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Introduction:Handwriting is a complex task that requires coordination of motor,
sensory, cognitive, memory, and linguistic skills to master. The extent these
processes are involved depends on the complexity of the handwriting task.
Evaluating the difficulty of a handwriting task is a challenging problem since it
relies on subjective judgment of experts.

Methods: In this paper, we propose a machine learning approach for evaluating
the difficulty level of handwriting tasks. We propose two convolutional neural
network (CNN) models for single- and multilabel classification where single-
label classification is based on the mean of expert evaluation while the multilabel
classification predicts the distribution of experts’ assessment. The models are
trained with a dataset containing 117 spatio-temporal features from the stylus
and hand kinematics, which are recorded for all letters of the Arabic alphabet.

Results: While single- and multilabel classification models achieve decent
accuracy (96% and 88% respectively) using all features, the hand kinematics
features do not significantly influence the performance of the models.

Discussion: The proposed models are capable of extracting meaningful features
from the handwriting samples and predicting their difficulty levels accurately.
The proposed approach has the potential to be used to personalize handwriting
learning tools and provide automatic evaluation of the quality of handwriting.

KEYWORDS

artificial neural networks, deep learning, learning from demonstration, machine
learning, sensorimotor learning

1 Introduction

Handwriting is a complex sensorimotor skill that combines sensory, cognitive, andmotor
processes to master. Forming legible handwriting requires a coordinated movement of the
hand, arm and fingers while continuously evaluating the visual (formed letter) and the
haptic (pressure from the pen) feedback received towards adjusting the trajectory, alignment
and force of writing. The ability of children to produce fluent and readable handwriting is
important for educational development, achievements in school, and self-esteem (Chang
and Yu, 2014). The advances in assistive technologies, along with a better understanding
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of the difficulty of handwriting, led to new and innovative
methods of handwriting development/evaluation (Maor et al., 2011)
and rehabilitation (Fancher et al., 2018). With the availability
of smart devices (such as touch devices and hand tracking
technologies), the analysis of handwriting has reached new
heights, such as handwriting evaluation (Rosenblum et al., 2003),
detection/prediction of handwriting difficulties (Drotár and Dobeš,
2020), and novel remediation/intervention methods (Fancher et al.,
2018).

The transformation from traditional teaching methods to
technology-enhanced learning paved the way for exploring
personalized learning paradigms (Jenkins et al., 2016). In fact,
research has found that personalizing the learning task for
individual learners improves motivation, attitude, and learning
(Corbalan et al., 2006). A fully personalized handwriting learning
system would involve a mechanism to evaluate the quality of
handwriting as a sensorimotor skill and provide a learning task
with an appropriate level of difficulty. Giving learners a learning
task that is too difficult or too easy can hinder the learning process
and cause a downgrade (Curto et al., 2015). Traditionally, the
difficulty level of a handwriting task is evaluated through expert
assessment using task-specific performance measures. Researchers
have developed known metrics for evaluating the difficulty of
handwriting tasks, including the size and complexity of the shape
of the handwriting task, the number and sequence length of stroke,
and the quality of sensorimotor skill of the writer (Danna and Velay,
2015). Understanding the difficulty level of a handwriting task is
a challenge due to the high subjectivity/diversity among experts’
judgments. Furthermore, manually selecting a handwriting task for
an appropriate level of difficulty is inefficient. Besides, automatically
evaluating the difficulty level of a handwriting task is ill-defined.
By using tablets and hand motion tracking, various handwriting
features can be measured and analyzed, e.g., pressure, handwriting
speed, in-air movement, stops and lifting of a pen, text shape, and
time needed to complete the task, to evaluate the difficulty of a
handwriting task. With the availability of data, it is tempting to
utilize machine and/or deep learning to automatically classify the
difficulty level of a handwriting task.

Machine learning has been used to detect if a child suffers
from writing disabilities by using the kinematics of handwriting
and questionnaires data (Pagliarini et al., 2017). Recent studies
demonstrate the utilization of machine learning methods to
diagnose dysgraphia (Mekyska et al., 2016; Asselborn et al., 2018;
Asselborn et al., 2020; Dui et al., 2020). For instance, a Random
Forest model was developed to identify dysgraphic children;
the study included 54 third-grade children and used a 10-
item questionnaire for Hebrew handwriting proficiency (HPSQ)
(Rosenblum, 2008) to identify poor writing. Another study used
commodity tablets and proposed a tool to diagnose dysgraphia
(Asselborn et al., 2018); data from 298 children, including 56
with dysgraphia, were labeled using the Concise Assessment
Scale for Children’s Handwriting (Beknopte beoordelingsmethode
voor kinderhand-schriften, BHK) test and utilized it to train a
Random Forest classifier to detect dysgraphia. Results demonstrated
that the proposed model has comparable accuracy to experts. A
subsequent study proposed a serious games tablet application for
handwriting skill screening at the preliteracy stage (Dui et al., 2020).
Instead of a global score based on the BHK test, the authors in

