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Using human-in-the-loop
optimization for guiding manual
prosthesis adjustments: a
proof-of-concept study
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Introduction: Human-in-the-loop optimization algorithms have proven useful
in optimizing complex interactive problems, such as the interaction between
humans and robotic exoskeletons. Specifically, this methodology has been
proven valid for reducing metabolic cost while wearing robotic exoskeletons.
However, many prostheses and orthoses still consist of passive elements that
require manual adjustments of settings.

Methods: In the present study, we investigated if human-in-the-loop algorithms
could guide faster manual adjustments in a procedure similar to fitting a
prosthesis. Eight healthy participants wore a prosthesis simulator and walked on
a treadmill at 0.8 ms−1 under 16 combinations of shoe heel height and pylon
height. A human-in-the-loop optimization algorithmwas used to find an optimal
combination for reducing the loading rate on the limb contralateral to the
prosthesis simulator. To evaluate the performance of the optimization algorithm,
we used a convergence criterium. We evaluated the accuracy by comparing it
against the optimum from a full sweep of all combinations.

Results: In five out of the eight participants, the human-in-the-loop optimization
reduced the time taken to find an optimal combination; however, in three
participants, the human-in-the-loop optimization either converged by the last
iteration or did not converge.

Discussion: Findings from this study show that the human-in-the-loop
methodology could be helpful in tasks that requiremanually adjusting an assistive
device, such as optimizing an unpowered prosthesis. However, further research
is needed to achieve robust performance and evaluate applicability in persons
with amputation wearing an actual prosthesis.

KEYWORDS

prosthesis fitting, patient-centered design, device optimization, prosthesis simulator,
biomechanics

1 Introduction

Approximately one million adults in the United States live with a lower limb
amputation (Ziegler-Graham et al., 2008). Individuals with amputation rely on a
prosthesis to regain functionality in their lives. For this reason, significant research
has focused on the design of passive (Collins et al., 2015; Etenzi et al., 2020) and
active prostheses (Herr & Grabowski, 2012). While remarkable advancements have
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been made in prosthesis design, recent investigations suggest
that individuals with amputation are more likely to develop
osteoarthritis in their contralateral limb, despite being fitted with
a state-of-the-art prosthesis (Ding et al., 2021). Individuals with
amputation may experience decreased quality of life due to the
increased risk of developing joint osteoarthritis in the knee of
their contralateral limb (Burke et al., 1978; Lemaire & Fisher, 1994;
Norvell et al., 2005; Struyf et al., 2009). During standing, weight-
bearing for persons without amputation is presumed to be shared
equally between lower limbs. However, it is believed that persons
with amputation stand with greater sway and more weight-bearing
towards their contralateral limb (Isakov et al., 1992; Rossi et al.,
1995; Nadollek et al., 2002). Some studies suggest that increased
time spent on the contralateral limb is an attempt to protect the soft
tissues of the residual limb, which are not suited for weight-bearing
immediately after amputation (Silver-Thorn et al., 1996). Regardless
of the cause of gait deviation, the load placed on the contralateral
limb is greater than the force that people without amputation
exert on their lower limbs during natural locomotion (Suzuki,
1972; Engsberg et al., 1991; Engsberg et al., 1993). Consequently,
this mechanism can put persons with amputation at a higher risk
of developing osteoarthritis in their contralateral limb.

Previous studies investigated the effects of prosthetic
components on the contralateral limb to explore the reason for
gait deviation in persons with amputation. Studies have found
that changing pylon flexibility can affect the vertical loading rate
on the contralateral limb (Coleman et al., 2001). Additionally,
socket fit and alignment are critical for appropriate function and
comfort, as these factors are known to influence the contralateral
limb loading rate (Zhang et al., 2019). Studies have suggested
that the mechanics of prosthetic components may mitigate some
compensatory mechanisms during locomotion in persons with
amputation (Maun et al., 2021). With this, it is evident that a
prosthetic device has many parameter settings that can be altered to
achieve optimal comfort and fit.

