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Passivity based nonlinear model
predictive control (PNMPC) of
multi-robot systems for space
applications

Serdar Kalaycioglu and Anton De Ruiter*

Department of Aerospace Engineering, Toronto Metropolitan University, Toronto, ON, Canada

In the past 2 decades, there has been increasing interest in autonomous
multi-robot systems for space use. They can assemble space structures and
provide services for other space assets. The utmost significance lies in the
performance, stability, and robustness of these space operations. By considering
systemdynamics and constraints, theModel Predictive Control (MPC) framework
optimizes performance. Unlike other methods, standard MPC can offer greater
robustness due to its receding horizon nature. However, current literature on
MPC application to space robotics primarily focuses on linear models, which
is not suitable for highly non-linear multi-robot systems. Although Nonlinear
MPC (NMPC) shows promise for free-floating space manipulators, current
NMPC applications are limited to unconstrained non-linear systems and do not
guarantee closed-loop stability. This paper introduces a novel approach toNMPC
using the concept of passivity to multi-robot systems for space applications.
By utilizing a passivity-based state constraint and a terminal storage function,
the proposed PNMPC scheme ensures closed-loop stability and a superior
performance. Therefore, this approach offers an alternative method to the
control Lyapunov function for control of non-linear multi-robot space systems
and applications, as stability and passivity exhibit a close relationship. Finally, this
paper demonstrates that the benefits of passivity-based concepts and NMPC can
be combined into a single NMPC scheme that maintains the advantages of each,
including closed-loop stability through passivity and good performance through
one-line optimization in NMPC.

KEYWORDS

space robotics, model predictive control, multi-robot system, robotic manipulators,
passivity

1 Introduction

During the last 2 decades, there has been a significant interest in free-flying autonomous
multi-robot systems for space applications (Nanos and Papadopoulos, 2017). Such an
autonomous robotics system may be employed to assemble large space structures (e.g.,
communications antennae, and telescopes), manufacture on-orbit as well as to provide
services for other space assets (i.e., exchange of orbital removal units (ORU), refuelling
of spacecrafts, removing space debris, etc.). Until recently, some of these operations (e.g.,
inspection, exchange of ORUs) have been carried out by astronauts as Extravehicular
Activities (EVA) in low Earth orbit. However, extensive astronauts training, operations
planning and preparations, the associated cost, schedule and time delays and inherent risky
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nature of space environment for astronauts convinced space agencies
to look into other more efficient alternatives such as autonomous
robotics spacecrafts (Papadopoulos et al., 2021). Furthermore, in
high Earth orbit or other unmanned space exploration missions
this may be the only option available. One of the pioneers in
demonstrating robotics spacecraft capabilities was the Engineering
Test Satellite ETS-VII of JAXA and it consisted of chasing and
capturing spacecrafts (Yoshida, 2003). The ARCHINAUT, which
is developed by NASA and Made in Space, features multiple
robotic arms that are designed to perform on-orbit assembly
and precision manufacturing. Other systems that are capable of
performing similar tasks include the Kontur, METERON, and
SPIDERFAB. The Gateway Moon Space Station is currently being
developed by NASA and other international organizations. Other
projects that are currently in development include the Moon
Village and the Mars exploration mission of the European Space
Agency (ESA) and OrbitalHub by the German Space Agency (DLR)
(Orbital Hub DLR Vision, 2022). NASA and MAXAR Technologies
Inc. are currently developing a robotic spacecraft known as OSAM-
1 (NASA’s Robotic OSAM-1 Mission, 2022; Krebs D., 2022). It will
be able to perform various tasks on-orbit including the assembly of
satellites, debris removal and the refueling of them. In 2016, China’s
Aolong-1 satellite was launched and demonstrated the capabilities
of space robotic vehicles by capturing and handling space debris.
Through a robotic arm, the satellite was able to grasp and send
the object it collected back on a re-entry trajectory. Small-scale
robotic systems, exemplified by the Future Space Debris Removal
Orbital Manipulator (FSDROM), are poised to make a significant
contribution to upcoming space debris removal missions, according
to Shyam et al. (2021). As reported by the European Space Agency
(ESA) in 2019, the amount of space debris in Earth’s orbit has
exceeded 8,000 tons and continues to rise, posing a significant threat
to both satellites and astronauts (Chatterjee, 2014). Consequently,
the removal of space debris has emerged as a top priority in space
missions (Space Foundation White Paper, 2020). Direct capture of
objects is one approach for mitigating the issue, and it can be
executed through rigid or flexible capture methods, as classified by
Zhao et al., 2020. A variety of techniques for flexible direct capture,
including harpoons, nets, and tentacles, have been suggested by
Billot et al., 2014; Zhang andHuang, 2016; Forshaw et al., 2017. Such
mechanisms for capture help mitigate the risk of collisions between
debris and space robots, thereby minimizing the likelihood of failed
capture attempts that could result in further debris generation, as
stated by Biesbroek et al., 2017.