(Asselborn et al., 2020) proposed a detailed profile that incorporates
the kinematics, pressure, pen tilt and static features (such as the
letter shape) in the evaluation of handwriting skills. Based on this
evaluation, personalized remediation tasks that are very specific to
the individual child’s needs can be developed. To our knowledge,
no study examined both stylus and hand kinematics to evaluate the
difficulty level of handwriting tasks.

This paper presents a data-driven model to provide an unbiased
evaluation of the difficulty of the handwriting task, which in turn
facilitates the personalized acquisition of the handwriting skill. The
system will also be helpful for evaluating the quality of handwriting
and informing the simulation of sensorimotor skills. Using the
developed model, we examine prominent sensorimotor features
based on kinematics that are found in both the hand (such as hand
orientation and grip characteristics) and the stylus (including stylus
orientation, pressure, and temporal characteristics). The proposed
model is evaluated with data collected from five handwriting
experts who completed the handwriting of all Arabic alphabet
letters. We made the choice of using Arabic orthography as it
captures a wider range of difficulty levels in handwriting (Naz et al.,
2014), particularly due to its cursive nature, complex ligatures, and
numerosity of topological features (Kacem et al., 2012). The model
is expected to learn features that could deem a task difficult/easy.
This task could go beyond the 28 letter of the Arabic alphabet such
as letters-like shapes as well as word segments.

Two models have been considered–the one learning from the
aggregated opinion of all experts about the difficulty of a given
handwriting task, and the other learning the distribution of experts’
estimates of the difficulty level of a given handwriting task.While the
first model can tell in average what difficulty level will be assigned
to the handwriting task, the second model can explicitly predict
how many experts estimate the handwriting task of a particular
difficulty level (in order to capture the subjectivity/diversity of
expert assessment of the handwriting difficulty level). Furthermore,
Shapley values are applied to identify features that are prominent for
the evaluation of the difficulty of handwriting.

2 Proposed approach

2.1 Experimental setup

A snapshot of the experimental setup is shown in Figure 1A.
The proposed setup consists of a HUION GT-116 tablet that is
equipped with a pen-like stylus, and anUltraleap Stereo IR 170 hand
movement tracker. As shown in Figure 1, the hand tracking device
is attached to a rigid stand in a position where the writer’s hand
movement can be reliably tracked. Note that the setup is portable
to facilitate data collection at different sites.

2.2 Experimental task and protocol

The handwriting of all the 28 letters of the Arabic alphabet
in standard form are included in the study. The experts are asked
to write each letter separately with their own speed, initiating the
process of recording by pressing the “Start” button on the screen
and then “Stop” to submit the data or “Clear” to cancel the current
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FIGURE 1
(A) Experimental setup, (B) User interface, (C) Timeline of the single trial.

recording and repeat the task for the same letter (Figure 1B). The
28 letters are presented in alphabetical order, starting from the first
letter ا (“alif ”) to the last letter ي (“yaa”). This is repeated 20 times
for every letter so we have a total of 560 samples of handwriting to
every expert. Experts are encouraged to take a few minutes break
whenever needed.

2.3 Participants

Two groups of experts are recruited for this study. All
experts were native Arabic speakers with no known disorders in
handwriting. Five handwriting experts (3 female, 2 male, ages 35–55
years) are recruited to complete the handwriting tasks and 20 Arabic
teaching experts (10male, 10 female, ages 35–55 years) are recruited
to complete the online survey. Experts were selected based on the
following criteria: 1) more than 10 years of experience in teaching
Arabic handwriting and 2) currently work in official (statutory
work) or extra-official settings (non-statutory work). Additional
inclusion criteria are defined for the group who are recruited to
complete the handwriting tasks: 1) available for in-person meeting
(for recording the handwriting tasks) and 2) no known disorders in
handwriting. The 5 handwriting experts did not rate the difficulty
level of the handwriting tasks. Note that the study was conducted
in compliance with the Declaration of Helsinki, following its norms
and regulations, and with an authorized protocol by the New York
University Abu Dhabi Institutional Review Board (IRB: #HRPP-
2020–12).

