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Combining and completing point cloud data from two or more sensors with
arbitrarily relative perspectives in a dynamic, cluttered, and complex environment
is challenging, especially when the two sensors have significant perspective
differences while the large overlap ratio and feature-rich scene cannot be
guaranteed. We create a novel approach targeting this challenging scenario by
registering two camera captures in a time series with unknown perspectives and
humanmovements to easily use our system in a real-life scene. In our approach,
we first reduce the six unknowns of 3D point cloud completion to three by
aligning the ground planes found by our previous perspective-independent 3D
ground plane estimation algorithm. Subsequently, we use a histogram-based
approach to identify and extract all the humans from each frame generating a
three-dimensional (3D) human walking sequence in a time series. To enhance
accuracy and performance, we convert 3D human walking sequences to lines by
calculating the center of mass (CoM) point of each human body and connecting
them. Finally, wematch thewalking paths in different data trials byminimizing the
Fréchet distance between two walking paths and using 2D iterative closest point
(ICP) to find the remaining three unknowns in the overall transformation matrix
for the final alignment. Using this approach, we can successfully register the
corresponding walking path of the human between the two cameras’ captures
and estimate the transformation matrix between the two sensors.

KEYWORDS

3D completion, point cloud registration, point cloud segmentation, 3D data analysis, 3D
data processing

1 Introduction

The use of three-dimensional (3D) data has grown dramatically in different industries,
such as gaming (Yahav et al., 2007; Zhang, 2012), medicine (Haleem and Javaid, 2019;
Ballard et al., 2020), and construction (Lin et al., 2019; Cui et al., 2020), and has become
one of the most advanced data representation formats for research and commercial usage.
Provided natively by modern 3D sensors, 3D data improve on 2D data (Herbert and Chen,
2015; Flusser et al., 2016) and are characterized by 3D geometric point coordinates and
associated color attributes (Pereira et al., 2020; Raj et al., 2020; Tölgyessy et al., 2021). These
3D data representations have contributed to significant enhancements in the accuracy and
reliability of various industrial applications (Herbert and Chen, 2015; Ballard et al., 2020;
Fernandes et al., 2021). In addition, the processing and transferring time of the 3D datasets,
which are generally quite large, are more practical now due to advances inmodern computer
hardware and networks. Point clouds have emerged as one of the primary data formats
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for 3D data because they can be directly captured by commercially
available 3D sensors, such as depth (e.g., Microsoft Kinect) or
light detection and ranging (LiDAR; e.g., Velodyne LiDAR) sensors.
Therefore, point clouds have witnessed increasingly widespread
usage in both research and production. The current state-of-the-art
point cloud processing focuses on semantic scene understanding,
coding, and completion tasks (Camuffo et al., 2022). However, point
cloud data are strongly impacted by the perspective of the sensor and
are limited to the sensor’s line of sight and field of view (Cheng et al.,
2018). 3D sensors directly measure the distance from an object to
the sensor, and these sensors have a finite capture range varying
from a few meters (e.g., depth sensors) to hundreds of meters
(e.g., LiDAR). The density of the captured point cloud is inversely
proportional to the distance, such that objects close to the sensor
are represented by spatially dense points, whereas objects further
from the sensor are more sparsely represented. Notably, these 3D
sensors can only capture data from the portions of objects facing
the sensor. The backside of objects and objects occluded by other
objects closer to the sensor do not contribute data to the 3D point
cloud. Therefore, point cloud completion is required to generate a
larger andmore complete 3D scene using modern 3D sensors. Point
cloud completion is the process of estimating missing information
or combining partial information captured frommultiple sensors or
multiple perspectives together (Wen et al., 2020), resulting in amore
wholesome representation of the scene or object.

One of the most common point cloud completion processes
is point cloud registration, which is an approach to estimating
the transformation (three degrees of rotation and three directions
of translation) between a pair of 3D point clouds captured from
different locations or perspectives with a partially overlapping
field of view. After transforming one of the point clouds, the two
point clouds are merged into one global point cloud, leading to a
larger, more complete scene. Therefore, point cloud registration is
a fundamental process for all industries that require complete 3D
point cloud data. A complete point cloud provides a more accurate
anddetailed digital representation of the real world and is commonly
used in gaming (Kurabayashi et al., 2016), as well as inspection
and visualization in construction (Wang and Kim, 2019). Notably,
point clouds provide the ability to manipulate the model in full
3D post-acquisition. Full point cloud representations of hospital
facilities, such as operating rooms or intensive care units, have
been especially useful for improving the efficiency and accuracy of
medical activities (Liu et al., 2018; Fischer et al., 2022), which is also
the application scenario we are targeting. In this study, we define
the challenging real-world indoor environments we are targeting
as scenes that are full of objects (i.e., cluttered), contain moving
objects (i.e., dynamic), and involve different interactive activities
(i.e., complex), such that the multiple sensors cannot be placed to
ensure significant overlapping fields of view (FOV), and objects with
rich and descriptive shape and texture are not guaranteed to be
included in the overlapping FOV, or such that the same scene can
appear significantly different from unique sensor perspectives.

