.6 Autonomously generating an ordered
topological map

We now test our method under fully autonomous conditions.
For this experiment, the junction database is initially empty and is
updated every time the robot traverses a new and different junction,
from those previously visited. We conducted 7 experiments each
starting at different position in the pipe network shown in Figure 1.
The starting positions were: S,A,B,C,D,E,F. The robot was able to
generate the correct topological map successfully from all of these
starting positions. In Figure 8, we shown one example. The robot
starts at entrance location S and exhaustively explores the network
until it returns to the entrance. At every junction, based on the
image database of previously visited junctions and the robot’s ability
to recognize the current junction, the robot’s topological map is
updated in real-time. A successful map is shown based on the above
perfect junction sampling.

We define the topological map as an undirected graph in which
each node represents a junction that was visited and imaged by the
robot. Each time the robot identifies its location with a junction
in the database, it successfully proceeds without updating the map.
Conversely, when the robot arrives at a new, unfamiliar node, the
current junction and its set of images are successfully added to the
database, a new node is added to the graph, and an appropriately
labeled edge connects the previously visited node to the current node
(Figure 8).

4 Conclusion

Our work employs a multimodal sensing strategy to combine
a miniature autonomous robot’s exploration, localization, and
mapping in a simulated pipe network. While the results presented
here are based on simulation experiments, we note that the robot is
based on the SolidWorks model used to build a physical miniature
model that successfully explored a similar pipe network. A key
challenge in this work arises from the miniature robot’s limited
mobility and limited power. Hence we sought an efficient (power-
saving) strategy that requires relatively little computation and

storage.We rely on our finding in (Nguyen et al., 2022) that the range
sensor data in the physical robot is accurate and can make good
estimates of the surrounding environment when the robot executes
navigation and obstacle avoidance. We proposed that vision sensors
are rich in data and we demonstrate that using fast normalized
cross-correlation methods suffice in our experiments to identify
environmental landmarks. We adapted traditional image-matching
techniques to pipeline geometries and rotational movement of the
camera. We further propose that active vision may be useful to
compensate for the limitations of poor positioning of robots during
realistic autonomous movement in pipeline environments. It is
important to highlight that although a specific robot model was
used in our simulated experiments, the vision-based localization
technique we propose is designed to be compatible with various
robotic systems, rather than being limited to a particular robot. As
long as a robot is capable of exploring the pipe network and equipped
with a camera, ourmethod can be employed for topologicalmapping
of the network.

Our work primarily focuses on developing image-matching
algorithms for active vision. However, it is important to address
the main limitation encountered with the physical robot, which
relates to the location and motorization of the mounted camera. In
future work, we plan to conduct tests and evaluations in a physical
setting using either the same robotic platform or an alternative
one that allows for panoramic imaging, enabling us to assess the
performance of both the vision-based algorithm and the control
mechanism. It should be noted that the sensors used in our work
were studied solely in the simulation environment, and therefore,
it is challenging to reliably estimate the accuracy of the robot in
an actual physical setting. Furthermore, conducting experiments
with physical robots in realistic pipe networks introduces additional
complexities due to sensor limitations, robot stability, and control
issues. It is crucial to acknowledge the significant challenges
associated with system integration and electronic isolation in real-
world pipe networks, which are often wet, dirty, and cluttered. To
thoroughly evaluate the performance, reliability, and durability of
the in-pipe robot, extensive testing and validation in real-world
pipeline environments are essential. Another noteworthy challenge
in real-world deployments is failure recovery. For instance, if the
robot becomes stuck inside the pipe network, our current method
does not provide a solution for rescuing it. Additionally, real-
pipe networks often pose the challenge of dark lighting conditions.
Consequently, in a practical deployment, the robot may require
onboard lighting to support the camera’s visibility. Under such
settings, the usefulness and feasibility of active vision can be
more extensively tested. The experiments conducted in our work
have primarily focused on a specific pipe texture. Conducting
experiments in a physical pipe environment will enable us to test our
proposed method with real pipe textures and verify our hypothesis
that the distinct textures at junctions are sufficiently different to
enable the differentiation of various junctions. In summary, while
our work emphasizes image-matching algorithms for active vision,
it is crucial to recognize and address the challenges posed by the
physical robot’s limitations, system integration in real-world pipe
networks, failure recovery, lighting conditions, and the need to
validate the method with different pipe textures in physical pipe
environments.
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