2.4 Data collection

A total of 117 spatio-temporal and kinematic features
representing the point on the multidimensional skill path are

collected (see Table 1). The recordings from the tablet and the hand
tracking device are synchronized to concatenate the two feature sets
into one. The data were sampled with the rate of 25 Hz.

2.5 Data preprocessing

Due to the differences in the experts’ writing speed, the collected
raw data represent a multivariate time series of 117 features of
different duration, ranging from 15 time points to 234 time points.
Thedatawith duration less then 24 time points are excluded from the
analysis, because it requires at least 1 s to accomplish the writing task
and everything below this threshold represents a partially written
letter. Also, the first and last two time points are trimmed to remove
any noise during pen’s approaching to and distancing from the tablet
surface. Tomake the data uniform, the features× time points tensors
are padded by zeros to create 117× 234matrices. All the variables are
normalized before feeding them to the classification model.

2.5.1 Multiclass single-label classification
The traditional multiclass single-label classification is concerned

with training a machine learning model on a set of samples, each
having a unique class label from a set of disjoint class labels either
binary (two classes) or multiclass (more than two classes) (Sorower,
2010). In this work the labels formulticlass single-label classification
were obtained by extracting themean values from the distribution of
the difficulty levels evaluated by experts for each letter and rounding
it to the nearest integer (Figure 2, A). It is clear that most of the
letters were evaluated as of difficulty level 2 and 3 by the majority of
experts. The experts were usually quite reluctant to mark the letter
of difficulty level 5, therefore the taken means are always below 5
and therefore difficulty level 5 was excluded from consideration.
The apparent imbalance in letters distribution by difficulty levels
(Figure 2B) prompted us to seek another labeling approach that
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TABLE 1 The 117 features collected during the experiment along with timestamp and hand ID (“Right”/“Left”).

Feature type Feature name

Stylus kinematics (x,y,z) coordinates of tooltip’s trajectory (z = const), pressure, azimuth, altitude, proximity

Hand kinematics

Fingers: the distal ends (x,y,z) coordinates of the bone for distal, intermediate, proximal, metacarpal for all 5 fingers and additionally a proximal end of
the metacarpal bone for Index, Middle, Ring and Pinky fingers

(x,y,z) coordinates of palm center

(x,y,z) coordinates of hand pinch position (thumb and index if they are pinched)

(x,y,z) coordinates of hand predicted pinch position

(x,y,z) coordinates of hand wrist position

(x,y,z) coordinates of elbow position (estimated if not in view)

(x,y,z) coordinates of hand arm center (midpoint of the bone)

(vx,vy,vz) palm speed

(nx,ny,nz) hand palm normal

(rx, ry, rz, rw) hand rotation

Palm width, pitch, yaw, roll

Hand pinch strength, hand pinch distance

Hand grab angle

Hand arm length (length of the bone)

Hand arm width (average width of flesh around the bone)

FIGURE 2
(A) Distribution of difficulty levels evaluated by experts for each letter, color coded by mean values for each letter, (B) Distribution of samples, which
difficulty level is labeled by averaging and rounding the experts’ evaluations.

reflects each expert’s opinion regarding the difficulty of a given letter
while concurrently preserving the overall distribution of difficulty
estimates. For this reason, the multiclass-multilabel classification
approach has been adopted alongside multiclass single-label
classification.

2.5.2 Multiclass-multilabel classification

In contrast to a single-label classification where class labels
are mutually exclusive, the multilabel classification (or multi-
output classification) is a generalization of multiclass single-label

classification that deals with multiple mutually non-exclusive
repeated classes or “labels.” A given training set consists of n samples
S = (xi,yi), i = 1,… ,n, xi = (x1i ,…,x

f
i ) ∈ X , yi = (y

1
i ,…,y

l
i) ∈ Y ,

where X is the instance space, Y is the label vector space, f
is the number of features and l is the number of labels in a
label vector. The samples are independent, identically distributed
and are randomly drawn from an unknown distribution D.
The multilabel learning aims to produce a multilabel classifier
h:X → Y that optimizes specific evaluation function (i.e., loss
function) (modified from (Zhang and Zhou, 2007)). In this
work a vector yi = (y

1
i ,…,y

l
i) of labels is referred to “label

vector”.
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Emerged from automatic text-categorization for medical
diagnosis, the multilabel classification can be accomplished using
Artificial Neural Networks that allow to specify the number
of outputs in the output layer. The applications of multilabel
classification can be found in music/movie categorization, where
a single melody/movie can belong to different genres, or in semantic
scene classification, where a picture can be categorized under more
than one conceptual class at the same time (e.g., sunsets and beaches)
(Tsoumakas and Katakis, 2007; Sorower, 2010).

