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In this paper, a distributed cooperative filtering strategy for state estimation
has been developed for mobile sensor networks in a spatial–temporal varying
field modeled by the advection–diffusion equation. Sensors are organized into
distributed cells that resemble amesh grid covering a spatial area, and estimation
of the field value and gradient information at each cell center is obtained
by running a constrained cooperative Kalman filter while incorporating the
sensor measurements and information from neighboring cells. Within each
cell, the finite volume method is applied to discretize and approximate the
advection–diffusion equation. These approximations build the weakly coupled
relationships between neighboring cells and define the constraints that the
cooperative Kalman filters are subjected to. With the estimated information,
a gradient-based formation control law has been developed that enables the
sensor network to adjust formation size by utilizing the estimated gradient
information. Convergence analysis has been conducted for both the distributed
constrained cooperative Kalman filter and the formation control. Simulation
results with a 9-cell 12-sensor network validate the proposed distributed filtering
method and control law.

KEYWORDS

distributed parameter systems, mobile sensor networks, Kalman filter, cooperative
control, formation control

1 Introduction

Natural phenomena, such as forest fires, hurricanes, and ocean eddies, are complex
spatial–temporal processes that are influenced by physical parameters like wind speed,
humidity, flow direction, flow speed, and temperature (Eshghi and Schmidtke, 2018;
Wei et al., 2019; Chen and Dames, 2020; Park et al., 2018). By understanding these
phenomena in real-time, precision countermeasures such as rerouting firefighters/AUVs
to the growing edge of a forest fire, monitoring and evacuating local areas that are at
risk of hurricane damage, or decreasing the search area of floating plane-crash survivors
by measuring and estimating ocean eddies can be effectively deployed (Radmanesh et al.,
2021; Elston et al., 2010). Partial differential equations (PDEs) have been proven to be
effective in modeling many of these natural phenomena, and solving these PDEs can help
us gain a better understanding of the spatial–temporal variations in these phenomena.
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One typical PDE is the advection–diffusion equation, which
has been applied to model a wide range of physical phenomena,
including the propagation of chemicals, particles, energy, and other
physical quantities inside media like water and air Ghez (2001). The
advection–diffusion equation accounts for both spatial and temporal
variations, making it applicable to many physical phenomena with
varying parameters. Real-world applications of this equation include
modeling oceanic oil spills like the Deepwater Horizon disaster
in 2010 (Boufadel et al., 2022) and airborne chemical dispersion
(Gao and Acar, 2016) resulting from train derailments, such as the
one that occurred in Ohio in 2023. In both cases, understanding
the behavior of the advection–diffusion equation can help predict
the spread of pollutants and aid in the implementation of effective
countermeasures.

Obtaining explicit analytic solutions for PDEs, such as the
advection–diffusion equation, can be challenging in many cases.
In the literature, static sensor networks have been proposed as a
solution to estimation problems, where a large number of sensors are
deployed over the domain of interest (Krstic and Smyshlyaev, 2008).
However, static sensors have limited accuracy in areas with high
spatial–temporal variations. To address this issue, mobile sensor
networks have emerged as a more flexible and efficient alternative,
requiring fewer sensors and enabling adaptive monitoring of areas
of interest (Ge et al., 2019; Kumar et al., 2019; Wang et al., 2019).

In mobile sensor networks, measurements are collected along
trajectories while the sensors move in groups within the field
of interest. These mobile sensing data exhibit coupling between
space and time, making it necessary to convert them into a map
of spatial–temporal field estimates, instead of obtaining separate
decoupled spatial and temporal maps Ge et al. (2019). To improve
the accuracy of estimates, filters can be applied to combine multiple
sensor measurements while accounting for measurement noise
(Demetriou, 2021; Mishra et al., 2020; Hu et al., 2022).

Our previous work focused on solving the field estimation
problem for mobile sensor networks in a centralized manner
(Zhang and Leonard, 2010; You et al., 2022). Specifically, we derived
information dynamics to model the spatial–temporal variations
along the trajectory of the formation center of a cell of mobile
sensors. We also proposed a cooperative Kalman filter to give
estimations of the field value at formation center based on those
derived information dynamics. In cases where the spatial–temporal
field can be modeled by a known PDE, the PDE can be discretized
as a constraint for the estimates of the cooperative Kalman filter
(Wu et al., 2021; You et al., 2022). In our recent work (Zhang et al.,
2022), we proposed a constrained cooperative Kalman filter and
a framework to decouple the information dynamics and the PDE
model.

In Zhang et al. (2023), we generalized the constrained
cooperative Kalman filter to distributed mobile sensor networks
with rigid formations in a spatial–temporal field modeled by the
Poisson equation. In this approach, themobile sensors are organized
into cells and have limited communication capabilities restricted to
intra-cell and adjacent cells. The estimated information at each cell
center is shared only among neighboring cells according to the
derived information dynamics.

TheKalman-consensus filter (Olfati-Saber, 2009) and its variants
(Ji et al., 2017; Lian et al., 2020; Song et al., 2019; He et al., 2020)
have been widely applied for distributed filtering, where a consensus

term is added to the conventional Kalman filter for estimating states
and reaching consensus with neighbors on the estimation. Different
from these consensus-based filters, our proposed distributed
filtering strategy does not focus on achieving consensus between
neighboring sensors on the state estimation of targets. Instead,
the information dynamics considered in this paper model the
spatial–temporal variation along trajectories of cell centers and
are defined based on the differences between neighbors. These
differences establish the foundation of the proposed distributed
filtering.

In this paper, we focus on solving the estimation problem
for distributed mobile sensor networks in a field modeled by the
advection–diffusion equation (Ghez, 2001). Distributed filtering
over sensor networks has been studied with applications in target
tracking, environmental monitoring, etc. Instead of maintaining
all-to-all communication, sensors are only required to share
information with their local neighbors, resulting in greater
robustness and scalability compared with centralized filtering
and estimation. In real-world scenarios such as underwater
environments, low bandwidth, power limitations, high deployment
expenses, and communication losses can make it challenging
to maintain all-to-all communications among mobile sensor
networks (Alfouzan, 2021; Omeke et al., 2021). This proposed
distributed formulation is welcome in such real-world applications,
as sensor power can be better distributed spatially. With
limited communication, mobile sensors maintain a formation
of organized cells with time-varying bounded relative distances
while maneuvering in the field. For each cell, the field value and
gradient information at the cell center are estimated using the sensor
measurements from this cell.