Space manipulators often encounter unidentifiable, rotating
debris, leading to harm to both the robot’s structure and its
actuators. Thus, it is essential to implement a controlling law
that is robust enough to sustain its performance in the event of
actuator malfunction or failure. This circumstance is particularly
probable when employing direct capture methods since the capture
process can lead to significant effects on the spacecraft, as stated by
Seweryn et al., 2022.

However, there are major technological challenges in
autonomous robotics spacecrafts. First of all, missions may involve
execution of uncertain tasks in an unstructured environment.
There may be inherent uncertainties in the system (e.g., friction,
geometry, stiffness, and damping, etc.) and payload parameters
(e.g., mass/inertia, geometry, momentum, etc.) (Aghili, 2020).

The conventional model-based controllers are not robust to deal
with these uncertainties on orbit. Ground testing as well as on-
orbit characterization and evaluations are difficult and proved
to be limited. Furthermore, the contact models and payload
characteristics cannot be determined in advance when dealing
with unknown debris, etc. Moreover, the actuators are subject to
saturation and the controller must deal with these constraints. In
addition, there may be actuator or sensor failures and the system
has to work with limited degrees of freedom and sensory feedback
in case of occurrence of faults (Raisi et al., 2022).

Therefore, conventional controllers cannot cope with these
types of tasks, system and payload uncertainties, unknown payload
and contact dynamics behaviour, constraints such as problem
of force/torque saturation, and partial system failures such as
faulty actuator or sensor. Recently, a new type of control system
known as Model Predictive Control (MPC) has gained widespread
attention from industry and academia (Hewing et al., 2020). There
are also variations of MPC techniques such as implicit, explicit,
adaptive, gain-scheduled, and non-linear and others (Rawlings,
2000; Christofides et al., 2013;Morato et al., 2020; Fin, 2021; Shi and
Zhang, 2021).

Achieving optimal performance, stability, and robustness
is crucial in space operations. The Model Predictive Control
(MPC) framework addresses this challenge by considering system
dynamics and constraints during performance optimization. Its
receding horizon nature also makes it more robust than other
methods (Shuyou et al., 2014). However, current literature on MPC
application to space robotics mainly focuses on linear models,
which are not suitable for highly non-linear multi-robot systems
commonly found in space applications.

Despite its numerous advantages, Model Predictive Control
(MPC) presents several challenges that require further investigation,
including feasibility, nonlinearity, closed-loop stability, and
robustness (Rybus et al., 2018; Psomiadis and Papadopoulos,
2022). When the models of the plant or the constraints are
nonlinear, Nonlinear Model Predictive Control (NMPC) schemes
must be employed (Shuyou et al., 2014; Quirynen et al., 2015;
Vukov et al., 2015; Wang et al., 2016; Englert et al., 2019; Rathai,
2020; Kalaycioglu and de Ruiter, 2023). However, it has been
observed in (Jadbabaie et al., 1999) that NMPC does not always
ensure closed-loop stability. Additionally, the issue of robustness
arises in MPC when model uncertainty or noise is present, as is
often the case due to the inability of the predictionmodel to precisely
match the actual dynamics of the plant being controlled (Nanos and
Papadopoulos, 2011).

NMPC presents a promising solution for free-floating space
manipulators. However, existing NMPC applications are limited to
unconstrained non-linear systems and cannot guarantee closed-
loop stability. Passivity theory is a potent instrument for examining
and managing nonlinear systems, as demonstrated by numerous
works by Wang. and Xie, 2014; Schaft 2000; Raff et al. (2007)
introduced a significant advancement in this field through the
proposal of a Nonlinear Model Predictive Control (NMPC)
scheme based on passivity. This development was motivated
by the interdependencies between optimal control, passivity,
and NMPC. This scheme incorporates particular passivity-
based constraints that ensure both closed-loop stability and
feasibility.
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To address this gap in space robotics, this paper proposes
a novel approach to NMPC that uses the concept of passivity
for multi-robot systems specifically designed for space-related
applications. The proposed NMPC scheme utilizes a passivity-
based state constraint to ensure closed-loop stability. Thus, this
approach provides an alternative to the use of control Lyapunov
function for controlling nonlinear multi-robot space systems and
related applications.This is because stability and passivity are highly
interrelated. The passivity based NMPC scheme offers a robust
solution for optimizing performance whilemaintaining stability and
ensuring system robustness in space robotics.