To create the labels vectors for multiclass-multilabel
classification, we define a labels vector of size 1× 5 for each letter.
Each label in the labels vector refer to the number of experts who
evaluated the letter as a particular difficulty level. Each label can
range from 0 to 20 (since there were 20 experts in overall). For
example, for letter ا “alif ” the target label vector is [16,2,1,1,0],
meaning that sixteen experts out of twenty evaluated it as of level 1,
two experts as level 2, one expert as level 3 and as level 4 each and
no one as level 5.

2.6 Feature selection: Shapley values

Shapley values, first introduced in the context of Game Theory
(Shapley, 1953), are becoming more popular for interpreting the
contribution of each feature in the prediction process of a trained
ML model (Fryer et al., 2021). The idea behind Shapley values
is to evaluate the influence of each feature on the outcome of
the model by sequentially replacing each of the features, one at
a time, with random uniformly-distributed values. A machine
learning model is then repeatedly trained on the samples from
the training set with the introduced randomly populated feature.
Shapley values are obtained by calculating the difference between
the outcome of the model considering the random feature and
the outcome of the model considering the original feature. This is
done on all instances of the validation set. Then, Shapley values are
averaged across the samples of the validation set to get the overall
influence of each feature. The model is iteratively retrained on the
different subsets of the features, replacing a different feature with the
random values each time. At the end, the distribution of averaged
Shapley values is obtained, allowing to test the hypothesis if the
replaced feature is more important than the introduced random
feature.

In general, Shapley value of feature with index f ∈ F = {1,…,d},
where F is a set of all features’ indices, can be defined as
a weighted average over all marginal contributions Mf(S) of
f, where the marginal contribution of f to submodel S ⊂ F is
defined as a difference in evaluation when f is added to the
submodel:

M f (S) = C (S∪ { f}) −C (S) (1)

where C is an evaluation function.
Thus, the Shapley value ϕf of feature of index f is

ϕ f = ∑
S∈2F\{f}

ω (S)M f (S) , (2)

and the weights are ω(S) = |S|!(|F|−|S|−1)!
|F|
! (Fryer et al., 2021).

3 Multiclass single-label classification

3.1 Architecture

The 1D CNN model for multiclass single-label classification
contains two 1D convolution layers for data preprocessing and five
fully connected layers for learning (Figure 3). The first convolution
layer has 128 channels and accepts a matrix of 117 features and 234
time points as an input. The convolution is performed along the
time dimension using 1× 5 kernel. The resulting 128× 230 matrix
is passed to the input of the second 1D convolution layer with the
same 1× 5 kernel sliding along the time dimension.The output from
the second 1D convolution layer is flattened and passed to the dense
layers with 256, 128, 64, 32 and finally 4 neurons. To stabilize the
learning process and to prevent overfitting, the batch normalization
and dropout of 25% were applied after each layer. The Rectified
Linear Unit (ReLU) activation was used in all layers except the
last one (output layer) that uses Softmax as an activation function.
The model was trained on 5000 epochs with Adaptive Moment
Estimation (Adam) optimizer and sparse categorical crossentropy
loss. The optimal learning rate of 10–4 was found empirically. Due
to the significant imbalance in the number of samples for average
difficulty levels 1 and 4 in comparison to difficulty levels 2 and
3 (see Figure 2) weights are used in the loss function to penalize
higher for wrong prediction of levels 1 and 4 during the model
training.

3.2 Results

3.2.1 Model evaluation
The 1D CNN model is evaluated using 5-fold cross-validation

(Figure 4) and leave-one-expert-out cross-validation (Figure 5) in
terms of accuracy, precision, recall and F1-score. To understand
the effect of hand-kinematics related features, the model is trained
on three different datasets. One dataset contained all 117 features,
and the other two contained only the 7 stylus kinematics features
and the 110 hand kinematics features, respectively. Training on all
three datasets is run for 5000 epochs and evaluated with 5-fold and
leave-one-expert-out cross-validation.