The estimated information generated by the distributed filters
is required to satisfy the advection–diffusion equation, which is
used as a constraint for the estimation. Proper discretization and
approximation of the continuous PDE are crucial in obtaining the
estimation constraint. Finite volumemethods are commonly applied
to obtain PDE discretizations within each cell over the mesh grids
composed of mobile sensors (Hermeline, 2000; Droniou, 2014).
In the context of distributed mobile sensor networks, each node
can be regarded as a grid point in a mesh grid that provides
measurements of the field value at the grid point. The discretization
of the advection–diffusion equation models the inclusion of sensor
measurements in a single cell, with the information shared among
neighboring cells. Such discretization is incorporated as constraints
in the distributed cooperative Kalman filter and reflects the weakly
coupled relationships among neighboring cells.

In this work, the desired relative positions between sensors are
no longer constant and are determined by the estimated gradient
information from the cooperative filters. In order to maintain the
desired distances between sensors, a formation controller has been
designed. Under the proposed formation control, the networked
sensors are capable of spreading out with increased cell sizes when
exploring fields with small gradients and forming a tighter size when
the field has larger gradients. With adaptive formation sizes, the
mobile sensors can explore larger areas in less time with minimal
sacrifices to quality.

The major contributions of this paper are summarized as
follows: 1) developing a distributed cooperative Kalman filter under
constraints induced by the advection–diffusion equation for a
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mobile sensor network. 2)Applying the finite volumemethod for the
PDE approximation. 3) Proving convergence for both the formation
control and the distributed constrained cooperative Kalman filter.

The rest of the paper is organized as follows. Section 2
introduces the Problem formulation. Section 3 reviews the
information dynamics and the measurement equations. Section 4
derives the approximation at each cell center using finite volume
methods. Section 5 presents the distributed constrained cooperative
Kalman filter for state estimation. Section 6 presents the formation
control design for distributed mobile sensor networks. Section 7
provides the Convergence analysis. Simulation results are given in
Section 8. Conclusion and future works follow in Section 9.

2 Problem formulation

Consider a spatial–temporal field in d-dimensional space, where
d ∈ ℤ+ and d ≥ 2. Denote the spatial domain of interest as Ω ⊆ ℝd,
location as r ∈Ω, and time as t ∈ ℝ+.

2.1 Environmental model and mobile
sensors

We assume that the field can be described by the following
advection–diffusion equation:

∂z (r, t)
∂t
= θΔz (r, t) + v⊺∇z (r, t) , (1)

where z(r, t):ℝd ×ℝ+↦ℝ is the field value that depends on both
location r and time t, θ > 0 is a known constant diffusion coefficient,
∇ is the gradient operator, Δ = ∇2 represents the Laplacian operator,
and v ∈ ℝd is a known constant vector representing flow velocity.

Eq. 1 has the initial condition z(r, 0) = r ∈Ω and the boundary
condition z(r, t) = zb(r, t) for r ∈ ∂Ω, where z0(r) and zb(r, t)
are arbitrary initial condition and Dirichlet boundary condition,
respectively.

We suppose a number of distributed mobile sensors are
taking discrete measurements of the field z(r, t), which conforms
to the advection–diffusion equation described in Eq. 1. In a
limited communication environment, these mobile sensors can only
share information with their local neighbors and are unable to
communicate globally. In this manner, the mobile sensors form
communication cells with the ability to communicate intra-cell as
well as with adjacent cells. No communication occurs between cells
not sharing a boundary. The communication network of the mobile
sensors is illustrated in Figure 1.

Assumption 2.1: The communication graph formed by the mobile
sensors is predetermined and fixed, but the formation size changes
while the sensors move in the field, as shown in Figure 1.The spatial
domain covered by the mobile sensor network is defined as Ωr with
boundary ∂Ωr , which both vary while the sensors move in the field.

Assumption 2.2: For each communication cell Cj, the mobile
sensors maintain distance from each other so that the area covered
by the cell denoted byA(Cj)will not shrink to zero size, i.e.,A(Cj) ≠
0 for any j = 1,…,N.

FIGURE 1
Example of five cells C1,…,C5 with eight sensors (left), where the blue
dots denote mobile sensors and the solid lines represent boundary
edges of each cell. Intra-cell communication of cell C1 (right), where
the dashed lines represent communication between any two sensors
from the same cell. Note that cells C1 and C4 do not share a boundary,
and thus no communication occurs between these cells.

Assumption 2.3: The mobile sensors communicate with
neighboring sensors, and there is no overlap between any
communication cells. The intersection between two cells is the edge
connecting two vertices of the communication graph.

Definition 2.4: Two communication cells are called neighboring
cells if they have a shared edge on the cell boundaries, e.g., C1,C2
in Figure 1.

Assumption 2.5: Every communication cell has at least one
neighboring cell.The sensorsmaintain all-to-all information sharing
within each communication cell. The information sharing among
different communication cells only happens between neighboring
cells, and the shared information is the corresponding estimated
information at cell centers.

We suppose the mobile sensors form multiple communication
cellsC1,C2,…,CN . (The communication cells will be denoted as cells
for simplicity in the rest of this paper.) Denote the ith mobile sensor
from cell Cj as (i, j) and the location of this mobile sensor at the kth
time step as rki,j.Then, the corresponding noisymeasurement p(rki,j,k)
taken by this sensor can be written as

p(rki,j,k) = z(r
k
i,j,k) + n

k
i,j, (2)

where nki,j ∈ ℝ is an i.i.d. Gaussian noise with zero mean. Define
the center location of sensors from cell Cj at the kth time step as
rkcj and rkcj =

1
|Cj|
∑i∈Cj

rki,j, where |Cj| is the number of mobile sensors
belonging to cell Cj.

2.2 Formation control

We assume that the desired distance dki1,i2 at the kth time
step between any two communicating sensors i1, i2 from the same
communication cell is non-constant and can be determined by
gradient information as follows:

dki1,i2 = d(∇z(r
k
i1
,k) ,∇z(rki2 ,k)) , (3)
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where function d(⋅):ℝd↦ℝ describes the relationship between the
desired distance and gradient information at the cell center rcj at the
kth time step.

The velocity of sensor i from communication cell Cj is described
by

̇rki,j = u(z(r
k
i,j) ,∇z(r

k
i,j) ,d

k
i ) , (4)

where u is a control law that relies on the measurement z(ri),
gradient ∇z(ri) of the field function, and the desired distance
vector dki = [d

k
i,i′]i′∈Ni

containing all desired distance information of
sensor i.