The main contribution of this paper lies in the application
of the concept of passivity-based NMPC to multi-robot systems
for space applications. While the idea of passivity-based NMPC
has been previously explored by Raff et al. (2007), their work only
involved a simple simulation case concerning a quadruple tank
system. Wang. and Xie, 2014 proposed a passivity-based attitude
control approach for rigid bodies that can be used in spacecraft
and satellite applications. In this paper, the authors have developed
a novel passivity-based state constraint and a terminal storage
function specifically applicable to the nonlinear dynamics of multi-
robotic systems. The developed terminal storage function ensures
asymptotic closed-loop stability and superior performance. It is
important to note that while nonlinear MPC (NMPC) has shown
promise for a single free-floating space manipulator system (as
demonstrated in theworks of Papadopoulos et al., 2021; Rybus et al.,
2018), current NMPC applications do not guarantee closed-loop
stability if the full nonlinear dynamics terms are retained in the
controller. Moreover, it is worth noting that the majority of the
studies in this area have implemented NMPC for a single planar
space arm with two or three degrees of freedom.

Therefore, the paper addresses the full nonlinear dynamics
while guaranteeing closed-loop stability for a multi-robot system.
The approach presents a significant advancement in the field of
NMPC for multi-robot systems in space applications, thanks to the
novel passivity-based state constraint and terminal storage function
specifically designed for multi-robotic systems.

A proper choice for the proposed control algorithm’s hardware
and software implementation for spacecraft robotics system would
be a distributed processor architecture, which provides parallel
control of the spacecraft and robots, reduced computer speed
demands, and inherent redundancy for enhanced reliability. The
proposed architecture may include three main processors: 1)
Spacecraft Attitude Determination and Control System (ADACS)
and Robot Control System (RCS), 2) Command and Data Handling
(C&DH), and 3) Communications Processor. The proposed control
algorithm can be housed in the ADACS and RCS computer, which
controls the spacecraft’s attitude, orbital maneuvers, and robots’
end-effector position and orientation. Sensory data from sources
like star trackers, joint encoders, and vision systems can also be
collected.TheComputer Software Configuration Items (CSCIs)may
include modules for OCA, the proposed PNMPC, Forward and
Inverse Kinematics Functions, Robot Dynamics Function, Jacobian,
Jacobian Rate, and more, all of which can be located in the ADACS
and RCS computer.

This paper is organized as follows: Section 2 provides the
equations of motions for the compounded multi-robot spacecraft
system. Section 3 introduces the concept of passivity and the

proposed passivity based NMPC algorithm for a free-flying multi-
robot space system. In Section 4, the computer simulation results,
their analysis and discussion are presented. Section 5 outlines the
conclusions and suggestions for future work.

2 System dynamics

The system being studied comprises of a chaser spacecraft, a
target payload, and two redundant manipulators with n degrees of
freedom. An illustration of a similar systemwith a chaser spacecraft,
two n-degree robots, and a rigid payload can be seen in Figure 1.

The set of equations that govern the motions of two robots and
a chaser spacecraft can be expressed as:

G ̈̃q(t) +D ̇̃q(t) = Γ̃ (1)

̈̃qT = [ ̈̃Rc, ̇̃ωc,
̈̃θL,
̈̃θR] (1a)

Γ̃T = [F̃c, τ̃c, τ̃θL , τ̃θR] (1b)

where ̈̃qT is a vector containing the linear and angular acceleration
of the chaser spacecraft and the joint angular accelerations for the
left and right arm, and Γ̃T is a vector containing the external control
force and moments for the chaser spacecraft and the joint control
torques for the left and right arm.The matrix G is a positive definite
matrix that represents the mass/inertia, while D is a matrix that
includes non-linear terms such as Coriolis and centrifugal terms.
The linear and angular acceleration of the chaser spacecraft are
represented by ̇̃Rc, ̇̃ωc, respectively.

̈̃θL , ̈̃θR are the joint angular
accelerations for the left and right arm respectively, while F̃c, τ̃c are
the external control force and moments for the chaser spacecraft.
The joint control torques for the left and right arm are represented
by τ̃θL , τ̃θR , respectively.