The extensive usage of point clouds and point cloud completion
in commercial industries has seen the rapid emergence of research
into different approaches (Zhang et al., 2020), predominantly
characterized by the use of local feature descriptors (Deng et al.,
2019), global feature descriptors (Chen et al., 2019), and no-
correspondence approaches (Huang et al., 2020a). The local feature

descriptor and global feature descriptor registration approaches are
the traditional approaches for point cloud registration. With local
and global features, the transformation matrix is found by finding
and describing key points in two point cloud images, identifying
correspondences based on the similarity of the descriptors of the
key points, and then minimizing the error in correspondences
(Chen et al., 2016). The local feature descriptor extracts distinct
geometric information from small key point clusters (e.g., objects)
visible in the image (Guo et al., 2016). However, as the local
feature descriptors are created from small groups of key points,
their accuracy highly depends on the selection of representatively
discriminative key points out of all the available points in the
image, motivating some work on application-specific point cloud
data optimization through undescriptive data removal (Ebrahimi
and Czarnuch, 2021). Overall, the local feature descriptor is
considerably sensitive to noise and error in the point cloud image
and is characterized by the dilemma between feature generalization
(i.e., too many features) and low descriptiveness (i.e., too many
signatures) (Yang et al., 2016). With respect to image registration,
the use of local features normally requires a large, common,
overlapping field of view of at least 30% (Huang et al., 2021)
and relatively similar sensor perspectives to succeed. The global
feature descriptor summarizes the valuable geometric information
present in the entire point cloud image (Mortensen et al., 2005).
The global feature descriptor is more robust to localized noise
and error in the image, summarizing the feature information
across the entire image rather than utilizing individual features
(Chen et al., 2018). However, the registration of two images is
less robust than with the local feature descriptor approaches due
to incorrect matching and low correspondences (Gelfand et al.,
2005), particularly when the images are captured from distinctly
unique perspectives or do not share significant overlapping FOV.
Therefore, traditional feature-based approaches, whether local or
global, are not ideal for registering the 3D point cloud frames
captured in our challenging indoor environments. With the growth
of computing power, a new no-correspondence category of point
cloud registration has recently emerged (Le et al., 2019; Huang et al.,
2020a; Yang et al., 2020). Instead of matching the corresponding
feature points between the images, the overall projection error
is minimized based on the feature key point that the algorithm
uses. Therefore, the effects of both noise and density differences
are mitigated, which improves the accuracy and reliability of
registration in cluttered or low-density data and significantly boosts
the overall processing time. Despite these improvements compared
to the traditional feature-based approaches, no-correspondence
approaches perform equally poorly when registering two point
cloud images that have significant perspective differences or small
common FOV (Yang et al., 2020) due to the difficulty of optimizing
the descriptiveness and generalization of the selected feature
points. Hence, accurate registration of two point clouds captured
in challenging environments from unknown and potentially
significantly different perspectives or with a limited field of view
overlap remains an active challenge.

In this study, we propose a point cloud completion approach
for point clouds captured from multiple sensors with unknown
locations and perspective differences within challenging indoor
environments for human tracking and detection applications,
environments that prohibit the use of existing point cloud
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completion approaches. Our algorithm only assumes that a human
can be seen walking in consecutively captured frames within the
common field of view of pairs of arbitrarily placed 3D sensors
and that both sensors can detect the ground plane. Notably, the
overlapping field of view only needs to be as large as possible to
detect a common human within pairs of sensors. Furthermore, the
ground plane does not need to be entirely visible, but it only needs to
be sufficiently large to be detected, as in our previous work (Zhang
and Czarnuch, 2020). We propose to first dynamically identify the
ground plane to partially align pairs of point clouds and then create
a unique spatiotemporal feature based on themovements of humans
within the point cloud images. The advantage of our algorithm
is that, under our limited assumptions, we can extract highly
generalizable and descriptive features that are temporally sequenced
within each sensor’s data, allowingmultiple point clouds captured in
real-world environments from sensors with unknown perspectives
and small common FOV to be combined. This allows us to quickly
generate and align features detected in multiple sensors and reliably
combine real-life point cloud data without complex setup as long
as at least one human is moving, which is a reasonable assertion for
tasks related to humanmotion detection (Zhang and Cao, 2018) and
indoor environment simulation (Fischer et al., 2022).

2 Literature review

The point cloud completion problem has been most commonly
approached through estimation or registration (Sarode et al., 2019;
Gojcic et al., 2020; Wang et al., 2020; Fu et al., 2021). Point cloud
registration methods merge directly sensed data from two point
clouds tomake amore comprehensive and representative 3D dataset
over a larger area. Registration approaches mainly use local and
global features and, more recently, no-correspondence registration.
Both local and global feature descriptors have numerous existing
implementations. The following sections describe some of the
most commonly used descriptors in public open-source libraries.
Conversely, estimation approaches utilize known information about
the scene, the features of complex objects, and the template of objects
to generatemissing datawithin the point cloud (Xu et al., 2021) [e.g.,
generating data for the far side of a human’s body using only the
visible near side (Tagliasacchi et al., 2009)].