2.3 Design goals

By utilizing the discrete measurements taken by mobile sensors,
we would like to solve the estimation problem for distributedmobile
sensor networks in a field modeled by the advection–diffusion
equation. While the sensors are deployed in the field collecting
measurements, the estimated information will be applied to
maintain desired formations and guide them moving in the field.

The objectives of this paper can be summarized as follows:
1) estimate field and gradient information at cell centers along
trajectories by incorporating discrete sensor measurements. 2)
Develop a formation controller such that the sensors will move
in desired varying formation sizes by incorporating the estimated
gradient informationwhilemoving in the field of interest. 3) Provide
detailed convergence analysis of the estimation under varying
formations. 4) Apply formation control to the distributed sensor
network to explore the field utilizing estimated information.

3 Preliminaries

In this section, we will review the results of information
dynamics and measurement equations at each cell center. For
more detailed derivation, interested readers can refer to our
previous papers (Zhang et al., 2022) for information dynamics and
(Zhang et al., 2023) for distributed approximation using the finite
volume method.

3.1 Information dynamics

The relationship between total derivative dz
dt

and partial
derivative ∂z

∂t
of rkcj at the kth time step can be approximated using

the chain rule as follows:

(dz
dt
− ∂z
∂t
)|
(rkcj ,k)
≈ 1
δt
(rkcj − r

k−1
cj )
⊺
∇z(rk−1cj ,k− 1) , (5)

where δt is the sampling time interval. By applying the finite
difference method, we can obtain dz

dt
and ∂z

∂t
as

dz
dt
|
(rkcj ,k)
≈
z(rkcj ,k) − z(r

k−1
cj ,k− 1)

δt
, ∂z

∂t
|
(rkcj ,k)
≈
z(rkcj ,k+ 1) − z(r

k
cj ,k)

δt
,

(6)

which leads to

(dz
dt
− ∂z
∂t
)|
(rkcj ,k)
≈ 1
δt
(2z(rkcj ,k) − z(r

k−1
cj ,k− 1) − z(r

k
cj ,k+ 1)) .

(7)

From Eqs 5, 7, we can build the following relationship:

(2z(rkcj ,k) − z(r
k−1
cj ,k− 1) − z(r

k
cj ,k+ 1)) = (r

k
cj − r

k−1
cj )
⊺
∇z(rk−1cj ,k− 1) .

(8)

Since z(rkcj ,k) = z(r
k−1
cj ,k) + (r

k
cj − r

k−1
cj )
⊺∇z(rk−1cj ,k), we should have

z(rkcj ,k+ 1) =2z(r
k
cj ,k) − z(r

k−1
cj ,k− 1)

− (rkcj − r
k−1
cj )
⊺∇z(rk−1cj ,k− 1)

=2z(rk−1cj ,k) + 2(r
k
cj − r

k−1
cj )
⊺∇z(rk−1cj ,k)

− z(rk−1cj ,k− 1)

− (rkcj − r
k−1
cj )
⊺∇z(rk−1cj ,k− 1).

(9)

By utilizing a similar approach, we can obtain

dz
dt
|
(rkcj ,k+1)
≈
z(rkcj ,k+ 1) − z(r

k−1
cj ,k)

δt
,

∂z
∂t
|
(rkcj ,k+1)
≈
z(rkcj ,k+ 1) − z(r

k
cj ,k)

δt
, (10)

leading to

(dz
dt
− ∂z
∂t
)|
(rkcj ,k+1)
≈ 1
δt
(z(rkcj ,k) − z(r

k−1
cj ,k))

= 1
δt
(rkcj − r

k−1
cj )
⊺
∇z(rk−1cj ,k) , (11)

which means that

z(rkcj ,k) − z(r
k−1
cj ,k) = (r

k
cj − r

k−1
cj )
⊺
∇z(rk−1cj ,k) . (12)

We define the state variable x(j,k) = [z(rk−1cj ,k− 1),∇z(r
k−1
cj ,k− 1),

z(rk−1cj ,k),∇z(r
k−1
cj ,k)]

⊺
, and we can get the following state equation

based on Eqs 9, 12:

x (j,k+ 1) = A (j,k)x (j,k) +U (j,k) + e (j,k) , (13)

where A(j,k) ≜ [[

[

0 0 1 (rkcj−r
k−1
cj )
⊺

0 Id×d 0 0
−1 −(rkcj−r

k−1
cj )
⊺ 2 2(rkcj−r

k−1
cj )
⊺

0 0 0 I

]]

]

, U(j,k) ≜

[

[

0
∇2z(rk−1cj ,k−1)(r

k
cj−r

k−1
cj )

0
∇2z(rk−1cj ,k)(r

k
cj−r

k−1
cj )

]

]
, and e(j,k) is the noise term.

3.2 Measurement equation

The field concentration can be locally approximated by the
Taylor series up to the second order as

z(rk−1i,j ,k− 1) ≈z(r
k−1
cj ,k− 1) + (r

k−1
i,j − r

k−1
cj )
⊺
∇z(rk−1cj ,k− 1)

+ 1
2
(rk−1i,j − r

k−1
cj )
⊺
H (rk−1cj ,k− 1)(r

k−1
i,j − r

k−1
cj ) ,

z(rki,j,k) ≈z(r
k−1
cj ,k) + (r

k
i,j − r

k−1
cj )
⊺
∇z(rk−1cj ,k)

+ 1
2
(rki,j − r

k−1
cj )
⊺
H (rk−1cj ,k− 1)(r

k
i,j − r

k−1
cj ) .

(14)
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LetZ(j,k) = [z(rk−11,j ,k− 1),…,z(r
k−1
|Cj|,j
,k− 1),z(rk1,j,k),…, z(r

k
|Cj|,j
,k)]⊺

be the vector of true field values. Define

C (j,k) ≜

[[[[[[[

[

1 (rk−11,j −r
k−1
cj )
⊺

0 0
⋮ ⋮ ⋮ ⋮
1 (rk−1|Cj|,j−r

k−1
cj )
⊺

0 0

0 0 1 (rk1,j−r
k−1
cj )
⊺

⋮ ⋮ ⋮ ⋮
0 0 1 (rk|Cj|,j−r

k−1
cj )
⊺

]]]]]]]

]

,

D (j,k) ≜

[[[[[[[

[

1
2
[(rk−11,j −r

k−1
cj )⊗(r

k−1
1,j −r

k−1
cj )]
⊺

⋮
1
2
[(rk−1|Cj|,j−r

k−1
cj )⊗(r

k−1
|Cj|,j
−rk−1cj )]

⊺

1
2
[(rk1,j−r

k−1
cj )⊗(r

k
1,j−r

k−1
cj )]
⊺

⋮
1
2
[(rk|Cj|,j−r

k−1
cj )⊗(r

k
|Cj|,j
−rk−1cj )]

⊺

]]]]]]]

]

, (15)

where ⊗ is the Kronecker product. The Taylor expansions (Eq. 14)
for all sensors near rk−1cj can be rewritten in a vector form as

Z (j,k) = C (j,k)x (j,k) +D (j,k)H (j,k) , (16)

where H(j,k) is a column vector obtained by rearranging elements
of the HessianH(rk−1cj ,k− 1).