To enhance the mathematical expression of the dynamics
equations, it is possible to represent them in the Cartesian domain
for the robots and in terms of Euler angles for the spacecraft. This
can be achieved by utilizing the Jacobian of the system, denoted as J ,
which facilitates the transformations from joint space to Cartesian
space for the robots and from the body-fixed angular rates to
Euler rates for the spacecraft. The resulting equations can provide
a more insightful understanding of the system dynamics and can be
particularly useful for control and optimization purposes:

G* ̈̃μ(t) +D* ̇̃μ(t) = F̃ (2)

where

μ̃T(t) = [R̃c,φ,ψ,θ, X̃L, X̃R] (2a)

R̃c, the position vector of the center of mass of the spacecraft, the
rotational transformation from orbital to body axes is represented
by a 1-3-2 Euler sequence, with angles φ, ψ and θ, respectively and
X̃L, X̃R are the pose vectors for the left and the right end-effectors,
respectively. By utilizing the Pseudo-inverse Jacobian matrix J* for
the redundant system, one can calculate the equivalent mass/inertia
matrixG*, CoriolismatrixD*, and the force vector F̃ in theCartesian
domain for the compounded multi-robot spacecraft system.

̇̃μ(t) = J ̇̃q(t) (3)

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1181128
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kalaycioglu and De Ruiter 10.3389/frobt.2023.1181128

FIGURE 1
Multi-robot spacecraft system concept.

J* = (JTJ)−1 JT (4)

G* = J*TG J* (5)

D* = (J*TD J* − J*TG J* ̇J J*) (6)

F̃ = J*T Γ̃ (7)

It can be shown that Ġ* − 2D* is a skew-symmetric matrix in the
following form and this relationship can be used in developing an
appropriate storage function in Section 3.

Ġ* − 2D* = −J*TG J* ̇JJ* − 2 J*TD J* + J*T ̇JTG J*TJ* (8)

Furthermore, the non-linear equations of the system dynamics
can be written as:

ỹT(t) = [μ̃T(t), ̇̃μ(t)] (9a)

̇̃y(t) = g̃(ỹ) + f (ỹ)ũ(t)

z̃(t) = h̃(ỹ)
(9b)

g̃(ỹ) = [

[

0 1

0 −G*−1D*
]

]
ỹ(t) f (ỹ) = [

[

0

G*−1
]

]
h̃(ỹ) = Cỹ(t) ỹ(0) = ỹ(t0) (9c)

where the control input function is denoted by ũ(t), while z̃(t)
represents the output andC is the observationmatrixThenon-linear
system function representing the system dynamics is denoted by
g̃(ỹ)while f (ỹ) is the input coefficient function, and h̃(ỹ) is the non-
linear function used to obtain the output vector based on the state
variables.

3 The concept of passivity and
passivity based NMPC

Adynamics system can be classified as passive if there is a storage
function V(ỹt) that meets the following condition:

V(ỹt) −V(ỹ0) ≤ ∫
t

t0
ũT(τ)z̃(τ) dτ (10a)

Furthermore, a formal characterization of a system as Input
Feed-forward Output Feedback Passive (IF-OFP) is established
when a storage function V(ỹt) exists that satisfies the certain
conditions:

V(ỹt) −V(ỹ0) ≤ ∫
t

t0
[ũT(τ)z̃(τ) − ρ z̃(τ)T z̃(τ) − υ ũT(τ)ũ(τ)] dτ

(10b)

The positive passivity indices, denoted by ρ and υ, characterize
the passivity properties of the system under consideration.

Raff et al. (2007) have established that the passivity-based
nonlinear model predictive control scheme can achieve local
asymptotic stability of a system, provided the system is passive and
possesses a continuously differentiable storage function V(ỹt).The
conventional NMPC formulation for the dual arm nonlinear system
can be written as:

min 1
2
∫
Tp

0
[(ỹ(t)– ỹr(t))

T K (ỹ(t)– ỹr(t)) + ũ
T(t)W ũ(t)] dt (11)

subject to Eq 9a, Eq 9b, Eq 9c and where Tp is the prediction
horizon; K and W are positive definite square weighting matrices
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FIGURE 2
(A) NMPC Block diagram. (B) Bias computation with an independent model. (C) Robot geometry used in the simulations.

and ỹr(t) is the reference trajectory Nonlinear model predictive
control (NMPC) is founded on the principle of iteratively solving the
finite horizon optimal control problem in real-time to determine the
optimal control input. Figure 2A depicts the NMPC block diagram.
Schaft 2000 and Jadbabaie et al. (1999) highlighted thatwhileNMPC
can be useful, it does not always guarantee closed-loop stability.