The 1D CNN model for multiclass single-label classification
achieves accuracy of 96%, recall of 97% and precision of 97% after
5-fold cross-validation with all 117 features (Figures 4A, D). With
the stylus kinematics features, the model achieves highest average
accuracy, recall and precision were all 97% (Figures 4B, E). With the
hand kinematics features, the average accuracy drops to 91%, the
recall to 90%, and precision to 93% 4, C, F).

A similar analysis has been performed with leave-one-expert-
out cross-validation. As expected, the performance of the model
drops. The skill of handwriting is individualized and varies from
expert to expert and since during the leave-one-expert-out cross-
validation the model is trained with data from any of the four
experts and tested on data from the fifth’s, it learns handwriting
features common to these four experts but fails to capture some
of the individualized aspects of the handwriting of the fifth expert.
For example, if the fifth expert is left-handed while the remaining
four experts are right-handed, the model will learn only right-
handed features determining difficulty levels (e.g., the tilt of the
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FIGURE 3
Proposed architecture of the 1D CNN model for multiclass single-label classification with convolution across time.

FIGURE 4
Performance of multiclass single-label 1D CNN model with convolution across time after 5000 epochs for 5-fold CV. The metrics are averaged over all
4 classes for each of the folds. The model is trained and tested with (A) all 117 features, (B) Seven stylus kinematics features, (C) 110 hand kinematics
features. Corresponding confusion matrices averaged over 5 folds: (D) for all 117 features, (E) for 7 stylus kinematics features, (F) for 110 hand
kinematics features.

pen) and will not be able to infer the difficulty level from the same
features of the left-handed individual, if they differ significantly from
right-handed participants. Similar to 5-fold cross validation, the
highest accuracy of 90% with recall of 89% and precision of 92%
has been achieved on the dataset with stylus kinematics features
(Figures 5B, E), while the lowest one of 74% with recall of 72% and
precision of 73% is observed on the dataset with the hand tracking
features (Figures 5C, F).Despite the noticeable drop in performance,
the model is still capable to use some general features to infer the
difficulty level of the handwriting task.

3.2.2 Feature analysis
To determine which features are considered as significant for

classifying handwriting tasks into four difficulty levels, Shapley
values are calculated. The single-run accuracy of the trained model
was 98%. Shapley values are calculated using randomly selected 100
instances from the training set as the background distribution and
randomly selected 100 instances from the testing set for validation.
For each of the 100 test instances, the calculated Shapley values
are selected only for the classes that correspond to the true labels.
The obtained Shapley values are averaged across 100 validation
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FIGURE 5
Performance of multiclass single-label 1D CNN model with convolution across time after 5000 epochs for leave-one-expert-out CV. The metrics are
averaged over all 4 classes for each of the folds. Model has been trained and tested with (A) all 117 features, (B) Seven stylus kinematics features, (C) 110
hand kinematics features. Corresponding confusion matrices averaged over 5 folds: (D) for all 117 features, (E) for 7 stylus kinematics features, (F) for
110 hand kinematics features.

instances. The 20 most prominent features for the multiclass single-
label classification are shown in Figure 6. These results demonstrate
that positional coordinates of the stylus and pressure data as well
as roll and hand speed from hand tracking device are significant
features for evaluating the difficulty level of the handwriting
task.

4 Multiclass-multilabel classification

4.1 Architecture

The developed model for multiclass-multilabel classification
has architecture similar to the multiclass single-label model. In
other words, it also contains two 1D convolution layers for data
preprocessing and five fully connected layers for learning (Figure 7).
The input to the first convolution layer of 128 channels is a matrix
of 117 features and 234 time points. The convolution is performed
along the time dimension using 1× 5 kernel.The resulting 128× 230
matrix is passed to the input of the second 1D convolution layer
with the same 1× 5 kernel sliding along the time dimension. The
output from the second 1D convolution layer is flattened and passed
to the dense layers with 256, 128, 64 and 32 neurons. The only
difference from the multiclass single-label model’s architecture is
that in the multilabel model the output of the penultimate layer
with 32 neurons is passed to 5 parallel dense layers with 20 neurons
and Softmax activation. Each one of the 5 output layers represents a
difficulty level. A single output layer produces a number between

1 and 20 which represents the number of experts who estimated
the letter as of a corresponding difficulty level. The outputs from
each of these layers later combined to form a label vector of 5
elements. To stabilize the learning process and to prevent overfitting
the batch normalization and dropout of 25% were applied after each
layer. The Rectified Linear Unit (ReLU) activation used in all layers
except the output layers.Themodel was trained on 5000 epochs with
Adaptive Moment Estimation (Adam) optimizer and categorical
crossentropy loss. The optimal learning rate of 10–4 was found
empirically.