Supposing Ĥ(j,k) represents the estimate of the vector form
HessianH(j,k) at rkcj , Eq. 2 can be remodeled as

P (j,k) = C (j,k)x (j,k) +D (j,k)Ĥ (j,k) +D (j,k)ε (j,k) +n (j,k) ,
(17)

where P(j,k) = [p(rk−11,j ,k− 1),…,p(r
k−1
|Cj|,j
,k− 1),p(rk1,j,k),…,

p(rk|Cj|,j
,k)]
⊺
is the measurement vector, ɛ(j,k) represents the error

in Hessian estimation, and n(j,k) is the vector of Gaussian noise ni
in Eq. 2.

IfD(j,k)⊺D(j,k) is invertible, then the least mean square method
can be applied to approximate the Hessian vector as follows
(You et al., 2022):

Ĥ (j,k) = (D(j,k)TD (j,k))−1D(j,k)T [P (j,k) −C (j,k)x (j,k)] . (18)

According to the definition of D(j,k) in Eq. 15, at least d2 linearly
independent vectors of (rk−1i,j − r

k−1
cj ), (r

k
i,j − r

k−1
cj ) are needed for

invertibleD(j,k)⊺D(j,k), whichmeans 2|Cj| ≥ d2. In the case of d = 2,
|Cj| should satisfy that |Cj| ≥

d2

2
= 2. Since |Cj| = 2means two sensors

in one cell leading to A(Cj) = 0, which violates A(Cj) ≠ 0, at least
three sensors are needed to form one cell.

If D(j,k)⊺D(j,k) is not invertible, then a regularization term ϵ0I
will be added as follows:

Ĥ (j,k) = (D(j,k)TD (j,k) + ϵ0I)
−1D(j,k)T [P (j,k) −C (j,k)x (j,k)] ,

(19)

where ϵ0 > 0 is a small positive scalar and I ∈ ℝd×d is the identity
matrix.

4 Approximation using the finite
volume method

Since the measurements taken by the mobile sensors in Eq. 2
are discrete, the continuous advection–diffusion equation in Eq. 1

should be discretized properly.Themobile sensors have already been
organized into different cells, and the finite volume method can be
applied for PDE discretization within each cell.

The advection–diffusion equation in Eq. 1 can be discretized at
rk−1cj at the (k− 1)-th time step as follows:

z(rk−1cj ,k) − z(r
k−1
cj ,k− 1)

Δt
= θΔz (rk−1cj ,k− 1) + v

⊺∇z(rk−1cj ,k− 1)) .

(20)

As we can observe that z(rk−1cj ,k),z(r
k−1
cj ,k− 1),∇z(r

k−1
cj ,k− 1) are

elements in the state variable x(j,k), the only term left is the
Laplacian Δz(rk−1cj ,k− 1). We consider using the finite volume
method to obtain the Laplacian approximation such that the
discretized advection–diffusion equation can be utilized as a
constraint for the distributed Kalman filter.

For each formation of sensors belonging to the same
communication cell, the finite volume method in Hermeline (2000)
will be applied to generate the approximation. We will present the
general results covering both non-boundary edge and boundary
edge cases, as illustrated in Figure 2A. Since all the values are at the
same kth time step, we will drop the time index k for simplicity in
this approximation.

Consider a shared edge s by Cj and neighboring cell Cj′ . Denote
the cell centers for Cj,Cj′ as cj,cj′ , respectively. Denote the two
vertices of edge s as i, i′. As shown in Figure 2B, denote νjj′ as the
unit outward normal vector on edge s connecting i and i′, with
τ jj′ as the corresponding unit counterclockwise tangent vector, and
denote νii′ as the unit outward normal vector on edge connecting cj
and cj′ , with τii′ as the corresponding unit counterclockwise tangent
vector. Define θs to be the angle between νjj′ and τ ii′ . Suppose the
edge connecting cj and cj′ intersects with edge s at point as. Denote
the length of the edge connecting cj and as as d. Then, the three
vectors dτii′ ,d cos θsνjj′ ,d sin θsτ jj′ form a right triangle, as shown
by the green shaded area in Figure 2B. This leads to the following
relationship:

νjj′ = −tanθsτ jj′ +
1

cosθs
τ ii′ . (21)

If there is no such neighboring cellCj′ , then themiddle point of edge
s can be treated as cj′ , as illustrated in Figure 2C. By taking integrals
of Δz over cell Cj, we can obtain ∫∫Cj

Δz = ∑s∈∂Cj
∫Sii′∇z ⋅ νjj′ . Since

A(Cj) ≠ 0, substituting νjj′ with Eq. 21 leads to21 leads to

Δz ≈ 1
A(Cj)
∬

Cj

Δz = 1
A(Cj)

∑
s∈∂Cj

∫
Sii′
∇z ⋅ νjj′

= 1
A(Cj)

∑
s∈∂Cj

[−tanθs∫
Sii′
∇z ⋅ τ jj′

+ 1
cosθs
∫
Sii′
∇z ⋅ τii′].