Furthermore, the plant output ỹ(t) might be different than
the model output ỹm(t) in the presence of model parameter
uncertainties. To overcome model parameter uncertainties in the
process, both the model and the plant are simulated under the same
control system input as shown in Figure 2B. The first output is the
real plant output, represented as ỹ(t) while the second output is the
model output, represented as ỹm(t).

The calculations are performed within the control block
diagram’s “ROBOTS AND SPACECRAFT PLANT” and “PROCESS
MODEL”, as illustrated in Figure 2A. Subsequently, the bias d̃(t) is
determined, using the following equation:

d̃(t) = ỹ(t) − ỹm(t) (12)

The process predictions are then calculated from model
predictions by adding a bias correction term to each prediction over
the horizon. The details of these calculations are provided as part of
Eq. 22c when a set of discretized system equations is employed.

The Passivity-Based Nonlinear Model Predictive Control
(PNMPC) scheme can be organized in the following manner
through the incorporation of a terminal cost as the storage function
V(ỹTp
) to guarantee the closed loop stability (Mayne et al., 2000;

Raff et al., 2007):

minV(ỹTp
) + 1

2
∫
Tp

0
[(ỹ(t)– ỹr(t))

T K(ỹ(t)– ỹr(t)) + ũ
T(t)W ũ(t)] dt

(13)

subject to Eq. 9a and the following inequality constraints:

dV(ỹt)
dt
≤ ũT(t) z̃(t) where z̃(t) = ̇̃μ(t) (14)

ũT(t) z̃(t) ≤ −ρ z̃(t)T z̃(t) − υ ũT(t)ũ(t) ρ ≥ 0,υ ≥ 0 (15)

To establish the passivity constraint, the initial step is to define
the tracking error vector, which represents the deviation between the
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TABLE 1 System parameters.

Hardware configuration item Mass (kg) Dimensions (m) (prism)

Spacecraft 40 0.5 × 0.5 × 0.3

Common Payload 10 0.4 × 1 × 0.4

Joint/Link 1 1 0.1 × 0.1 × 0.1

Joint/Link 2 1 0.1 × 0.1 × 0.1

Link 3 3 0.43 × 0.1 × 0.1

Link 4 5 0.64 × 0.1 × 0.1

Joint/Link 5 3 0.1 × 0. 1 × 0.1

Joint/Link 6 1 0.1 × 0.1 × 0.1

Joint/Link 7 3 1 × 0.1 × 0.1

TABLE 2 Inertia parameters.

S/C Payload Link1 Link2 Link3 Link4 Link5 Link6 Link7

M(kg) 40 10 1 1 3 5 3 1 3

Ixx (g-m⧵2) 1,130 830 1.7 1.7 5 8.3 5 1.7 1.7

Iyy (g-m⧵2) 1,130 830 1.7 1.7 48.7 174.8 5 1.7 1.7

Izz (g-m⧵2) 1,660 830 1.7 1.7 48.7 174.8 5 1.7 1.7

output and the reference trajectory as follows:

̃ey = μ̃(t) − μ̃r(t) (16)

In order to attain proficient tracking performance, one may
contemplate utilizing the following storage function in Cartesian
domain as proposed in this paper.

V(ỹt) =
1
2
( ̇̃μT(t)G* ̇̃μ(t) + ̃e T

y R ̃ey) (17)

where R is a positive definite, symmetrical square matrix, and
subsequently calculate the time derivative of V(ỹt+Tp

) to obtain the
following constraint equations.

d V(ỹt)
dt
= d
dt
[1
2
( ̇̃μT(t)G* ̇̃μ(t) + ̃e T

y R ̃ey)] (18)

Please note that Ġ* − 2D* is a skew-symmetric matrix and
enables the following simplification which was used in calculating
the time derivative of the storage function V(ỹt) in Eq. 18.

[ ̇̃μT(t) (Ġ* − 2D*) ̇̃μ(t)] = 0 (19)

The time derivative of the proposed storage function can now be
calculated using Eq. 18 as shown below:

dV(ỹt)
dt
= 1/2{ ̈̃μ(t)TG* ̇̃μ(t) + ̇̃μ(t)TG* ̈̃μ(t) + ̇̃μ(t)T Ġ* ̇̃μ(t) + ̇̃eTy R ̃ey

+ ̃eTyR ̇ ̃ey}

= ̇̃μ(t)TG* ̈̃μ(t) + ̇̃μ(t)T Ġ* ̇̃μ(t) + ̇̃eTy R ̃ey (20a)