During a fitting session, the settings of a prosthesis are adjusted
to improve goals such as overall fit, satisfaction with the device,
and characteristics of the walking gait pattern. Approximately
68%–88% of persons with amputation wear a prosthesis at least
7 h a day to aid in mobility and the performance of everyday
activities (Pohjolainen et al., 1990; Walker et al., 1994; Jones et al.,
1997). Despite the high rate of prosthesis use, there is a high rate
of dissatisfaction with the comfort of prostheses (Dillingham et al.,
2001; Pezzin et al., 2004). Several reasons could cause dissatisfaction
with the comfort of the prosthesis. There can be errors in clinical
measurements of the limb dimensions, partly due to difficulties
locating the exact bony landmarks through layers of soft tissues.
Additionally, errors can occur due to the prevalence of iliac
asymmetries (Ingelmark & Lindstrom, 1963). Asking the individual
for their opinion on their prosthetic may result in errors as their
opinion is subjective, considering if their previous prosthetic fit was
less than optimal (Friberg, 1984; Boone et al., 2012). From this, it
is evident that the process of fitting a prosthesis can be improved.
In addition, to appropriately fit a prosthesis the parameter settings
of different prosthetic components, like pylon height and stiffness,
need to be adjusted. Since different prosthetic components need to
be altered and tested, this process can be time-consuming for both
the patient and the prosthetist.

Advances in optimization algorithms have proven very useful
in selecting optimal settings for exoskeletons (Zhang et al., 2017).
Human-in-the-loop optimization algorithms, which optimize
parameters while considering multiple interactions, have proven
very useful in advancing the optimization of robotic exoskeletons
(Malcolm et al., 2017; Zhang et al., 2017). Instead of analyzing
measurements after completing a lengthy protocol of multiple
parameter settings, these algorithms take measurements from a
few parameter settings and converge in real time toward an optimal
setting. These human-in-the-loop algorithms have been used to
optimize devices in response to the user’s physiological changes
(i.e., metabolic cost) (Koller et al., 2016). This methodology takes
inspiration from humans who naturally optimize their coordination
patterns for energy cost and other aspects of locomotor performance
(Alexander McN., 1989; Selinger et al., 2015). Studies have
demonstrated that human-in-the-loop optimization can improve
the performance of wearable devices like robotic exoskeletons
(Felt et al., 2015; Koller et al., 2016; Zhang et al., 2017; Ding et al.,
2018). In addition, it is known that human-in-the-loop optimization
algorithms emphasize the importance of customization and
individualism in assistive devices (Koller et al., 2016; Zhang et al.,
2017). However, human-in-the-loop optimization has yet to be used
to guide manual adjustments for optimizing prostheses.

The goal of this study was to evaluate the usability of human-
in-the-loop optimization in prescribingmanual adjustments of shoe
heel height and pylon height to reduce the loading rate on the
contralateral limb. Our first aim was to evaluate the time required
to find the optimal parameter combination using human-in-the-
loop optimization. The algorithm was designed to simultaneously
optimize shoe heel height on the contralateral limb and pylon
height on the prosthesis simulator limb as a means of converging
to a parameter combination that minimizes the loading rate on
the contralateral limb. We chose to alter shoe heel height on
the contralateral side as previous studies have shown that shoe
heel height can affect knee joint loading (Shakoor et al., 2010). In
addition, we chose pylon height since it was the most feasible
component to alter for this preliminary study and is known to
affect the fit and alignment of a prosthesis. We hypothesized that
the algorithm would reduce the time necessary to reach a minimal
loading rate compared to the time required to complete a sweep
of all the possible parameter combinations. Our second aim was
to analyze the accuracy of the human-in-the-loop optimization
algorithm in finding an optimal combination. By comparing
the loading rate on the contralateral limb from the sweep and
optimization methods, we evaluated the accuracy of the human-in-
the-loop optimization algorithm. Since persons with amputation are
such a diverse population, implementing this methodology could
accommodate more specific customization during fitting processes
and allow a prosthesis to achieve its potential.

2 Materials and methods

2.1 Subject recruitment

As a preliminary step towards testing in persons with an
amputation, ten healthy young adults (n = 10; mass, 76.4 ± 15.5 kg;
height, 1.73 ± 0.08 m; mean ± SD) were recruited. The goal of
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this study was not to obtain representative normative data of
the average person with an amputation; instead, the goal was to
evaluate the efficiency of the optimization. Because of this specific
goal, we believed a relatively small sample and a convenience
sampling strategy was acceptable (Kim et al., 2020). All participants
were recruited within the Biomechanics Research Building at the
University of Nebraska at Omaha. All recruited participants were
able to provide informed consent. The study was approved by the
University of Nebraska Institutional Review Board.