(22)

By the finite difference method, we know that

∫
Sii′
∇z ⋅ τ jj′ ≈ zi − zi′ ,

∫
Sii′
∇z ⋅ τii′ ≈

{{{{{
{{{{{
{

‖ri,j − ri′,j‖2
‖rcj − rcj′‖2

(zcj′ − zcj) , if Sii′ ∉ ∂Ωr ,

‖ri,j − ri′,j‖2
‖rcj − rcj′‖2

(
zi + zi′

2
− zcj), if Sii′ ∈ ∂Ωr ,

(23)
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FIGURE 2
Illustration of νjj′ ,τjj′ ,νii′ ,τii′ ,θs with given cell centers cj,cj′ and given edge s connecting vertices i, i′. Orange triangles represent cell centers. (A) Cell 2
with non-boundary and boundary edges. (B) Illustration of non-boundary edge. (C) Illustration of boundary edge.

where Sii′ is the edge connecting mobile sensors i, i′, and ∂Ωr is the
boundary of the area covered the entire mobile sensor network.This
will lead to

Δz =− 1
A(Cj)

∑
s∈∂Cj

tanθs (zi − zi′)

+ 1
A(Cj)

∑
s∈(∂Cj⧵∂Ωr)

1
cosθs

‖ri,j − ri′,j‖2
‖rcj − rcj′‖2

(zcj′ − zcj)

+ 1
A(Cj)

∑
s∈(∂Cj∩∂Ωr)

1
cosθs

‖ri,j − ri′,j‖2
‖rcj − rcj′‖2

×(
zi + zi′

2
− zcj).

(24)

Note that if cell Cj has no boundary edges, then ∂Cj ⧵ ∂Ωr = ∂Cj and
∂Cm ∩ ∂Ωr = ∅. Thus, the approximation in Eq. 24 covers the cases
with and without boundary edges. Substituting Δz in Eq. 24 back to
the discretized advection–diffusion (Eq. 20) will lead to

z(rk−1cj ,k) − z(r
k−1
cj ,k− 1)

Δt
= v⊺∇z(rk−1cj ,k− 1)

− θ
A(Cj)

∑
s∈∂Cj

tanθs [z(r
k−1
i,j ,k− 1) − z(r

k−1
i′,j ,k− 1)]

+ θ
A(Cj)

∑
s∈(∂Cj⧵∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2

× [z(rk−1cj′ ,k− 1) − z(r
k−1
cj ,k− 1)]

+ θ
A(Cj)

∑
s∈(∂Cj∩∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2

×[[

[

z(rk−1i,j ,k− 1) + z(r
k−1
i′,j ,k− 1)

2
− z(rk−1cj ,k− 1)

]]

]

.

(25)

This can be rewritten in linear form with respect to state variable
x(j,k) = [z(rk−1cj ,k− 1),∇z(r

k−1
cj ,k− 1),z(r

k−1
cj ,k),∇z(r

k−1
cj ,k)]

⊺

G⊺ (j,k)x (j,k) = g (j,k) , (26)

where
G(j,k) ≜ [

[
(−1+ θΔt

A(Cj)
∑s∈∂Cj

1
cosθs

‖rk−1i,j −r
k−1
i′,j
‖2

‖rk−1cj −r
k−1
cj′
‖2
) −(vΔt)⊺ 1 01×d]

]

⊺

, and

g(j,k) ≜ − θΔt
A(Cj)
∑
s∈∂Cj

tanθs [z(r
k−1
i,j ,k− 1) − z(r

k−1
i′,j ,k− 1)]

+ θΔt
A(Cj)

∑
s∈(∂Cj⧵∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2

z(rk−1cj′ ,k− 1)

+ θΔt
A(Cj)

∑
s∈(∂Cj∩∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2

z(rk−1i,j ,k− 1) + z(r
k−1
i′,j ,k− 1)

2
.

(27)

5 State estimation using constrained
cooperative Kalman filter

In this section, we will present the distributed constrained
cooperative Kalman filter, which uses local sensor measurements to
estimate information at each cell center and treats the PDEmodel as
a constraint for the estimated information.

Assumption 5.1: We assume that the noises e(j,k), ɛ(j,k),
and n(j,k) are i.i.d. Gaussian noise with zero mean and with
constant covariance matrix for all j, i.e., E[e(j,k)e⊺(j,k)] =W ,
E[ɛ(j,k)ɛ⊺(j,k)] = Q, and E[n(j,k)n⊺(j,k)] = Rn.

The constrained cooperative Kalman filter can be constructed
using six steps:

(1) One-step state prediction

x̂− (j,k) = A (j,k− 1) x̃+ (j,k− 1) +U (j,k− 1) , (28)

where x̃+(j,k− 1) is the constrained state estimate from the previous
time step and x̂−(j,k) is the one-step state prediction.

(2) Error covariance of x̂−(j,k)

R− (j,k) = A (j,k− 1)R+ (j,k− 1)A⊺ (j,k− 1) +W . (29)
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(3) Optimal gain

K (j,k) = R− (j,k)C⊺ (j,k) [C (j,k)R− (j,k)C⊺ (j,k)

+ D (j,k)QD⊺ (j,k) +Rn]
−1. (30)

The Hessian estimate can be approximated using the one-step state
prediction as

Ĥ (j,k) = (D(j,k)TD (j,k))−1D(j,k)T (P (j,k) −C (j,k) x̂− (j,k)) .

(4) Updated unconstrained state estimate

x̂+ (j,k) = x̂− (j,k) +K (j,k)(P (j,k) −C (j,k) x̂− (j,k) −D (j,k)Ĥ (j,k)) .
(31)

(5) Error covariance of x̂+(j,k)

(R+ (j,k))−1 = (R− (j,k))−1 +C⊺ (j,k) [D (j,k)QD⊺ (j,k) +Rn]
−1C (j,k) .

(32)

After running the five steps of the unconstrained filter, each cell
obtains an unconstrained state estimate x̂+(j,k), and it will share
this information with all neighboring cells to update the constrained
estimate.

Since each cell will not shrink to zero size and the flow velocity
vector v ≠ 0, the following relationship can be always satisfied:

G⊺ (j,k)G (j,k) = (−1+ θΔt
A(Cj)

∑
s∈∂Cj

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2
)

2

+ (Δt)2‖v‖2 + 1 ≠ 0,∀j,k. (33)

(6) Updated constrained state estimate

x̃+ (j,k) = x̂+ (j,k) −G (j,k) (G⊺ (j,k)G (j,k))−1

× (G⊺ (j,k) x̂+ (j,k) − ĝ (j,k)) , (34)

where

ĝ (j,k) ≜ − θΔt
A(Cj)

∑
s∈∂Cj

tanθs [p(r
k−1
i,j ,k− 1) − p(r

k−1
i′,j ,k− 1)]

+ θΔt
A(Cj)

∑
s∈(∂Cj⧵∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2
̂z+ (rk−1cj′ ,k− 1)

+ θΔt
A(Cj)

∑
s∈(∂Cj∩∂Ωr)