The network formultilabel classification outputs a label vector of
5 elements, whose index-position corresponds to the given difficulty
level and values corresponds to the number of experts evaluating the
letter with a particular difficulty level. We consider the performance
metrics such as accuracy, precision, recall and F1-score separately
for each of the difficulty level across 5 folds.The accuracy is averaged
across 5 difficulty levels and 5 folds.

4.2 Results

4.2.1 Model evaluation
The 1D CNNmodel was evaluated using 5-fold cross-validation

and leave-one-expert-out cross-validation. Apart from common
metrics such as accuracy, precision, recall and F1-score Godbole and
Sarawagi (2004), averaged over all samples for a given fold/expert
and for each difficulty level, the Exact Match Ratio (EMR)
(Sorower, 2010) was used to give additional insight into the model’s
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FIGURE 6
Shapley values of the top 20 features learned by the 1D CNN model trained for 5000 epochs (single run) for multiclass single-label classification.

FIGURE 7
Proposed architecture of the 1D CNN model for multilabel classification with convolution across time.

performance in case of the multilabel classification. The EMR score
shows how many elements (labels) in predicted label vector equal
to the labels in actual label vector (both labels’ values and positions
must coincide). The requirements were to predict both the label
value and its position in the label vector. Formally speaking, if we
denote

yi = (y
1
i ,…,y

l
i) ∈ Y

–an actual label vector, where Y is the label vector space, i = 1,…,n,
n–number of samples, l is the number of labels in a label vector, and

ŷi = ( ̂y
1
i ,…, ̂y

l
i) ∈ Ŷ

–a predicted label vector of nth sample, where Ŷ is the predicted
label vector space, then the exact match ratio is defined as

EMR = 1
n

n

∑
i=1

I (yi = ŷi) , (3)
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FIGURE 8
Performance of 1D CNN model after 5000 epochs for 5-fold CV with (A) all 117, (B) Seven stylus kinematics, and (C) 110 hand kinematics features.
Percentage of samples with correctly predicted number of label vector’s elements (both positions and values) for (D) all 117, (E) Seven stylus kinematics,
and (F) 110 hand kinematics features. Corresponds to Exact Match Ratio in the case of 5 labels.

Where I is the indicator function. formula 3 can be extended if we
are interested in exact match of vectors with any number of correctly
predicted labels. For example, in case of l− 1 correctly predicted
labels:

EMRl−1 = 1
n

n

∑
i=1

I (yji = ̂y
j
i|
l

j=2
∧ yj1 ≠ ̂y

j
1)+…

+ 1
n

n

∑
i=1

I (yji = ̂y
j
i|
l−1

j=1
∧ yjl ≠ ̂y

j
l), (4)

The accuracy was calculated as a ratio of the number of correctly
predicted labels to the total number of labels for a given instance:

A = 1
n

n

∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

(5)

The precision was calculated as a ratio of the number of correctly
predicted labels to the total number of actual labels averaged over all
instances:

P = 1
n

n

∑
i=1

|yi ∩ ŷi|
|yi|

(6)

The recall was calculated as a ratio of the number of correctly
predicted labels to the total number of predicted labels averaged over
all instances

R = 1
n

n

∑
i=1

|yi ∩ ŷi|
|ŷi|

(7)

The F1 score was calculated as a harmonicmean of the precision and
recall:

F1 =
1
n

n

∑
i=1

2|yi ∩ ŷi|
|yi| + |ŷi|

(8)

Themetricswere averaged over all folds. For example, Figure 8D.
Shows the performance of the model across 5 folds with all 117
features by comparing how many label vectors have at least one
common element (both value and position are the same), two
common elements, and so on. For 5 common elements, depending
on the fold, the Exact Match Ratio varies between 77.1% and 89.1%.
Notice that 3.1%–6.1% of all samples were predicted incorrectly
(none of the elements of predicted and actual label vectors
coincide).

The results of model’s evaluation are demonstrated in Figure 8
(5-fold cross-validation) and Figure 9 (leave-one-expert-out cross-
validation) with accuracy, precision, recall and F1 averaged over
all samples for each difficulty level on the upper row (A., B., C)
and the accuracy of predicting the exact value and position of the
element corresponding to the difficulty level in the label vector
on the lower row (D., E., F.). The model trained for 5000 epochs
performs better for 5-fold cross-validation rather than leave-one-
expert-out cross-validation, because the latter excludes the unique
features, attributable to the experts from training, while the 5-
fold cross-validation ensures that samples of all experts are equally
present both in training and testing sets.