A health questionnaire was administered to assess if the
participant had any functional limitations that impacted their
capacity to complete the protocol. We based the inclusion criteria
on the subject’s age, height, and leg length. We only included
participants between 19–45 years old. In addition, we only included
participants who could fit the prosthesis simulator using the
manufacturer’s leg length and height restriction (iWALK 2.0,
Long Beach, CA, United States, Figures 1A, B). We only included
participants free of conditions limiting walking capability, including
joint, musculoskeletal, or neurological issues. Additionally, we
only included participants who were free of any cardiovascular
pathologies.

2.2 Experimental protocol

Participants walked with a device that simulated walking with
a prosthesis (Figures 1A, B). This device and similar devices have
been used in various studies to simulate walking with a prosthesis
(Keeken et al., 2012; Ramakrishnan et al., 2017; Schlafly & Reed,
2020a). Anecdotally, we can report that none of the participants
had prior experience with the prosthesis simulator or similar
devices. Participants completed two sessions (Figure 1C). The
initial session was a familiarization session to mitigate potential
learning effects during the testing session. During this session,
participants walked with the prosthesis simulator on the neutral
setting (no shoe heel height and the initial fitted pylon height;
combination 1, 3) to represent walking with a device that has

not been adjusted. The prosthesis simulator was used on the
participant’s dominant limb, which was determined based on
which leg they would use to kick a ball (van Melick et al., 2017).
Participants walked overground and then progressed onto the
treadmill for 20 min, where the speed increased until 0.8 ms−1

was achieved. During the second session, participants completed
three experimental protocols: a parameter setting sweep protocol
where all conditions were tested (sweep), followed by the human-
in-the-loop optimization protocol (HIL optimization), and finally,
a validation test of the optimal combinations determined from
the sweep and the optimization protocols. During all experimental
protocols, the participants walked at 0.8 ms−1. Studies using similar
simulator devices used a similar, relatively low walking speed
(Vanicek et al., 2007; Schlafly & Reed, 2020b). On average, we
paused about 2 min between conditions to calculate loading rates,
change the settings and let participants rest. Participants were free
to rest longer for up to 5 min. Anecdotally, participants did report
minor fatigue due to walking with the prosthesis simulator toward
the end of the protocol.

2.3 HIL optimization protocol

Participants walked on the treadmill while wearing the
prosthesis simulator for 1 min for each parameter combination.
After completing each combination, the human-in-the-loop
optimization algorithm prescribed the following combination to be
evaluated. Wemanually changed the parameters to the combination
that the algorithm prescribed. These adjustments were limited by
the intervals between the physically available settings; therefore,
the prescribed settings had to be rounded to the available setting
intervals. Combinations were changed until 16 combinations were
completed.The optimal combination determined from this protocol
(i.e., the optimal determined by HIL optimization) was denoted as
the HIL optimization optimum.

We designed a human-in-the-loop optimization algorithm to
minimize the loading rate on the limb contralateral to the prosthesis

FIGURE 1
The prosthesis simulator and experimental protocol. (A) Front view. The foot’s orientation on the device could be switched depending on whether the
participant was left or right-footed. (B) Side view. The prosthesis simulator had three straps. The straps secured the lower leg to the device to prevent
the participant from using their lower leg and could be easily tightened or loosened. The lower portion of the device was raised and lowered to change
the pylon height parameter setting. (C) Protocol timeline.
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FIGURE 2
Human-in-the-loop optimization algorithm flowchart. (A) Participants walked on a treadmill at 0.8 ms−1 with the prosthesis simulator for each
combination. (B) The treadmill recorded the ground reaction force. (B1) The loading rate was calculated from the ground reaction force by calculating
the slope between 20%–80% from the first peak (blue circle). (C) We used gradient descent and successive parabolic optimization to find the optimal
combination of shoe heel height and pylon height. (D) From this, the algorithm prescribes the following combination to test, that is, a specific shoe
heel height and pylon height. This process continued until 16 combinations were completed. From those 16 combinations, we then determine the
minimum amount that would have been required to converge on the optimum [(C), black star] after the experiment. Often the human-in-the-loop
algorithm repeats certain conditions rather than testing each of the 16 possible combinations like the sweep protocol.

simulator (Figure 2; Supplementary Information S1). The loading
rate was determined by calculating the vertical instantaneous
loading rate from the ground reaction force (GRF) recorded at a
frequency of 2000 Hz using an instrumented split-belt treadmill
(Bertec, Columbus, OH, United States). The vertical instantaneous
loading rate is preferable to the vertical average loading rate as
it provides a more consistent evaluation (Ueda et al., 2016). We
calculated the loading rate as the maximum of the instantaneous
slope between 20%–80% from the first peak (Figure 2B1). This
calculation method has been used in previous studies to calculate
the loading rate (Abolins et al., 2019).