2.1 Local 3D features

Historically, one of themostwidely used local feature descriptors
for 3D data is the Fast Point Feature Histogram (FPFH) (Rusu et al.,
2009), which is implemented in the Point Cloud Library (Rusu and
Cousins, 2011). It first builds a simplified point feature histogram
(SPFH) for each point in the 3D data image by constructing one
histogram from the point and its neighbors along each dimension.
Then, the 3D FPFH is built based on the weighted sum of the SPFH
of a feature point and the SPFHs of the points in the feature point’s
support region (Rusu et al., 2009). Another commonly used local
3D feature descriptor is the Signature of Histogram of Orientations
(SHOT) (Tombari et al., 2010), which is created by combining 3D
Local Reference Frames (LRFs) (Tombari et al., 2010). The 3D LRF
is constructed from each key point k and its neighboring points np

as its support region by calculating the sum of the angle differences
between the 3D normal vector of k and the 3D normal vector of
nps in each local histogram bin after dividing the support region
along the radial, azimuth, and elevation axes. Signature ofHistogram
of Orientations for Color (SHOT COLOR) extends the SHOT
approach toworkwith texture (Salti et al., 2014). Xu et al. (2021) and
Zhan et al. (2020) built a local feature descriptor based on the 3D
surface normal vector and the distance between the key point and
the center of gravity of its eight neighboring clusters. After creating
the local feature descriptors, matching the corresponding feature
descriptors is the final step for calculating the transformationmatrix
between two point clouds. The most common and widely used
correspondence matching approach is Random Sample Consensus
(RANSAC) (Fischler and Bolles, 1981). Within a limited number
of iterations, it randomly selects a portion of the dataset, fits these
data to a designed model, and finds the best fit based on the
amount of outlying data. Rusu et al. (2009) introduced the Sample
Consensus Initial Alignment (SAC-IA) as the improvement of the
greedy correspondence matching algorithm. For each set of sample
points in one point cloud frame, it finds a list of candidate points that
have similar histograms in the other frame and finds the best match
by calculating the errormetric of the rigid transformation thismatch
created. Another much faster correspondence matching approach
is Fast Approximate Nearest Neighbors (FLANN) (Muja and Lowe,
2009). This approach automatically selects the nearest neighbors
with a search algorithm, optimizes parameters based on search
tree build-time and memory cost functions, and quickly searches
the most similar correspondence candidates with the nearest
neighbor search tree. More recently, end-to-end local feature-based
registration processes have been constructed using neural networks
(Lu et al., 2019; Li et al., 2020; Ao et al., 2021), showing significant
performance improvements compared to traditional approaches
(Li et al., 2020; Ao et al., 2021). While Ao et al. (2021) fit the input
point cloud image to a designed cylindrical space to create point-
based local key points, Lu et al. (2019) directly applied a multi-
layer perceptron (MLP) model to raw point cloud images to create
semantic single-point-based local feature points. Li et al. (2020)
used multi-view rendering to estimate different multi-view patches
from different viewpoints to ensure the point cloud registration is
rotation invariant. However, these approaches suffer from common
issues of noise, distortion, and errors in the point cloud data
associated with local feature descriptors, which significantly affect
the accuracy and performance of the algorithms, causing poor
performance in dynamic, cluttered, and complex environments
(Li et al., 2020; Ao et al., 2021).

2.2 Global 3D features

Similar to the local feature descriptor, the global feature
descriptor is another traditional approach to point cloud registration
with multiple variations. Madry et al. (2012) proposed encoding
point clouds with Global Structure Histograms (GSH), which are
formed from the distribution of 3D surface-shape characteristics
foundwith local descriptors.More recently, the Scale Invariant Point
Feature (SIPF) was proposed as a new global feature descriptor
(Lin et al., 2018). First, an object or the scene is represented
by encoding the border with the combination of LRF and the
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covariance matrix defined in the SHOT feature (Tombari et al.,
2010). The SIPF value is computed as q* = argminq‖p− q‖ between
feature point p and the edge point q as the reference direction. After
dividing the angle q* of local cylindrical coordinates into N regions,
whose angle is within 2πiN and 2π(i+ 1)N for i = 0,1,…,N− 1, the
SIPF descriptor is constructed by concatenating all the normalized
cell features Di = exp(

di
1−d
), where di is the minimum distance

between a point p and the ith region. Another recent global feature
descriptor with promising computational time and robustness to
Gaussian noise is the Global Orthographic Object Descriptor
(GOOD) (Kasaei et al., 2016), which is also built based on LRF.
GOOD first orthographically projects (i.e., all projection lines are
orthogonal to the projection plane) onto three planes constructed
as the X-Z, X-Y, and Y-Z axes, respectively, and then each
plane is divided into multiple bins so that the feature is built
from concatenating the entropy and variance vectors from each
distribution matrix by counting the number of points for each
bin. In addition, Gojcic et al. (2020) and Choy et al. (2020) used
the output of the sparse tensor as the fully convolutional global
geometric feature, which is efficient and discriminative. Although
global features are more robust to noise and distortion, having
a sufficient number of descriptors and accurate correspondence
is a common challenge that hand-crafted and machine-learning
global feature descriptors experience, particularly in challenging
environments or with data captured from distinct perspectives. As
the global feature descriptors illustrate the entire point cloud frame,
the most common approach is defining an optimization function
based on their feature to find the minimum error between the two
global features (Lei et al., 2017; Gojcic et al., 2020).

2.3 No-correspondence approaches

No-correspondence approaches do not rely on calculating the
transformation matrix using correspondences between described
key points. Instead, the optimal transformation matrix that
minimizes the projection error between the feature sets of two point
cloud images is found. Huang et al. (2020a) first extracted the point-
wide rotation-attentive feature using anMLPmodelwith amax-pool
layer and then calculated the transformation matrix that minimizes
the feature-metric project error across all points within the images.
Similarly, Le et al. (2019) constructed the transformation matrix
from a list of optimization equations between two randomly selected
subsets from the source and target point cloud frame and refined
the transformation matrix using the iterative closest point (ICP)
(Lu and Milios, 1997) algorithm. However, both approaches require
a large common area between two point cloud images so that the
minimum project error can be found within the overlapping point
cloud, rendering them ineffective in challenging environments that
can appear significantly different from different perspectives or in
situations where sensors have a minimal overlapping field of view.