1
cosθs

‖rk−1i,j − r
k−1
i′,j ‖2

‖rk−1cj − r
k−1
cj′ ‖2

×
p(rk−1i,j ,k− 1) + p(r

k−1
i′,j ,k− 1)

2
. (35)

This is an approximation of g(j,k) with ̂z+(rk−1cj′ ,k− 1) =
[1 01×d 0 01×d] x̂+(j′,k), and it uses measurements
p(rk−1i,j ,k− 1),p(r

k−1
i′,j ,k− 1) as approximations for z(rk−1i,j ,k− 1),

z(rk−1i′,j ,k− 1). According to the definition

G(j,k) = [(−1+ θΔt
A(Cj)
∑s∈∂Cj

1
cosθs

‖rk−1i,j −r
k−1
i′,j ‖2

‖rk−1cj −r
k−1
cj′
‖2
) −(vΔt)⊺ 1 01×d]

⊺
,

the updated constrained estimate in Eq. 34 updates the estimates
of z(rk−1cj ,k− 1),∇z(r

k−1
cj ,k− 1),z(r

k−1
cj ,k) and does not affect the

gradient estimate ∇z(rk−1cj ,k) obtained by Eq. 31.

Remark 5.2: For the six steps of the distributed constrained
cooperative Kalman filter described in Eqs 28–34, the first five steps

in Eqs 28–32 use the local information in one cell, while the last step
in Eq. 34 uses estimated information from neighboring cells.

Remark 5.3: The distributed constrained cooperative Kalman filter
proposed in Zhang et al. (2023) updates the field value estimate
without affecting the gradient estimation, while this work updates
the whole state estimate using the constraint information. In
addition, the formation cells can be arbitrary shapes and arbitrary
sizes as long as the areas are non-zero indicated by Eq. 33.

Define a combined state vector x(k) to include all distributed
state vectors as

x (k) = [x⊺ (1,k) ,…,x⊺ (N,k)]⊺, (36)

which represents the true state value. Similarly, we can
have updated unconstrained combined state estimate X̂+(k) =
[x̂+(1,k)⊺,…, x̂+(N,k)⊺]⊺ and constrained combined state estimate
X̃+(k) = [x̃+(1,k)⊺,…, x̃+(N,k)⊺]⊺. Then, we can have one
constrained cooperative Kalman filter of x(j,k) as

X̂− (k) = A (k− 1) X̃+ (k− 1) +U (k− 1) ,

R− (k) = A (k− 1)R+ (k− 1)A⊺ (k− 1) +W ,

K (k) = R− (k)C⊺ (k) [C (k)R− (k)C⊺ (k) +D (k)QD⊺ (k) +Rn]
−1,

X̂+ (k) = X̂− (k) +K (k)(P (k) −C (k) X̂− (k) −D (k)Ĥ (k)) ,

(R+ (k))−1 = (R− (k))−1 +C⊺ (k) [D (k)QD⊺ (k) +Rn]
−1C (k) ,

X̃+ (k) = X̂+ (k) −G (k) (G⊺ (k)G (k))−1 (G⊺ (k) X̂+ (k) − ĝ (k)) ,
(37)

whereA(k) = diag(A(1, k),…,A(N, k)),C(k) = diag(C(1, k),…,C(N,
k)), D(k) = [D⊺(1,k),…,D⊺(N,k)]⊺, P(k) = [P⊺(1,k),…,P⊺(N,k)]⊺,
Ĥ(k) = [Ĥ⊺(1,k),…,Ĥ⊺(N,k)]⊺, G(k) = diag(G(1,k),…,G(N,k)),
and ĝ(k) = [ĝ(1,k),…, ĝ(N,k)]⊺.

One challenge encountered by the centralized cooperative
Kalman filter is the high computation cost for large-scale systems.
Our proposed distributed filtering strategy can avoid the problem
of high computation costs when applied in large-scale systems.
One possible solution is that we split the mobile sensors into two
types—“computing, sensing, and communicating” (CSC) mobile
sensors and “sensing and communicating” (SC) mobile sensors.
CSC sensors take measurements and compute all the Kalman filter
estimations, while SC sensors only collect measurements. Each
SC sensor is required to share a cell with one CSC sensor. Each
communication cell has at least one CSC sensor and multiple SC
sensors.

The communication and data flowwithin the distributedmobile
sensor network can be described as follows (also shown in Figure 3):

1. All sensors (SC and CSC) move and take a measurement of the
field.

2. SC sensors (blue dots) in each cell send their data to their
connected CSC sensors (green dots) (Figure 3A).

3. The CSC sensor performs the unconstrained cooperative Kalman
filter to estimate the measurement values and gradients at the cell
center (orange triangles) for each cell it is connected to.

4. The CSC sensors communicate with their “connected” CSC
neighbors to get all the necessary sensor positions,measurements,
and cell center estimates. (“connected” CSC neighbors are CSC
mobile sensors that share amobile sensor in their connected cells)
(Figure 3B).
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FIGURE 3
Communication flow of the distributed mobile sensor network during estimation and velocity control. Green dots represent the CSC sensors, while
blue dots represent the SC sensors, and orange triangles represent the cell formation centers. Green dashed arrows represent communication or
information sharing with direction. Orange and dark red dashed lines represent unconstrained and constrained state estimations, respectively. (A)
Intra-cell communication for unconstrained estimation. (B) Inter-cell communication for constrained estimation. (C) Intra-cell communication for
velocity control.

For each individual cell Cj,j = 1,…,N:

Initialize the constrained state estimate,

x̃+(j,0);

Initialize the locations of mobile sensors,

{r1
i,j}i=1,…,|Cj|

;

Initialize time step k = 1;

1: while true do

2: Receive measurements {zk
i,j}i∈Cj

from mobile

sensors in cell Cj and generate unconstrained

state estimation x̂+(j,k) according to Eqs 28–32

(intra-cell communication);

3: Communicate the unconstrained state estimation

x̂+(j,k) to the neighboring cells of Cj and

obtain the constrained state estimate x̃+(j,k)

using Eq. 34 (inter-cell communication);

4: Move to the next mobile sensor locations,

{rk+1
i,j }i=1,…,|Cj|

;

5: k≔ k+1;

6: end while

Algorithm 1. Distributed constrained cooperative Kalman filter

5. Each CSC sensor computes the constrained cooperative Kalman
filter for each connected cell.

6. Cell estimates are pushed back to the connected mobile sensors
for feedback control (Figure 3C).

7. Repeat.

6 Formation control design

In this section, we will design a formation controller
for the mobile sensor network using the gradient estimation

obtained from the distributed constrained cooperative Kalman
filter.