The algorithm uses gradient descent to guide the first parameter
combinations and then uses successive parabolic optimization once
a sufficient number of parameter combinations have been tested.
These techniques are based on similar techniques adapted from
previous studies (Koller et al., 2016; Molderez et al., 2017), where
the goal was to find the local minimum of an objective function,
similar to a ball rolling toward the lowest point of a valley. After
testing the first combination of shoe heel height and pylon height,
two neighboring combinations within the grid of all possible shoe
heel height and pylon height combinations were randomly chosen
to test. In order to perform a first estimation of the gradient
in the three-dimensional space of shoe heel height and pylon
height against loading rate, we needed to complete these three
parameter combinations. This gradient was then used to calculate
the direction of the estimated new optimal parameter combination.
In this estimation, a set of hyper-parameters defined how far the new
estimated optimum will be placed in the direction of the gradient.

Once four combinations were completed, we started using a
successive parabolic optimization to update the algorithm’s estimate
of the optimal parameter combination. At this point, we fit a

paraboloid through all completed combinations. Given the small
range over which the two parameters were adjusted, we assumed
there should be only one optimal combination. If the parabolic
fit was concave and pointed to a single optimum, we used the
parabolic fit to define the new estimated optimum. If the paraboloid
fit produced a non-concave surface (i.e., a surface that descends in
many directions), the optimization process reverted to a gradient
descent search instead of parabolic optimization. For the remainder
of the combinations, we kept evaluating the parabolic fit and, when
needed, the gradient descent search until 16 combinations were
completed. Throughout the optimization process, it is possible that
some combinations could be repeated.

In the initial stages of developing the optimization algorithm,
we compared the suitability of three different optimization
algorithms (the covariance matrix adaptation evolution strategy
(CMA-ES) (Zhang et al., 2017; Ren et al., 2019), gradient descent
(Felt et al., 2015), and successive parabolic optimization. We
used simulated contralateral limb loading rate data obtained
by generating previously measured contralateral limb loading
rates with some added random noise from one participant
(Supplementary Information S2). In this simulation study, we
found that successive parabolic optimization was relatively more
suitable for this application than the other optimization methods
(Supplementary Information S3). We are uncertain why the present
method performed slightly better. This may be associated with the
type of simulated data generated for this comparison. Furthermore,
specifics of the problem are relatively uncommon such as the very
low resolution of only a 4 × 4 grid of possible combinations. It is also
possible that this affected the outcome.

The initial combination was randomly chosen for each
participant. Similar to previous human-in-the-loop studies
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(Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018; Ren et al.,
2019), we restricted the initial combination to the combinations
along the edge of the grid of all possible shoe heel height and
pylon height combinations (Figure 3A). Since we assumed that
the optimum most likely exists somewhere in the middle of the
parameter combination grid, this restriction allows us to see how
the algorithm converges to an optimum. Suppose the optimization
process was to begin in the middle of the parameter combination
grid; in that case, it may not be easy to distinguish whether the
algorithm identifies the optimum or is not making any updates.

2.4 Sweep protocol

Participants walked on the treadmill while wearing the
prosthesis simulator for 1 min for each shoe heel height and pylon
height combination. Shoe heel heights were inserted in the shoe on
the contralateral side and included 0, 10, 20, and 30 mm heights
(Figure 3B), where 0 indicated no additional heel was inserted in
the shoe. Pylon height was changed on the prosthesis simulator
and ranged from one higher to two lower than the initial fitted
height, where each setting differed by 2.54 cm (Figure 3C). We used
a number code to designate each parameter setting: shoe heel heights
of 0, 10, 20, and 30 mm were labeled as heel heights #1, 2, 3, and 4,
respectively; pylon heights two lower and one higher than the initial
fitted height were labeled as pylon heights #1, 2, 3, and 4, respectively
where #3 was the initial fitted height. All 16 possible parameter
combinations were completed in random order for each participant.
Participants were allocated up to 5 min of rest between testing
parameter combinations. The optimal combination determined
from this protocol (i.e., the optimal from a 2D surface fitted through
all 16 combinations) was denoted as the sweep optimum.