2.4 Estimation approaches

Point cloud estimation algorithms are commonly used in object
modeling fields. Schaer et al. (2007) relied on the feature of laser and
terrain, estimating themissing laser scanning geometric terrain data

by first calculating the local normal vector and curvature of the point
cloud so that all points can be pre-classified; then computing the
special 3D footprint from the normal vector, laser direction, and
laser beam divergence of the laser points; and finally combining
all the previous information as the accumulation of random error
and estimating a point based on the error and the normal of its
neighborhoods. Tagliasacchi et al. (2009) proposed another point
cloud estimation algorithm that inspires our approach using the
symmetry of the human body. It uses the rotational symmetry axis
(ROSA) algorithm, which we will further discuss in the method
section, to find the center of mass (CoM) point of a layer of points.
Then, based on the human symmetric feature, the missing points
are estimated from the existing correspondent points with the CoM
point as the reference. More recently, Huang et al. (2020b) and
Wang et al. (2020) used machine learning approaches to estimate
the missing points in the point cloud frame. Huang et al. (2020b)
first built the skeleton-based feature point using the iterative farthest
point sampling (IFPS) strategy, then trained the combined multi-
layer perceptions (CMLP) with three different scales of IFPS feature
points, and finally used a pyramid-like point decoder to estimate
all points in the point cloud frame in different resolutions from
the CMLP output feature vectors. Similarly, Wang et al. (2020) first
extracted global point features using two PointNet feature extraction
networks, then mapped the global point features to the categorized
coarse representation of the point cloud, and finally refined the point
cloud frame by generating higher resolution points based on the
coarse point cloud. As all the aforementioned estimation approaches
rely on some features or knowledge of the object, the accuracy of the
result cannot be guaranteed, especially with errors and distortion
(Schaer et al., 2007; Wang et al., 2020). Therefore, in challenging
indoor environments, which are environments that our algorithm
is targeting, existing completion approaches, whether registration
or estimation, are insufficient. Inspired by the previous work of
Czarnuch and Ploughman (2014), our objective is to develop an
approach that can create a more comprehensive and complete point
cloud in these challenging environments using data provided by
multiple perspective-independent sensors. Specifically, we propose
a novel approach using a unique spatiotemporal feature based
on human motion trajectories referenced to the known ground
plane, leveraging the strengths of both registration and estimation
approaches for indoor point cloud completion.

3 Methodology

Our novel point cloud completion approach first utilizes the
work of Zhang and Czarnuch (2020) to reduce the complexity of the
3D point cloud problem. Two arbitrary point cloudsmust be aligned
in six degrees of freedom: three rotations and three translations. By
detecting and aligning to the ground plane, the problem space is
reduced to three degrees of freedom: one rotation around the ground
plane surface normal and two translations parallel to the ground
plane. In Zhang and Czarnuch’s (2020) algorithm, the ground plane
is estimated from a series of 3D point cloud images captured from an
unknown arbitrary RGB-D camera perspective with the assumption
that at least one person is visible and is walking in the cameras’
FOV. The algorithm first extracts and stores all the largest planes Pi
from the 3Dpoint cloud image as potential ground plane candidates.
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FIGURE 1
Human walking path created from a series of human point clouds with intervals of 10 frames.

FIGURE 2
ROSA point for a circle of points (A) full circle of points, (B) partial circle of points.

After removing all the largest planes in the point cloud, all isolated
clusters of points are labeled as potential moving human candidates
Oi. Then, the corresponding 2D RGB image is described with
Scale-Invariant Feature Transform (SIFT) features, constructing
moving trajectory vectors ⃗t for each moving cluster within a block
of n = 5 frames Bi, and identifying moving human(s) Hi among
the potential cluster candidates Oi using Motion-Split-And-Merge
(MSAM) (Dragon et al., 2012)within each block. Finally, the ground
plane is estimated after applying a cascaded filter to the ground
plane candidates based on the geometric relationship between the
ground plane and all the objects Oi and the trajectories of identified
humans Hi in the point cloud. The output of the previous ground
plane estimation algorithm includes a parametric model of the
ground plane GP, the point cloud(s) of the moving human(s) Hi

and associated trajectory vectors t⃗ki , the isolated point clusters Oi
that represent static objects in the room, and the roll Rr and pitch
Rp angles of the camera. By applying the ground plane estimation
algorithm to the outputs of pairs of perspective-independent 3D

sensors, we can obtain information regarding the ground plane
position, the position(s) and direction(s) of moving human(s), the
roll and pitch orientation angle of both cameras relative to the
ground plane, and the height (y-axis) of the camera from the ground
plane. With the assumption that at least one moving human walks
through a common area between the two sensors’ FOVs, we can
align the 3D outputs of these two sensors based on the ground
plane that determines the rotation around the x-axis and z-axis and
the translation information between the two sensors along the y-
axis in the 3D registration transformation matrix. Hence, by first
aligning two point clouds to their common ground planes, the
3D registration problem between two arbitrarily located sensors is
simplified to a 2D problem with three unknowns remaining: the
translation along the x-axis and z-axis and the rotation angle around
the y-axis. In addition, by converting this 3D registration to a 2D
problem, all the points and vectors in 3D space are reduced to 2D
points and vectors by removing the y value from the original 3D
space. For calculating the remaining three unknowns (x-axis and
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FIGURE 3
Registration results comparison (A) ROSA based CoM and regular CoM comparison, (B) initial positions of a walking path of a person, (C) two walking
paths in aligned position, (D) Fréchet distance couplings for two walking paths.