Please note that bothG* andRmatrices are symmetrical. Further
simplification of Eq. 20a can be achieved by adding and subtracting
2D* into equation and taking advantage of the skew-symmetry
property represented in Eq. 19. The resulting equation is

dV(ỹt)
dt
= ̇̃μ(t)TG* ̈̃μ(t) + 1

2
{ ̇̃μ(t)T( ̇G* − 2D* + 2D*) ̇̃μ(t)} + ̇̃eTy R ̃ey

(20b)

By utilizing Eq. 19, it is possible to simplify Eq. 20b and which
can then be written in a more concise form as follows.

dV(ỹt)
dt
= ̇̃μ(t)TG* ̈̃μ(t) + { ̇̃μ(t)TD* ̇̃μ(t)} + ̇̃eTy R ̃ey (20c)

where ̇ ̃ey = ̇̃μ(t) − ̇̃μr(t) .

dV(ỹt)
dt
= ̇̃μ(t)T {G* ̈̃μ(t) +D* ̇̃μ(t) +R ̃ey} (20d)

By utilizing Eq. 2, the aforementioned expression can be
reformulated as follows:

dV(ỹt)
dt
= ̇̃μ(t)T{F̃ +R ̃ey} = (F̃ +R ̃ey)

T z̃(t) (20e)

Thus, the following terminal value of the predicted control input
proposed in Eq. 21a satisfies the equality in Eq. 20e as well as
guarantees the passivity-based inequality constraint in (Eq. 14).

ũ (t) = ũ (Tp) = (F̃ +R ̃ey) t = Tp (21a)
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FIGURE 3
(A–H) Tracking performance–PNMPC with a storage function and passivity constraints. (A) Cartesian position of the end-effector. (B) Tracking error in
the x-direction. (C) Tracking error in the y-direction. (D) Cartesian velocity of the end-effector. (E) Tracking control of joints 3–5. (F) Tracking control of
angular rates for joints 3–5.
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FIGURE 4
(A–H) Tracking performance–PNMPC1 without a terminal function only with passivity constraints. (A) Cartesian position of the end-effector. (B)
Tracking error in the x-direction. (C) Tracking error in the y-direction. (D) Cartesian velocity of the end-effector. (E) Tracking control of joints 3–5. (F)
Tracking control of angular rates for joints 3–5. (G) Variation of torques for joints 3–5. (H) Variation of end-effector contact force.
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FIGURE 5
(A–B) The impact of the terminal/storage function in the NMPC performance index. (A) Comparison of tracking performances in the x-direction
between PNMPC and PNMPC1. (B) Comparison of tracking performances in the y-direction between PNMPC and PNMPC1.

Hence, it is hereby proven that the proposed terminal value
of predicted control input and the storage function satisfy the
constraint provided in Eq. 14 as follows:

dV(ỹTp
))

dt
= (F̃ +R ̃ey)

T ̇̃μ (t) = ũT(t) ̇̃μ(t) ≤ ũT(t) z̃(t) t = Tp

(21b)

where the value of F̃ is calculated by utilizing the model-based
computed torque/force approach at t = Tp. It is part of the terminal
value of the predicted input and not measured from the plant output
as illustrated in Figure 2A. The first inequality constraint provided
in (Eq. 14) is now satisfied by the proposed storage function V(ỹt)
(Eq. 17) and the proposed control input (Eq. 21a). In order to
enforce the closed loop stability, the other passivity constraints
provided in Eq. 15 are implemented as part of the NMPC model.
i.e.

ũT(t) ̇̃μ(t) ≤ −ρ ̇̃μT(t) ̇̃μ(t) − υ ũT(t) ũ(t)

ρ ≥ 0,υ ≥ 0
(21c)

The following prediction equations are employed in conjunction
with the system discrete state-space model at each sampling instant
kt (Kalaycioglu, S and de Ruiter A. 2023). These equations are the
discretized version of Eq. 9b. and written as follows:

Δỹ(kt + j+ 1) = Â(ĝ(kt + j))Δỹ(kt + j) + B̂(ĝ(kt + j)) Δũ(kt + j)

Δỹ(kt + j) = ỹ(kt + j) − ỹr(kt + j)

Δũ(kt + j) = ũ(kt + j) − ũ(kt +Np)

j = 1…Np (22a)

Where ũ(kt +Np) is the terminal value of the predicted input
at t = Tp. (i.e., F̃ +R ̃ey). These prediction equations are then
substituted into the discretized version of the cost function (Eq. 13)
and the optimum predicted control inputs Δũ(kt + j) are obtained as
follows:

Δũ(k+ j) = −(B̂T K B̂+W)−1ÂTK B̂ (ỹ(kt + j) − ỹr(kt + j))