2.5 Validation tests

In addition, after completing the sweep and the optimization
protocols, participants walked on the treadmill under the

optimized parameter combination from the HIL protocol,
followed by the optimal combination of the sweep protocol
for 3 min each. Conducting this validation test allowed us
to compare the contralateral limb loading rate between both
optimized combinations. We used the neutral combination from
the sweep protocol to compare the results to a device that is not
individually adjusted at all. We repeated the optimum from both
protocols because the optimal combination determined by the HIL
optimization and sweep protocol might have had a low loading rate
due to chance.

2.6 Statistical analysis

To find the optimal parameter combination from the sweep
protocol, we fit a second-order polynomial that was a function
of shoe heel height and pylon height against the loading rate.
The minimum loading rate of this fitted surface determined
the individual optimal combination. We reported the optimal
parameter combination on a group level using the mean ± standard
deviation.

We used a convergence criterium to evaluate the algorithm’s
performance and determine when an optimal combination
had been achieved in the HIL optimization protocol. Previous
studies have used a similar convergence criterium as a
performance metric for human-in-the-loop optimization
algorithms (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018).
An optimal combination was said to be achieved when prescribed
combinations remained between the parameter setting one
above and one below the estimated optimal parameter setting
(Supplementary Information S4). The number of combinations it
takes before staying within this band was defined as “combinations-
to-convergence.” We reported the average number of combinations
until convergence occurred based on the mean ± standard
deviation. To evaluate if the number of combinations when
convergence occurs was significantly smaller than the maximum
number of combinations (i.e., 16), we used a one-sample
t-test.

FIGURE 3
The parameter settings. Shoe heel height and pylon height were the two-parameter settings adjusted throughout the protocol. (A) Randomized initial
combinations. The possible combination choices for the initial combination (dark circles) used in the human-in-the-loop optimization. These were
randomized for each participant. (B) Shoe heel heights. Shoe heel heights were added to the shoe of the contralateral limb and included 10, 20, and
30 mm heights (left to right). The no-heel parameter setting indicated that no heel was added to the shoe. (C) Pylon heights. Pylon heights were
adjusted on the prosthesis simulator and varied from two lower and one higher than the initial fitted height. Pylon height options differed by 2.54 cm.
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We also evaluated if there was a significant difference in
parameter settings between the HIL optimization optimum and
the sweep optimum using a paired t-test. To compare the
average loading rate across participants for both optimal parameter
combinations, we used a paired t-test with a Holm-Šidák correction.
Additionally, we used a paired t-test to compare the optimal
parameter combinations to the neutral combination to see if there
were any significant changes in the loading rate on the contralateral
limb compared to wearing a device that is not individually adjusted
at all.

3 Results

Data analysis included eight of the ten recruited participants
(n = 8). Data from two participants were excluded due to a problem
with the zeroing of the force treadmill and an error in the sequence
of conditions in the protocol.

3.1 Combinations-to-convergence

The combinations-to-convergence was highly variable among
participants (Figure 4; Supplementary Information S5.1).Half of the
participants achieved the optimal in eight or fewer combinations.
Two participants achieved the optimal in more than eight
combinations, and two did not achieve an optimal combination
(i.e., the prescribed optimum never stayed within the defined
convergence band). The average combinations-to-convergence
among the participantswhodid convergewas 8.3 ± 4.6 combinations
(mean ± standard deviation, n = 6).The two individuals who did not
converge were excluded from this mean and standard deviation as
they did not have a defined convergence. On average, the time taken
for the human-in-the-loop optimization algorithm to achieve the

optimum was significantly lower than completing the total number
of combinations (p < 0.05, n = 6).

3.2 Validation of optimal combinations

The average optimal combination determined by the sweep
was parameter setting 3.5 ± 1.0 and 1.5 ± 0.9 for shoe heel
height and pylon height, respectively (mean ± standard deviation,
n = 8). The average of the optimal combination determined
by the HIL optimization was parameter setting 3.1 ± 1.4 and
2.0 ± 1.1 for shoe heel height and pylon height, respectively.
There was no significant difference in the parameter settings
between the sweep and HIL optimization optimum (p = 0.785
for shoe heel height, p = 0.275 for pylon height; Figure 5A;
Supplementary Information S5.2). In the validation tests, we used
rounded approximations of the optimal parameter combination
from each protocol since we could only test available settings. The
average from the tested combinations during the validation tests
for the optimum of the sweep was 3.4 ± 1.0 and 1.5 ± 0.8 for
shoe heel height and pylon height, respectively. The average optimal
parameter combination for the validation of the HIL optimization
was 3.1 ± 1.6 and 2.0 ± 1.0 for shoe heel height and pylon height,
respectively.