z-axis translations and y-axis rotation) in the transformationmatrix,
our approach is inspired byCzarnuch and Ploughman (2014), which
targeted point cloud registration specifically in indoor environments
that are highly cluttered, dynamic, and complex and contained a
moving human. Czarnuch and Ploughman (2014) first segmented
the human using depth-based background subtraction and then
calculated the CoM of the walking human for each frame in a
sequence of frames captured by two sensors. Then, they registered
the point clouds of the two 3D sensors by spatially aligning the
walking paths calculated from the two point clouds. This new type
of feature preserved the spatial trajectory in both point clouds
and supported registration in conditions where a large rotation
and translation angle existed between two sensors. However, the
approach required an existing backgroundmodel, did not utilize the
temporal information provided by identifying theCoM in sequential
frames from synchronized sensor pairs, and required a nonlinear
walking path for successful registration. We aimed to perform a
similar final registration using the 3D trajectories of all moving
humans. Improving on Czarnuch and Ploughman (2014)’s process,
we used the extracted clusters that represented humans from our
ground plane detection (Zhang and Czarnuch, 2020) and found
the center of mass of each cluster to construct the walking paths
of any number of humans, overcoming some of the limitations
of Czarnuch and Ploughman (2014). Notably, the ground plane
estimation algorithm does not guarantee that the moving human(s)
and the ground plane are found in every block of frames, suggesting

that our temporal trajectory vector may be missing some CoM data
points. Figure 1 shows a sample point cloud representation of a
human walking path created from 100 frames with an interval of
10 frames.

The accuracy of each CoM is significantly affected by the
viewing angle of each sensor. Each sensor creates a different,
incomplete human point cloud based on its viewing perspective,
and the CoM is calculated based on the partial point cloud that
may generate considerable shifts in the estimated CoM, causing
errors in the transformation matrix for point cloud registration.
In addition, human clusters may contain points from objects that
were incorrectly segmented along with the human, potentially
introducing error in the CoM if it is directly calculated from
the clusters. To improve the accuracy of our CoM calculation,
we first estimated a complete human point cloud using ROSA
(Tagliasacchi et al., 2009). This estimation approach utilizes the fact
that the tracked object is a human, and we specifically exploit
the symmetric feature of the cluster from an overhead perspective
because we know the human is walking along the ground plane.The
ROSA point is calculated by minimizing the sum of the squared
distance to the normal vector extensions for a circle of the points,
as shown in Figure 2A. By using this approach, the center of a
symmetric object is accurately estimated even in conditions where a
substantial portion of an object’s points are missing, similar to our
condition with a partial human, as shown in Figure 2B. Figure 3
shows the differences between the ROSA-based COM points and

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1184614
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhang and Czarnuch 10.3389/frobt.2023.1184614

FIGURE 4
Examples of point cloud completion using the DAHLIA public dataset. The first column shows the raw RGB images, the second column is the
corresponding colored point cloud for the frame, the third column shows the initial position of two point cloud frames when aligned to the ground
planes and centered over each other, and the final column demonstrates the completed point cloud.

the regular COM points, which are calculated by averaging the x
and z values of all points. It is easy to see that the results of ROSA
CoM points represent a smoother walking path that is closer to the
real path. To implement ROSA, we first use k-d tree-based normal
estimation (Pauly, 2003) to create a 3D normal vector for each
point in the partial human point cloud. Then, for every 50 mm,
we slice the human point cloud and corresponding normal vectors
into multiple layers parallel to the ground plane based on the height
of the human point cloud relative to the ground plane. Next, we
apply ROSA to each slice to find the CoM of each slice. Finally,
we generate the CoM of the human based on the average CoM of
all slices rather than directly from the point cloud because we are
only concerned with translations along the x-axis and z-axis and a
rotation around the y-axis (i.e., from an overhead perspective).With
this estimation approach, our CoM algorithm substantially reduces
the error introduced by missing data associated with partial point
clouds due to camera perspective. Figure 3 shows the estimated
3D CoM points of a single person projected onto the x− z plane
from data captured from two sensors in different locations. As the
walking paths for each person in both cameras and the approximate
trajectory vector for each human are now known, we determine the
human correspondences in both cameras by calculating the Fréchet
distance (Har-Peled et al., 2002), which essentially determines the
shape similarity between two point sets by calculating theminimum
length of coupling from an ordered sequence of distinct pairs
of vertices. The Fréchet distance is calculated according to the
following equation:

F (A,B) = inf
α,β

max
t∈[0,1]
{d (A (α (t)) ,B (β (t)))} , (1)

where d is the Euclidean distance,A and B represent the twowalking
paths, and α and β indicate the parameterized function of the two
paths.We first take the minimum length of the walking paths within
the same time frame required by the parameterized functions, and
then we find the walking path pairs (between cameras) that have
the shortest Fréchet distance (Figure 3) to identify all moving
object paths that possibly represent the same person. Finally, we
apply the 2D ICP (Lu and Milios, 1997) algorithm to find the 2D
rotation angle, x-axis and y-axis translations that correspond to
the yaw angle rotation, the translations along the x-axis and z-axis
in the 3D transformation, respectively, for each pair of walking
paths, and aligning two paths based on the 2D transformation
matrix, exemplified in Figure 3. The final transformation matrix
from registering the walking paths is generated by calculating
the 2D ICP result for all pairs of walking paths within a period
of time (e.g., if more than one person is visible) and then
combining them with the existing roll angle, pitch angle, and y
translation, which is generated from the ground plane estimation,
to formalize the six unknown parameters of the transformation
matrix (e.g., x, y, and z translations and roll, pitch, and
yaw).