Denote the desired distance between two sensors i, i′ as dii′ .
According to the state estimation using the constrained cooperative
Kalman filter, we are able to obtain gradient estimation at each cell
center.Thus, instead of directly using the gradient of each sensor, we
consider utilizing the gradient estimation of cell centers related to
the mobile sensor.

If sensor i belongs to cell j, we write it as i ∈ Cj. Define Ji =
{j|i ∈ Cj} as the set that contains all the cell indices that sensor i
is related to. Then, define vki as a weighted summation of gradient
estimations from connected cell centers:

vki ≜ ∑
j∈Ji

1
‖rki − r

k
cj‖2
∇z(rkcj) , (38)

which implies that if ri is closer to cell center rcj than rcj′ , then
estimation ∇z(rcj) has more influence on vki than ∇z(rcj′) does. This
describes a dynamical way of gradient approximation determined by
distances.

By applying the gradient approximation in Eq. 38, the gradient-
based desired distance can be designed as follows:

dii′ =
ϵ1

‖1
2
(vki + v

k
i′)‖2
+ ϵ2
+ ϵ3 ∈ (ϵ3,

ϵ1
ϵ2
+ ϵ3), (39)

where ϵ1, ϵ2, ϵ3 ∈ ℝ+ are tuning parameters.
The desired distances between two communicating sensors

Eq. 39 are designed to be gradient-dependent. Moreover, if the
norm of the approximated gradient increases, the desired distance
will decrease, which indicates that the formation size will shrink
while encountering an area of larger field variation. In this way, a
smaller formation will provide more accurate state estimation by
collecting closer sensor measurements and can avoid ignoring large
variations within a small domain. When the sensors are exploring a
field with decreasing gradient norm, larger distances can still ensure
the accuracy of state estimation due to the slow field variation.
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Both cases demonstrate the ability of the proposed gradient-
based adaptive formation to be suitable for various scenarios, such
as source-seeking and contour mapping (Han and Chen, 2014),
where the rigid formation fails to provide accurate estimation for
a field with a large variation or the field is too simple for the
capability of the deployed sensors. In this paper, we are focusing
on the application of source-seeking using distributedmobile sensor
networks. Additionally, the tuning parameters in Eq. 39 ensure the
boundedness of the desired distances so that the formation will be
controllable, not shrinking to zero size or becoming too large.

Since the mobile sensors are taking discrete measurements, we
will apply discrete time control written as follows:

rk+1i,j = r
k
i,j + u

k
iΔt, (40)

where Δt is the sampling time and is set to be constant. Define
w = ∇z+e
‖∇z+e‖2

as the unit length direction vector along the gradient
direction ∇z perturbed by some estimation error e.

We approximate the gradient direction at ri using the gradient
estimations at all the cell centers around it as

wk
i =

vki
‖vki ‖2
=

∑
j∈J v

i

1
‖ri − rcj‖2

∇z(rkcj)

‖∑
j∈J v

i

1
‖ri − rcj‖2

∇z(rkcj)‖
2

. (41)

The control input for sensor i is designed as

uki = −aw
k
i + b(w

k
i )
⊥ + cf ki , (42)

where a,b,c are tuning parameters and (wk
i )
⊥ is the normal unit

vector of wk
i . The formation terms f ki are defined as

f ki = ∑
i′≠i

‖rki′ − r
k
i ‖2 − d

k
ii′

‖rki′ − r
k
i ‖2
(rki′ − r

k
i ) , (43)

where dkii′ is a desired separation distance between sensors i and
i′. The formation term enables the mobile sensors to maintain
formations close to the desired ones, by letting sensors move away
from each other if the actual distance is larger than the desired one
and letting sensors move closer if the actual distance is smaller.

Remark 6.1: The control input uki defined in Eq. 42 is designed for
source-seeking, and it enables the sensors to follow the gradient
direction and reach the source, which is the main application
considered in this paper. In addition to source-seeking, mobile
sensors can also be deployed for other applications, such as contour
mapping, where sensors are required to follow the normal direction
of the gradient. The control input in Eq. 42 can be modified based
on the speeding-up and slowing-down (SUSD) strategy (Wu and
Zhang, 2015; Al-Abri et al., 2018; Zhang et al., 2020).

uki = −a(p
k
i − zd)w

k
i + b(w

k
i )
⊥ + cf ki , (44)

and the only change is the multiplication of (pki − zd), where p
k
i is the

noisy measurement of the field taken by agent i at the kth time step
and zd is the field value of the desired level.

7 Convergence analysis

In this section, convergence analysis for the formation control
and the distributed constrained cooperative Kalman filter will be
provided.

Theorem 7.1: Under the formation control (Eq. 42) along with (Eq.
43) and (Eq. 39), the mobile sensors can always maintain bounded
formations with bounded speed.

Proof: In Oh et al. (2015), the controller defined by Eq. 43 is a well-
understood control law that is guaranteed to achieve the formation
specified by the desired constant inter-agent distances. Since dkii′ ∈
(ϵ3,

ϵ1
ϵ2
+ ϵ3) is bounded by Eq. 39, the formation can be achieved

with bounded error. Then, there exists ϵ4 ∈ ℝ+ such that for any two
neighboring sensors,

‖rki′ − r
k
i ‖2 − d

k
ii′ ∈ [−ϵ4, ϵ4] . (45)

This implies that

‖rki′ − r
k
i ‖2 ∈ [ϵ3 − ϵ4,

ϵ1
ϵ2
+ ϵ3 + ϵ4], (46)

where the parameter ϵ3 can be chosen such that ϵ3 > ϵ4.
Since the formation is bounded by Eq. 45, the formation term

satisfies

‖f ki ‖2 = ‖ ∑
i′∈Ni

‖rki′ − r
k
i ‖2 − d

k
ii′

‖rki′ − r
k
i ‖2
(rki′ − r

k
i )‖

2

≤ ∑
i′∈Ni

‖
‖rki′ − r

k
i ‖2 − d

k
ii′

‖rki′ − r
k
i ‖2
(rki′ − r

k
i )‖

2

≤ ∑
i′∈Ni

ϵ4. (47)

According to the discrete time control law in Eq. 42, the norm of
control input uki satisfies

‖uki ‖2 = ‖− aw
k
i + b(w

k
i )
⊥ + cf ki ‖2 ≤ ‖aw

k
i ‖2 + ‖b(w

k
i )
⊥‖2

+ ‖cf ki ‖2 ≤ |a| + |b| + |c| ∑
i′∈Ni

ϵ4, (48)

where the last inequality can be obtained from Eq. 47 and ‖wk
i ‖2 =

‖(wk
i )
⊥‖2 = 1.