The average loading rate from the sweep optimum was 11.5
± 1.7 kN s−1. The average loading rate from the HIL optimization
optimum was 11.9 ± 3.6 kN s−1. The loading rate in the neutral
combination setting (combination 1, 3) was 15.1 ± 3.3 kN s−1.
There was no significant difference in the loading rate between
the two optimal combinations (p = 0.730; Figure 5B). The sweep
optimum and the HIL optimization optimum reduced the loading
rate by 23.3% and 20.7%, respectively, compared to the neutral
combination. The sweep optimum had a significantly lower loading
rate than the neutral combination (p < 0.05). However, there was no

FIGURE 4
Combinations-to-convergence bar graph. The calculated combinations-to-convergence using the number of conditions tested to achieve the
optimal combination. The no convergence bar represents the participants whose optimization protocol did not converge to an optimal combination.
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FIGURE 5
Optimal combination validation. The comparison between the optimal determined by the sweep (orange) and the optimal achieved by HIL
optimization (dark orange) (A) The average of the optimal combination across participants from the sweep (orange circle) compared to the optimal
combination across participants for the HIL optimization (dark orange square). The neutral combination is denoted as the light orange triangle for
reference. The error bars represent the standard deviation across participants (n = 8). (B) The average loading rate across participants from the optimal
combination from the sweep, the optimal combination from the HIL optimization (HIL), and the neutral combination (combination 1, 3). The error bars
represent the standard deviation across participants (n = 8).

significant difference in loading rate between the HIL optimization
optimum and the neutral combination (p = 0.169).

Since the HIL protocol did not show convergence in all
participants, we conducted a follow-up test. We used a paired
t-test to compare the average loading rate across participants
who converged to an optimal combination (n = 6). When
considering only the participants who did converge, both
optimums from the sweep and HIL optimization had significantly
lower loading rates than the neutral combination (p < 0.05,
Supplementary Information S5.3).

4 Discussion

This study investigated if a human-in-the-loop optimization
algorithm can guide manual adjustments to optimize a
prosthesis simulator. We hypothesized that the human-in-the-loop
optimization algorithm would reduce the time taken to find an
optimal parameter setting. The findings show that the human-in-
the-loop optimization algorithm reduced the time taken to find an
optimal combination in 5 out of 8 participants, partially accepting
our hypothesis.

The human-in-the-loop optimization algorithm determined
an optimal combination similar to the optimum determined by
the sweep of all 16 combinations. However, a statistical power
analysis shows that we have yet to determine whether this means
that there is genuinely no difference or if this was due to the
sample size, given that the statistical power was 0.375 and 0.289
for shoe heel height and pylon height, respectively. The loading
rate for both optimal combinations was similar, further validating
that the human-in-the-loop optimization could reduce the loading
rate similar to the sweep protocol. However, the fact that the
algorithm did not converge in one-fourth of the participants
raises concerns about the robustness of the optimization algorithm.

While this seems to question the robustness of the optimization
algorithm, previous studies show that this is not an uncommon
result (Zhang et al., 2017; Welker et al., 2021). A particular study
stated that none of their optimization algorithms could reduce
metabolic cost significantly (Welker et al., 2021). Additionally, a
different study mentioned instances where researchers had to
reset the algorithm and add additional walking time (Zhang et al.,
2017). On the contrary, supplementary analysis of the variability
between repetitions of the same condition may suggest that
the chosen optimization problem was simply very challenging
(Supplementary Information S6). We also investigated whether any
of the features of the algorithm, such as the frequency of switching
between parabolic optimization and gradient descent, was related to
the time-to-convergence performance. Still, we did not find any clear
relationship there.