As the walking paths are constructed from the estimated
CoM and given that individual CoM points may be missing, the
paths will always contain some noise and error. Accordingly, the
transformation matrix that our walking path registration generates
will also contain some errors. Therefore, the accuracy of our final
registration is highly dependent on the accuracy of the walking path
CoM estimation.
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FIGURE 5
Examples of point cloud completion using our collected dataset. (A) D01 success: Sensor 1 (top row, columns 1 and 2), rotated approximately 90
degrees, and Sensor 2 (bottom row, columns 1 and 2), parallel to the ground plane, (B) D03 success: Sensor 1 (top row, col-umns 1 and 2), rotated
approximately 180 degrees, and Sensor 2 (bottom row, columns 1 and 2), paral-lel to the ground plane, (C), D06 failed: Sensor 1 (top row, columns 1
and 2) and Sensor 2 (bottom row, columns 1 and 2), both parallel to the ground plane but directly facing each other with minimal overlap-ping FoV, (D),
D07 success: Sensor 1 (top row, columns 1 and 2), parallel to the ground plane, and Sensor 2 (bottom row, columns 1 and 2), almost perpenticular to
the ground plane.

4 Experiments

We evaluated our algorithm based on the only suitable public
dataset available (Vaquette et al., 2017), which included data from
three statically mounted sensors with known locations and relative
positions and one person moving within the scene. Our criteria
were that a human was visible walking within the FoV of each

pair of sensors that provided combined depth and RGB data at
some point in time. We augmented these public data with our own
captured dataset, with the intention of producing scenarios that were
more complicated and more diverse, including more varied sensor
locations, more persons visible in the scene at the same time, and
more challenging environments. We first used a public dataset to
verify the basic performance of our algorithm, and then we used our
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TABLE 1 DAHLIA public dataset detailed results.

Rotation error in % Translation error in %

Trial name Roll Pitch Yaw x Y z

S01_A1 0.001 1.689 0.002 1.856 0.340 0.208

S02_A2 0.865 2.845 7.573 1.798 3.201 1.790

S03_A2 1.138 1.006 4.435 3.212 4.854 0.469

S04_A2 1.417 4.410 5.153 1.232 4.394 4.951

S05_A1 2.611 0.192 4.757 3.776 1.255 0.911

S06_A2 0.761 2.537 5.910 0.617 4.855 4.338

S07_A2 3.286 1.217 4.110 3.209 2.729 1.177

S08_A3 4.276 3.982 7.608 8.847 0.204 3.403

S10_A1 1.291 2.327 3.043 1.410 0.605 3.192

S11_A2 2.281 4.986 10.754 6.073 8.440 2.861

S12_A1 2.522 0.440 2.044 3.588 1.757 0.267

S13_A1 2.407 0.795 8.085 1.623 1.897 0.530

S14_A1 0.577 4.164 8.124 3.506 4.992 3.203

S15_A1 0.852 6.689 9.847 2.284 6.927 0.144

S16_A1 0.415 4.287 9.225 1.396 1.460 5.424

S17_A1 2.801 0.970 2.507 0.944 1.220 4.560

S18_A1 1.744 0.663 4.144 4.935 1.960 1.226

S19_A1 4.062 0.522 4.661 1.981 2.666 4.203

S20_A1 3.044 1.219 3.103 3.825 1.697 3.412

Average 1.913 2.276 5.619 2.958 2.919 2.435

Maximum 4.276 6.6893 10.754 8.847 8.440 5.424

Minimum 0.001 0.192 0.002 0.617 0.204 0.144

The bold values in each column indicate the highest and the lowest error among the
different datasets.

more challenging dataset to evaluate the reliability and accuracy of
the algorithmmore generally. In this way, we ensured our algorithm
was generalizable and robust and did not rely on any artificial
factors that could be introduced in our own captured dataset.
Furthermore, as other datasets meeting our criteria do not publicly
exist, we will make our datasets available publicly for independent
verification of our results and promoting future research in related
areas.

4.1 Public dataset

The novelty of the challenge we are trying to resolve, point
cloud completion in challenging environments, and specifically our
requirement for human motion, makes it difficult to use the most
popular public datasets to verify the performance of our algorithm.
Notably, this is because sensors are almost always ideally placed
in known locations, and scene changes are incremental, allowing
traditional point cloud completion approaches to be used.Therefore,
the only public dataset that meets all of our requirements (e.g., the