The prevalence of metrics obtained for the model trained and
evaluated on the stylus kinematics features over hand kinematics
features in the multiclass single-label classification is also observed
for the multilabel case. It is more prominent for the leave-one-
expert-out cross-validation (Figure 9C) but also true for the 5-fold
cross-validation (Figure 8), where the use of 110 hand-tracking
features results in increased variation in metrics across folds. For

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1193388
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Babushkin et al. 10.3389/frobt.2023.1193388

FIGURE 9
Performance of 1D CNN model after 5000 epochs for leave-one-expert-out CV with (A) all 117 features, (B) Seven stylus kinematics, and (C) 110 hand
kinematics features. Percentage of samples with correctly predicted number of label vector’s elements (both positions and values) for (D) all 117, (E)
Seven stylus kinematics, and (F) 110 hand kinematics features. Corresponds to Exact Match Ratio in the case of 5 labels.

FIGURE 10
Distribution of actual levels and predicted levels with 1D CNN model after 5000 epochs (single run) for each letter.

example, the average accuracy score for 5-fold cross validation drops
from 91% to 73% when switching from stylus kinematics features to
hand kinematics features. For leave-one-expert-out cross validation
this gap is more significant (the average accuracy drops from 76% to
43%).

It is also interesting to evaluate whether the 1D CNN model
trained for 5000 epochs on the dataset containing all 117 features
is capable of capturing the distribution of the number of experts
(the values of each element) in the label vector. Figure 10 shows
the violin plots for each letter comparing the actual and predicted
distributions of number of experts who assigned the corresponding
difficulty level to that letter. At the first glance, it is easy to notice that

most of the distribution shapes are predicted correctly. Moreover,
some letters have a similar distribution, for example, most of the
experts evaluated ا “alif ” and ن “nuun” as belonging to level 1, while
the letters ز (“zaay”), and و (“waaw”) were evaluated by the majority
of experts as level 1 and 2 and as level 4 by only a few experts. In
general the distributions are reconstructed correctly, with noticeable
similarities in distributions of different letters ب) (“baa”) and ރ
(“raa”), or ح (“Haa”), ـح (“khaa”), and ي (“yaa”)). In some cases as ا
“alif ” most of the experts agree on the difficulty level, while for other
cases like م (“miim”) there is almost uniform distribution of expert
evaluations across the five levels; meaning that the experts cannot
agree on how challenging it is to write this letter.
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FIGURE 11
(A) Mean, median, mode, standard deviation, (B) skewness and kurtosis of actual and predicted distributions for 1D CNN model after 5000 epochs
(single run), calculated for each letter.

FIGURE 12
Shapley values of the top 20 features learned by the 1D CNN model trained for 5000 epochs (single run) for multiclass-multilabel classification.

The 1D CNN model for multiclass-multilabel classification
accurately predicts the parameters of the distribution of
the number of experts across difficulty levels. Figure 11 A.
compares mean, median and mode of the predicted and actual
distributions and 11 B. shows the standard deviation, kurtosis
and skewness of the predicted and actual distributions for each
letter.

4.2.2 Feature analysis
Similar analysis with Shapley values was conducted for the

multiclass-multilabel classification. The average accuracy of the
model across all classes and all labels was 89.8%, the average

precision 90.2%, the average recall and F1 score were 90% and 89.8%
correspondingly, and the Exact Match Ratio was 85.7%. Shapley
values were calculated for every element of the label vector in the
same way as shown previously with the single-label classification.
Finally, the obtained Shapley values were averaged across 100
validation instances and then average along 5 elements of the label
vector. Figure 12B. Shows the most prominent 20 features. These
results mostly coincide with the results obtained for the multiclass
single-label classification. It appears that the handwriting stylus
positional coordinates, hand speed and roll from the hand tracking
device and also the pressure data are the most prominent for
evaluating the difficulty level of the handwriting task.
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5 Discussion

In general, the 1DCNNmodel demonstrates better performance
for 5-fold cross-validation in comparison to the leave-one-
expert-out cross-validation, both for single-label and multilabel
classification. The leave-one-expert-out cross-validation shows the
ability of the model to rate the task included in the training set but
executed differently by a left-out expert in comparison to the similar
task in the training set. The model will perform well if it does not
use the individual features of expert’s sensorimotor skill for ranking
the difficulty level of the handwriting task. Therefore, the lower
performance of the model in leave-one-expert-out cross validation
can be indicative ofmodel’s ability to focus on the features describing
the individuality of expert’s sensorimotor skill in the evaluation of
the handwriting tasks. Similarly, during the 5-fold cross-validation
for every fold the model is trained on 80% of the tasks coming from
all the experts and therefore, it learns common features defining the
difficulty level of the task. In this case, the high performance of the
model might indicate its ability to pick up the features associated
with the experts’ generic skills.