Although using the human-in-the-loop optimization algorithm
reduced the time to find an optimal combination for over half of the
participants, one participant required all 16 combinations to find an
optimal combination. Additionally, the algorithm never converged
to an optimal combination for two of the participants. This finding
raised the question ofwhether this variability in the effectivenesswas
due to the algorithm or rather the effects of the prescribed parameter
combination being small or inconsistent. To investigate this
question, we performed a supplementary analysis of the statistical
significance of the effects of shoe heel height and pylon height on
loading rate based on the data from the sweep protocol. We used the
following linear mixed-effect model (1) to study the effects of shoe
heel height and pylon height on the loading rate on the contralateral
limb:

zFit = c1x2 + c2x+ c3y2 + c4y+ c5 (1)

where x, y, and z are shoe heel height, pylon height, and loading rate,
respectively, terms c1 to c4 are the coefficients for each independent
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parameter setting, and c5 is the constant intercept term. We found
no statistical significance for each of the terms (p-values were 0.629,
0.775, 0.243, and 0.383 for shoe heel height, the square of shoe heel
height, pylon height, and the square of pylon height, respectively;
Figure 6). On the one hand, this means that the effects of each
parameter setting were inconsistent across all participants. This
suggests that the effects of the parameters were relatively small
and not highly repeatable. Anecdotally, we can comment that the
ranges in shoe heel height and pylon height were sufficiently large
to make walking difficult at the extreme ends of the parameter
settings (e.g., walking with the greatest shoe heel height or pylon
height). Because of this, it is unlikely that the lack of statistically
consistent effects is likely not due to having chosen too small of a
range. This lack of statistically significant consistency in the effects
of the independent parameters could explain why the optimization
protocol did not converge for all participants. On the one hand,
this may emphasize that the effect of the parameter settings was
variable across participants, highlighting the need for a unique
optimization method like human-in-the-loop optimization to find
each individual’s optimum. On the other hand, this may also
suggest that the selected parameter settings may not have been
the most relevant settings to optimize. Other studies sometimes
also acknowledge that other parameter settings that may be more
sensitive to the cost function could have been selected (Peng et al.,
2022). Future investigations should optimize different parameter
settings that have been shown to affect the contralateral limb, like
pylon flexibility (Coleman et al., 2001) and stiffness (Maun et al.,
2021).

While previous studies have proven the effectiveness of human-
in-the-loop optimization in tuning one or multiple parameters, the
application of this methodology for optimizing manual adjustments
of assistive devices is novel. Upon further analysis, it appears
that the algorithm could optimize both parameter settings in
some participants, while in others it only optimized one or
neither. Figure 7 is a visual representation showing the variability
of the optimization patterns for both parameter settings. This
emphasizes that while the parameter settings together did not
affect the loading rate on the contralateral limb, there is potential

for this methodology to guide manual adjustments. Specifically,
it illustrates that the optimal shoe heel height (Figure 7A) was
achieved more efficiently and consistently across participants
than the pylon height (Figure 7B). Footwear parameters on the
contralateral limb are not typically modified in persons with
amputation. However, this finding suggests that further analyses
into the importance of footwear parameters on the loading rate
on the contralateral limb in persons with amputation may be
beneficial. Additionally, further investigations should be done to
validate the use of improved human-in-the-loop optimization
algorithms for simultaneously optimizing two manually adjusted
parameters.

There are some limitations to this study. Participants were
recruited for this experiment through convenience sampling on a
college campus. Although the recruitment age ranges from 19 to 45,
the sample may only represent part of the population. Concerning
the protocol, not all parts of the experiment were randomized. It
is possible that some of the differences between the sweep and
HIL optimum could be due to adaptation or fatigue. However,
we think the habituation was sufficient since the purpose of the
study was to compare the efficiency of the optimization algorithm.
While similar prosthesis simulators have been used to simulate
walking with a prosthesis, the findings from this study likely do
not reflect persons with amputation. To validate the results of
this study, the protocol could be implemented as a case study
on a person with an amputation. With this, it could be possible
that the optimization algorithm could improve as persons with an
amputation who have experience walking with a prosthesis could
have a more consistent gait pattern. It is known that persons with
amputation have and need much more time to be able to get used
to walking with a prosthesis (Barr et al., 2012; Ray et al., 2018),
increasing the chance for a more consistent gait pattern.This higher
consistency has the potential tomake the optimization processmore
straightforward.