data are captured from multiple RGB-D cameras and at least one
human can be seenmoving in the commonfield of view of all pairs of
sensors at some point) is the DAily Human Life Activity (DAHLIA)
public dataset (Vaquette et al., 2017). This public dataset is captured
from three static Microsoft Kinect 2 sensors, which are placed at
1.85 m above the ground and 18-degree pitch angle to form a right
triangle. It includes segments where, at most, a single person can
be seen walking around in a room while performing different daily
activities. A total of 51 data trials are available, and each trial is
approximately 50 s long, stored as sequential RGB and depth image
pairs. In addition, the ground truth data for each camera’s roll, pitch,
and yaw angles and relative positions are fully documented, allowing
for a simple calculation of the true transformation required to align
the data between the three pairs of sensors. The only variability
in this public dataset is that different persons walk into the scene
and perform varied daily activities, so we only selected one data
trial for each unique person. In other words, nothing else in the
environment (e.g., objects and sensor locations) changes over the
entire dataset. Since the trials do not vary significantly outside
person and activity, we selected the first twenty trials with different
humans for evaluation and randomly selected two out of three
sensors for each trial. Notably, all data share a similar human
walking path, and data weremissing for trial 09, which resulted in 19
registration data trials for our evaluation.Figure 4 shows an example
of the original data and the registration result of one trial. However,
as only one single person walks in the scene at any time and camera
perspectives are never varied in different data trials, this public
dataset is only used to verify the basic performance and functionality
of our algorithm. The parameters of the 2D ICP we used are a
maximum of 100 iterations, a 15-pixel searching distance threshold,
one-pixel translation coverage, one-degree rotation coverage, and at
least half of the total points as inliers. Out of 19 different trials, each
with a different human participant, we successfully registered the
walking paths in all 19 trials and completed the point clouds, with
the registration errors shown in Table 1 relative to the documented
ground truth. The rotation errors are calculated using the angular
difference between the registered rotation angle and the ground
truth angle divided by 180 degrees along the roll, pitch, and yaw
rotations. The translation errors are calculated as the difference in
distance between the registered translation and the ground truth
translation divided by the smaller point cloud bounding box length
along each x-, y-, and z-axis to provide a normalized measure.
Overall, the largest rotation error was 10.75% along the yaw axis.
Notably, the average yaw rotation error was 5.62%, over double the
average rotation errors around the roll (1.91%) and pitch (2.28%)
axes. This is mainly because the roll and pitch axes are calculated
based on aligning the ground plane, whereas the yaw rotation is
created based on aligning the walking path, which contains more
noise when the human is close to other objects in the room and
the number of frames (i.e., time) that the pairs of 3D cameras
have a clear view of the isolated human, which is very short in the
public dataset. The translation errors were more consistent than the
rotation errors across the x-, y-, and z-axis, averaging 2.96%, 2.92%,
and 2.44%, respectively. Notably, the minimum errors approached
zero (i.e., perfect registration), and the largest errors were
spread across four different trials: S08_A3, S11_A2, S15_A1, and
S16_A1.
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TABLE 2 Private dataset detailed results.

Rotation error in % Translation error in %

Trial name Roll Pitch Yaw x y z

D01 0.9359 4.6464 2.3321 3.8726 0.0457 2.5682

D02 3.2414 2.5388 0.6644 3.1797 2.2609 2.0714

D03 4.8244 1.5742 0.6865 2.3831 7.7013 3.4017

D04 4.8333 0.5910 1.9453 0.6631 2.2753 3.2261

D05 0.871 2.8698 1.0831 2.8161 5.0866 2.4757

D06 0.1977 3.0858 93.3972 87.3272 4.4736 2.4185

D07 1.5906 2.7279 0.2058 2.3706 1.8662 0.8621

Average 2.3403 2.5762 14.3306 15.2303 3.3871 2.4319

No D06 ave 2.7161 2.49135 1.1528 2.5475 3.206 2.4342

4.2 Private dataset

The public dataset scenarios did not represent varied and
diverse camera positions and perspectives, unique walking paths,
or dynamic and varied environments. To complement the public
dataset, we captured data that were more representative of
challenging real-world scenarios, including a large variety of
camera orientations, significantly unique camera locations, small
overlapping FOV between sensor pairs, complex occupant paths,
and varied human activities. To test the performance of our
algorithm under these more challenging environments, we captured
seven data trials using two Azure Kinect sensors and the registration
steps with the same parameters as the public dataset. Within the
data trails, our two sensors had a 90-degree roll angle with different
yaw angles in D01 and D02. Our two sensors had a 180-degree
relative roll angle with different yaw and pitch angles in D03, D04,

and D05. Our two sensors had 180-degree yaw relative angles
(facing each other) in D06 and 90-degree pitch angles relative to
each other in D07. Each data trial was captured using the Azure
Kinect MKV recorder (Azure kinect dk recorder, 2020) and stored
as a mkv video file, which contained the synchronized color and
depth frames, as well as the sensor metadata (intrinsic and extrinsic
parameters).

Figure 5 exemplifies some of the unique conditions we created
to evaluate our approach. Notably, the public dataset was captured
using the Microsoft Kinect v2 sensor, which does not provide any
synchronization between sensors, and the sensors themselves do not
guarantee that the data will be available for each frame. The Azure
Kinect sensor, in comparison, has built-in synchronization, which
is configurable and results in much more reliable synchronization
(on the order of milliseconds). In addition, the highest RGB
image resolution of the Azure Kinect sensor is 4,096× 3,072
(∼12 million points after mapping each RGB pixel to point cloud
point), whereas the Kinect v2 sensor only provides an RGB
resolution of 1,920× 1,080 (∼2 million points) (Azure kinect and
kinect windows v2 comparison, 2022). Hence, our approach can be
expected to have higher accuracy with our private dataset than with
the public dataset, as shown in Table 2, when excluding trial D06.
In trial D06 [shown in 6(b)], the two sensors were facing each other
with a very small overlapping field of view, and two participants were
walking in straight lines close to each other, resulting in very short
common overlapping walking paths. The original alignment to the
ground plane in this trial was notably very good (i.e., roll, pitch,
and translation along the y-axis). However, the final completion
was poor, with a 93.39% error in the yaw angle and a translation
error of 87.33% and 2.42% along the x- and z-axis. Without this
very challenging trial, the average error of our own data on yaw
and x- and y-axis is excellent, even slightly lower than the less
challenging public dataset. Notably, compared to the public dataset,
our trials had significantly smaller ground planes, more complex
occupant configurations, and walking paths, and the actual values

FIGURE 6
Registration results comparison. (A) Applying our registration approaches to captured data D02, (B) Applying other registration approaches to our
captured data D02.
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of the three unknowns (i.e., roll, pitch, and translation along the
y-axis) in our own datasets are substantially larger. Despite these
challenging conditions, all pairs of walking paths in our own data
trials converged using ICP within 100 iterations with the same
parameters, which means that the 2D ICP could not distinguish the
difference between the proper registration and error.