Q = (B̂T KB̂+W)−1ÂTK B̂

Δũ(k+ j) = −Q (ỹ(kt + j) − ỹr(kt + j))

ũ(k+ j) = −Q(ỹ(kt + j) − ỹr(kt + j)) + ũ(kt +Np) (22b)

Therefore, the passivity based NMPC predictive control yields
a state feedback mechanism {−Q (ỹ(kt + j) − ỹr(kt + j))} augmented
with a feedforward component {ũ(kt +Np)} predicated on the
terminal value of the inputs (i.e. F̃ +R ̃ey) . The incorporation of
the terminal cost as the storage function V(ỹTp

) guarantees the
closed loop stability.Themathematical formulations present a novel
approach to NMPC for multi-robot systems in space applications by
incorporating the full non-linear system dynamics equations in the
Cartesian domain using the concept of passivity.

Please also note that the process predictions are calculated
from model predictions by adding a bias correction term to each
prediction over the horizon j =1 … Np to include model parameter
uncertainties as part of Eq. 22a when using a discretized set of
system equations at the sampling time of kt. where

ỹ(kt + j) = ỹm(kt + j) + d̃(kt) (22c)

The proposed PNMPC scheme utilizes a novel passivity-based
state constraint and a terminal storage function to ensure closed-
loop stability and superior performance.The approach demonstrates
that passivity-based concepts and NMPC can be combined into
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FIGURE 6
(A–J) Tracking performance–PNMPC without a terminal function only
with passivity constraints. (A) Cartesian position of the end-effector.
(B) Tracking error in the x-direction. (C) Tracking error in the
y-direction. (D) Cartesian velocity of the end-effector. (E) Tracking
control of joints 3–5. (F) Tracking control of angular rates for joints
3–5. (G) Variation of torques for joints 3–5. (H) Variation of
end-effector contact force. (I) Tracking performance in the
y-direction– PNMPC without a terminal function only with passivity
constraints. (J) Tracking performance in the x-direction– PNMPC
without a terminal function only with passivity constraints.

a single scheme that maintains the advantages of each, including
closed-loop stability through passivity and good performance
through one-line optimization in NMPC. This approach also
provides an alternativemethod to the control Lyapunov function for
controlling non-linear multi-robot space systems and applications,
as stability and passivity exhibit a close relationship.

4 Result and discussion

This section presents and examines the outcomes of computer
simulations. Three sets of simulation results are presented, which
correspond to 1) the proposed Passivity-Based Nonlinear Model
Predictive Control (PNMPC) approach with a storage terminal
function and the passivity constraints; 2) PNMPC scheme operating
without utilizing a storage terminal function, instead relying solely
on passivity constraints and finally 3) a conventional NMPC that
lacks the passivity conditions and the storage function in its cost
function. The simulation results of these three sets are compared,
analyzed, and discussed in detail.

4.1 Simulation results—Passivity-based
nonlinear model predictive control
(PNMPC)

In this section, the proposed passivity-based nonlinear model
predictive scheme is applied to control a multi-robot spacecraft.
In the simulation, the reference trajectory is characterized by a
high level of intricacy. This intricate and complex trajectory serves
as a demonstration of the effectiveness of the proposed PNMPC
algorithm in applications that demand precise pursuit of intricate
and rapid trajectories.

The end-effector is required to track the following trajectory on
a plane where the payload is located:

xr = x0 + a sin(ωnt) + a sin(ωpt)

yr = y0 + a sin(ωnt+ϕ0) + a sin(ωpt+ϕ0)

zr = zo (23)

where [x0,y0,zo,ωn,ωp,ϕ0,a] = [0.4,0.25,0.5,2,12,1.6,0.02] also the
initial conditions for the end-effector of the left robot are given
as: [x,y,z, ẋd, ẏd, ̇zd] = [0.6,0.3,0.5,0,0,0]. The reference trajectory
represents co-centric circles. Tables 1, 2 provides the system
parameters used in the computer simulations for the two robots and
the spacecrafts. Figure 2C illustrates the robot geometry used in the
simulation.

4.2 Part 1: The proposed PNMPC with the
storage terminal function and the passivity
constraints

In this section, the following cost function provided in Eq. 13,
subject to Eq. 14 and Eq. 15 is minimized.

minV(ỹTp
) + 1

2
∫
Tp

0
[(ỹ(t)– ỹr(t))

TK(ỹ(t)– ỹr(t)) + ũ
T(t)Wũ(t)] dt
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FIGURE 7
Summary of tracking performances in the (A) x-direction and (B) y-direction among three algorithms.