Persons with amputation lack both sensing and direct
control of the mechanics of their prosthetic foot and ankle
(Welker et al., 2021). With this, the sensory feedback must
come from the interactions at the socket and whole-body

FIGURE 6
Linear mixed-effect model. We used a 2nd order polynomial as the best-fit model to analyze the effect of shoe heel height and pylon height on the
contralateral limb loading rate. (A) The surface plot of the linear best-fit model. The pylon height setting is on the vertical axis, and the shoe heel height
setting is on the horizontal. The color bar represents the loading rate, where light blue is the highest and dark blue is the lowest. (B,C) 2-Dimensional
plot. The effect of shoe heel height (B) and pylon height (C) on the contralateral limb loading rate. This 2-dimensional plot was taken from the middle
point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The circles and error bars in (B) represent the mean ± standard
deviation of all pylon heights at each shoe heel height setting. The circles and error bars in (C) represent the mean ± standard deviation of all shoe heel
heights at each pylon height setting (n = 8).
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FIGURE 7
Human-in-the-loop optimization histories of participants: the pattern of shoe heel height (A) and pylon height (B) optimization during the HIL
optimization for each participant. The colors of the lines relate to the convergence metric where the dark blue lines represent participants who
converged in 4 combinations, and the light blue lines represent participants who did not converge to an optimal combination. The optimization history
pattern is plotted relative to the final optimal parameter setting determined by the HIL optimization to visually see the convergence. As such, each line
ends at 0 on the vertical axis. The dashed lines represent the band that was used to determine whether the algorithm achieved convergence or not.
More specifically, we considered the algorithm to have converged if the prescribed parameter combination stayed within a band of ± 1 (n = 8).

proprioception (Welker et al., 2021). The importance of sensory
feedback reiterates why human-in-the-loop optimization is
successful with exoskeletons and might be harder to replicate
in devices such as prostheses. It may be hard to implement
human-in-the-loop optimization in persons with amputation
as the contributions to differences in gait go deeper than
just the effects of component mechanics (Welker et al., 2021).
Investigations to validate the implementation of human-in-
the-loop optimization in persons with amputation should
consider different cost functions other than metabolic cost to
optimize the prosthesis. Since previous studies have reported
that prosthetic components affect peak ground reaction force
(Grabowski & D’Andrea, 2013; Morgenroth et al., 2011) and
knee external adduction moment (Grabowski & D’Andrea,
2013; Morgenroth et al., 2011), future research could investigate
optimizing these variables using human-in-the-loop optimization.
Regarding the parameter settings selected to adjust, there are some
limitations in clinical applicability in persons with amputation,
as prosthetists traditionally do not alter the contralateral limb.
The results from the linear mixed effect model further reiterate
the limitations in the effectiveness of altering the selected
parameter settings. In addition, the shoe heel height stiffness was
not considered, although it is evident that stiffness influences
limb loading (Hong et al., 2013; Kulmala et al., 2018). Future
investigations could analyze the implementation of human-in-
the-loop optimization in optimizing applicable clinical parameters
like pylon height and heel height stiffness on the prosthesis
side.

Another limitation is that the algorithm was used to optimize
parameters that only have 4 settings. On the one hand, it is possible
that the actual optimum in certain participants would have existed
outside of the range of the tested combinations. On the other hand,
the small number of settings may have favored the sweep protocol
considering all possible combinations were tested. It is possible
that optimizations with a greater resolution of options may have
resulted in a more favorable result; however, there is no evidence

that this would have been better. Further investigations are needed
to evaluate the effect of a greater parameter setting resolution in
human-in-the-loop optimization of manually adjusted devices. To
minimize the chances of the initial combination being optimal, we
restricted the initial combination to the combinations along the
border of the available choices. However, in some instances, the
initial combination that was tested turned out to be close to the final
optimum. It is possible that those participants would have produced
a different result that showed convergence if their protocol started
out from a combination that was further from the optimum. Finally,
we only considered one possible algorithm that included gradient
descent and successive parabolic optimization techniques. Further
investigations could investigate methods like Bayesian optimization
(Brochu et al., 2010; Kim et al., 2017; 2019) or covariance matrix
adaption evolution strategy CMA-ES (Zhang et al., 2017; Ren et al.,
2019).

5 Conclusion

The study implemented a human-in-the-loop optimization
algorithm to guide manual adjustments to optimize a prosthetic
simulator. The findings from this study show that even though
there is potential for this methodology to be implemented in the
patient population of persons with amputation, many factors need
to be considered. Since prosthetic components are known to affect
contralateral limb loading, optimizing parameters on the prosthesis
itself is a more clinically applicable approach to implementing
this methodology in persons with amputation. Since persons with
amputation rely on sensory feedback from the prosthesis, optimizing
a cost function that is not related to physiological changes may
be more beneficial in persons with amputation. Considering
prosthetists typically look at both limbs when fitting and adjusting
a prosthesis, future investigations could include a multi-objective
optimization to examine the effects of changing multiple parameter
settings on both limbs.
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