4.3 Registration algorithm comparison

We selected three popular machine learning-based registration
approaches that provided pre-trained models and registration
scripts to evaluate the objective performance of our approach.
We further evaluated our approach against two feature-based
approaches. We used all three machine learning models as defined
with our private dataset. The D3Feat (Bai et al., 2020) approach
resulted in incorrect transformation matrices, whereas both
3DRegNet (Pais et al., 2019) and 3DSmoothNet with TEASER
(Yang et al., 2020) could not find sufficient correspondences
between the point cloud pairs. Similarly, the feature-based
approaches based on SIFT3D with FPFH (Rusu et al., 2009) and
SIFT3D with SHOT3D (Salti et al., 2014) also could not find
acceptable transformation matrices due to an insufficient number
of correspondences. Results that use these approaches are shown in
Figure 6.

5 Discussion and conclusion

In this study, we proposed a novel point cloud completion
approach that can combine the 3D point clouds captured from
multiple RGB-D sensors placed in unknown positions and
perspectives in challenging environments into a complete point
cloud, with the minimal assumption of at least one person visibly
moving within the common FoV of sensor pairs. Our algorithm
eliminates the instability and noise introduced by processing the
point clouds captured in challenging indoor environments with
large 3D sensor perspective differences, where existing registration
algorithms encounter limitations and issues (e.g., poor feature
description or failed correspondence estimation) or require overly
restrictive preconditions or assumptions (e.g., the ground plane at
the bottom of the scene or small perspective difference between
sensor pairs). We successfully completed the point clouds for 25
of 26 trials (96.2%), including data from both a public dataset and
our own more challenging data. The only scenario that caused our
algorithm to fail was a scene where two sensors faced each other,
and two humans walked along two parallel, straight lines in opposite
directions. In this challenging scenario, for each sensor, the person
on the left was correctly identified as walking toward the sensor,
and the person on the right was identified as walking away from
the sensor. However, the resulting Fréchet distance calculations
could not differentiate between the two walking paths, resulting in
incorrect matching. However, this scenario is arguably challenging
enough that even a human may struggle to accurately align the
point clouds based on spatial normalization and activation labeling

(Brett et al., 2002), suggesting that some challenging conditions are
potentially impossible to automatically align.

We first located the ground planes in each set of sensors
by finding all moving objects, aligned pairs of point clouds to
the common ground plane, and identified all moving humans in
the scene. This reduced the complexity of the 3D point cloud
completion challenge from six unknowns (translation along the
x-, y-, and z-axis and roll, pitch, and yaw rotations) to three
unknowns (translations along the x- and z-axis and yaw rotation).
For each human reliably tracked in each sensor, we built a walking
path using the ROSA estimation technique, which generated a
reliable CoM vector array independent of the perspective of the
capturing sensor. We achieved this perspective independence by
utilizing the ground plane information to convert the 3D CoM
walking path to a 2D path from a sensor perspective parallel to the
surface normal of the ground plane (i.e., overhead perspective). We
used this 2D walking trajectory as a time-series feature descriptor,
with a discriminative and descriptive power proportional to the
complexity of the path. In other words, the more complex a walking
path was, the more uniqueness this feature had, which led to a more
accurate transformation matrix calculation. Finally, we used the
Fréchet distance to find corresponding walking paths and calculated
the registration transformation matrix between the corresponding
paths using 2D ICP. Since we targeted challenging environments
where pairs of sensors could have significant perspective differences,
our algorithm did not include a final alignment after 2D ICP
registration. We evaluated our approach using one public dataset,
which contained 19 trials with different persons in each data
trial, and our own purposefully captured data, which included
seven unique and challenging scenarios (e.g., large perspective
differences, small common FOV, more than one walking person,
and unique walking patterns). Figure 6 shows that our algorithm
is robust against perspective variation and is reliable in challenging
indoor environments, where other approaches could not calculate
a low-error transformation matrix with state-of-the-art features
or pre-trained models. Our approach notably has three major
limitations. First, the performance of the registration result only
depends on the accuracy of 2D ICP between two walking paths
because no final refinement is applied after the initial alignment.
Therefore, this approach is mainly targeting point cloud registration
under common yet challenging scenarios that may be difficult
for even a human to complete, but it may not be suitable for
applications that require highly accurate point cloud completion.
Our algorithm also only considers the walking path as a feature;
therefore, it requires sufficiently unique paths to succeed and can
fail in scenarios such as face-to-face cameras where two people
walk toward each other in parallel paths perpendicular to the
camera lens surfaces. Our approach also relies on the Fréchet
distance to differentiate between 2D walking paths, so people that
have similar body shapes and walk in similar walking paths at
the same time will result in identical features in our algorithm.
In the future, we will focus on addressing the limitations we
have identified in our current algorithm, including testing our
algorithm on a larger number of more complex and custom
scenarios.
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