Figures 3A–H exhibit the simulation results, which indicate
that the developed PNMPC algorithm is remarkably adept at
tracking the intricate trajectory. Figure 3A displays the Cartesian
position of the end-effector, while Figures 3B,C illustrate the error
in Cartesian displacement of the end-effector. Figure 3D illustrates
the time variation of the Cartesian velocity of the end-effector.
Moreover, Figures 3E–H demonstrate the variations in joint angles
over time, angular rates, joint torque, and the equivalent force values,
correspondingly.

4.3 Part 2: PNMPC1 scheme without the
storage terminal function

The following PNMPC1 scheme operates without utilizing
a storage terminal function, instead relying solely on passivity
constraints. The simulation results presented in this section, the
storage function V(ỹt).is removed from the NMPC performance
index as a terminal function.Figures 4A–H illustrate the effect of the
storage function V(ỹt). on the tracking performance and stability.
The same reference trajectory and the initial conditions are used to
compare the simulation results.

By satisfying both Eq. 14 and Eq.15, the simulation results are
generated through the minimization of the following cost function
subject to negative feedback control law.

min 1
2
∫
Tp

0
[(ỹ(t)– ỹr(t))

TK(ỹ(t)– ỹr(t)) + ũ
T(t)Wũ(t)]dt

ũ (t) = −Q ̃ey (24)

Based on the results shown in Figures 3A–G and Figures 4A–G,
it is evident that the proposed Passivity-based Nonlinear Model
Predictive Control (PNMPC) outperforms the PNMPC system
that lacks a terminal function (PNMPC1), while still adhering to

passivity constraints. While both systems demonstrate stability, the
PNMPC approach with the proposed terminal storage function
provides notably superior tracking performance. Figures 5A,B
display the tracking errors for both algorithms, highlighting the
influence of the terminal function in the cost function (or
performance index) of the developed NMPC scheme.

4.4 Part 3: NMPC scheme without the
storage terminal function and passivity
constraints

In this section, the following cost function provided in Eq. 24
without being subject to Eq. 14 and Eq. 15 is minimized subject
to negative feedback control law. Figures 6A–J demonstrate the
impact of the absence of both the storage function and passivity
constraints on tracking performance and stability. The simulation
was conducted using identical reference trajectory and initial
conditions to ensure a fair comparison of the results.

The presented Figures 6A–J indicate that the Nonlinear Model
Predictive Control (NMPC) algorithm is unable to track the
reference trajectory when both the storage function and passivity
constraints are absent.The tracking errors are deemed unacceptable,
and the results are catastrophic.

4.5 Part 4: Summary comparisons of
tracking errors for three sets of simulations

Based on the simulation results illustrated in Figures 7A,B, it is
evident that the PNMPC system proposed in this study surpasses
both the PNMPC system that lacks a terminal function (PNMPC1),
while still adhering to passivity constraints, and the regular NMPC
scheme (NMPC) that lacks a storage terminal function and is
not subject to passivity constraints. While the passivity constraints
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contribute to stability, the proposed PNMPC approach with
the terminal storage function provides notably superior tracking
performance. Figures 7A,B display the tracking errors for all three
algorithms, emphasizing the impact of the terminal function in the
cost function (or performance index) and the presence of passivity
constraints in the Nonlinear Model Predictive Control (NMPC)
schemes.

5 Conclusion and future work

This paper introduced a nonlinear model predictive control
method predicated on the concept of passivity for multi-robot
systems in space applications. The study and the simulation
results demonstrated that utilizing specific passivity-based state
constraints, along with a terminal storage function, guaranteed
closed-loop stability and resulted in superior tracking performance
in simulation results. The proposed approach integrated passivity,
optimal control, and nonlinear model predictive control to cater
to spacecraft-mounted multi-robot systems, specifically in the
context of space applications. Due to the close relationship between
stability andpassivity, the proposed passivity-basednonlinearmodel
predictive control scheme provided an alternative approach to the
control Lyapunov function-based method for redundant nonlinear
space robotics systems. The approach was applied to a free-flying
spacecraft-based multi-robot system. This paper demonstrated that
the benefits of passivity-based concepts andNMPCcanbe combined
into a single NMPC scheme that maintains the advantages of
each, including closed-loop stability through passivity and good
performance through one-line optimization in NMPC. However,
the current study has identified several limitations of the developed
PNMPC scheme, which we intend to address in future research.
One potential drawback is that inaccuracies in themodeling process
could adversely affect its performance. Another limitation is that the
PNMPC requires offline tuning of its parameters. Furthermore, the

lack of experimental testing in the current study highlights a need
for further research to validate the simulation results.
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