Another common observation between the single-label and
multilabelmodels is that bothmodels perform the best when trained
based on the stylus kinematics. On the other hand, relying on the
hand kinematics (i.e. 110 features obtained from the handtracking
system) results in a relatively compromised performance, due to
the high dimensionality of feature space that leads to the model
overfitting. Nonetheless, it is interesting to observe that it is possible
to predict the difficulty level of a handwriting task with an accuracy
that is considerably above the chance level by relying on hand
kinematics only without any direct information about the trajectory
of the task.

Explainability analysis with Shapley values provides further
insight on which features contribute the most towards the
classification of the difficulty level. The previously mentioned
conclusion on the prevalence of handwriting trajectory features
is consolidated by the results of Shapley values, where it has
been demonstrated that the importance of the handwriting
trajectory features, collected from the stylus, prevail over the hand
kinematics features. The top 3 handwriting trajectory features
are geometric coordinates of the stylus-tip (x and y) and the
pressure while the top three hand kinematics features include hand
velocity components and the roll, for single-label classification.
For multilabel classification the most prominent are handwriting
trajectory features as stylus tip coordinates, pressure, height
(altitude) of the stylus tilt. These features prevail over the top most
prominent hand kinematics features including all three components
of hand velocity, and roll.

As mentioned before, the motivation for multiclass-multilabel
classification is twofold: 1) The majority of the alphabets are ranked
as difficulty levels 2 and 3, leading to highly unbalanced ratings as
shown in Figure 2. 2) Alphabets with similar means (i.e., they have
the same labels in multiclass single-label classification) could have
very different underlying distributions. Both motivations are linked
to the fact that the difficulty level of a handwriting task is subjective;
and thus, alphabets are more characterized with distributions of
difficulty levels rather that a single level. Figure 10 gives an insight
on how well the multilabel model performed in classifying the

distribution of difficulty level compared to the actual one. It can be
observed that different letter have different distribution patterns. For
example, some letters have uni-modal distribution where experts
somewhat agree on a difficulty level (easy, intermediate, or hard)
while other letters are bimodal where experts have split opinions
on the difficulty level of the letter (mode1: easy, mode2: hard).
Other letters show a uniform distribution where experts have
uniformly split over the different difficulty levels. These major
differences in the distributions demonstrate the need of multilabel
classification.

6 Conclusion

Themain purpose of this work is to offer a system for automatic
evaluation of the difficulty level of handwriting task. The traditional
Machine Learning approach for a single-label classification relies
on the difficulty level defined as an average of the distribution
of difficulty levels evaluated by experts, rounded to the nearest
integer. While this approach can give an idea of the overall difficulty
of the handwriting task, the knowledge of the distribution of
experts’ evaluations allow to understand the extend of subjectivity
of experts’ judgment. A highly biased distribution with smaller
standard deviations will indicate that most of the experts are
agree on the difficulty level of the task, while the low values
of standard deviation of multimodal distribution indicates the
disagreement among the experts. The proposed multilabel model
automatically determines the distribution of experts’ opinions about
the difficulty level of the task from the spatio-temporal features of
the hand without asking the experts to evaluate it. This information
will help to select the task that corresponds to the skill level
of the writer. The model can be used in adaptive handwriting
teaching systems that adjust the difficulty level of handwriting
task based on the evaluation of the handwriting quality of a
learner.

As per future work, we plan to adapt the model to evaluate
the difficulty level of other handwriting tasks than Arabic letters.
For instance, the model can be re-trained/modified to evaluate
the difficulty level of handwriting in other languages or even
abstract shapes. Furthermore, the collected data was acquired on
a digit tablet. It would be interesting to evaluate the model with
another acquisition system that allows writing on a physical paper
(e.g., Wacom Bamboo) or on devices that simulate paper (e.g.,
reMarkable).
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