Therefore, the mobile sensors are capable of maintaining
bounded formation with bounded speed by Eqs 46, 48.

The information dynamics and measurement equation
considered for each individual cell in this paper share the same
structure as those in Zhang et al. (2022), where a centralized
cooperative Kalman filter has been proposed with provable
convergence.

Proposition 7.2: [Propositions VI.4 and VI.6 in Zhang et al.
(2022)]The state dynamics (13)with themeasurement equation (17)
are uniformly completely controllable and uniformly completely
observable if the following conditions are satisfied: (Cd1) The
covariance matrix W is bounded, i.e., λ1I ≤ W ≤ λ2I for some
constants λ1,λ2 > 0. (Cd2) The speed of each agent is uniformly
bounded, i.e., ‖rki,j − r

k−1
i,j ‖2 ≤ λ3 for all i, j,k, and some constant

λ3 > 0. (Cd3) The number of sensors in one cell Cj satisfies
|Cj| >

d2

2
for all j. (Cd4) The covariance matrices Rn and Q

are bounded, i.e., λ4I ≤ Rn ≤ λ5I and 0 ≤ Q ≤ λ6I for some
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FIGURE 4
Trajectory of cell centers in a mobile sensor network. (A) Initial 9-cell formation shape of a 12-sensor network. (B) Trajectories of cell centers with initial
formation (bottom left smaller one) and final formation (upper left larger one), where the colored dashed lines represent the level curve of the field. For
simulation videos, please see https://youtu.be/aHrvXjt8u4M (same initial location), and https://youtu.be/8_gvyacW-5g (different initial locations).

λ4,λ5,λ6 > 0. (Cd5) The distance between each agent and the cell
center is uniformly bounded from both above and below, i.e.,
λ7 ≤ ‖r

k−1
i,j − r

k−1
cj ‖ ≤ λ8 for all i, j,k, and some λ7,λ8 > 0. (Cd6)

There exists a constant time difference τ2, and for all k > τ2,
there exists a time instance k1 ∈ [k− τ2,k], as well as two sets
of agents indexed by {i1,…, id}, {id+1,…, i2d}, respectively, such
that (rk1−1i1,j

− rk1−1cj ),…,(r
k1−1
id,j
− rk1−1cj ) are linearly independent, and

(rk1id+1,j − r
k1−1
cj ),…,(r

k1
i2d,j
− rk1−1cj ) are linearly independent.

Remark 7.3: In Proposition 7.2, (Cd2) and (Cd5) are guaranteed
by bounded sensor speed and bounded formation cells under
(Eq. 40) along with (Eq. 43).

Since the unconstrained cooperative Kalman filter is
both uniformly completely controllable and observable
(Proposition 7.2), the unconstrained filter for each individual cell
is convergent. This means that ‖xj − x̂j‖ is bounded for all j, where xj
represents the true state value.

Since the combined filter is constructed by stacking all
distributed filters together and the unconstrained filter for each
individual cell is convergent, the combined unconstrained filter is
also convergent.

‖X − X̂‖2 = √
N

∑
j=1
‖x − xj‖22 ≤

N

∑
j=1
‖x − xj‖2. (49)

FromTheorem 4 in Simon andChia (2002), since the unconstrained
combined cooperative Kalman filter is convergent, the constrained
combined cooperative Kalman filter is also convergent. Thus, each
distributed constrained cooperative Kalman filter is convergent.

8 Simulation results

In this section, simulation results using a distributed mobile
sensor network of 12 sensors will be presented to validate
that the proposed distributed algorithm enables mobile sensor
networks to estimate information at each cell center along
trajectories of a collection of cell centers. According to the 1D
advection–diffusion solution in Mojtabi and Deville (2015),
we consider a 2D advection–diffusion equation as z(r, t) =
−sin(π(k1rx + v1k2t))e

−θπ2k2t − sin(π(k1ry + k2v2t))e
−θπ2k2t and r =

[rx,ry]⊺, with diffusion coefficient θ = 2 and flow velocity
v = [0.5,1]⊺, k1 = 0.05, k2 = 0.0001, and the SNR for the field is set
to be 10. The sample rate is 1 Hz, and the simulation of 12 sensors
will be running for 600 s.

At each time step, mobile sensors will take noisy measurements
of the field, and the sensor locations are also available. Based
on the network structure of the mobile sensors (Figure 4),
three or four sensor measurements will be incorporated for
estimation within each cell. The estimation for field value
and gradient at each cell center is composed of two parts:
unconstrained and constrained estimations. In order to complete
unconstrained estimation (Eqs. 28–32), noisy measurements,
previous and current sensor locations, and previous estimations
pertaining to each cell are required. Then, the constrained
estimation can be obtained by projecting the unconstrained
estimation onto the constrained space (Eq. 26) defined by
the PDE field, where information sharing of unconstrained
estimation between neighboring cells is required to have the PDE
constraint.
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FIGURE 5
Field estimation generated by distributed constrained cooperative Kalman filter (yellow lines) at the cell center of cell 2 and cell 8 along trajectories,
compared with field value with noise (blue dashed lines), distributed unconstrained cooperative Kalman filter estimation (red lines) and true field value
(purple lines). The x-axis is time t, and the y-axis is the field value z(r, t). (A) Cell 2. (B) Cell 8.

TABLE 1 Statistical data of state estimation errors and noise.

Cell C1 Cell C2 Cell C3 Cell C4 Cell C5 Cell C6 Cell C7 Cell C8 Cell C9

meann 0.0028 0.0075 −0.0214 −0.0019 −0.0085 0.0205 0.0047 0.0054 0.0007

meanu −0.0001 −0.0021 −0.0033 0.0087 −0.0092 0.0002 0.0014 −0.0003 −0.0106

meanc −0.001 −0.0125 −0.0103 0.0025 −0.0218 −0.0083 0.0061 0.0038 0.0002

stdn 0.3115 0.3248 0.3217 0.3257 0.3164 0.3166 0.3309 0.3169 0.2997

stdu 0.105 0.1004 0.1054 0.1026 0.1043 0.1144 0.1071 0.1201 0.1145

stdc 0.0711 0.0555 0.0722 0.0685 0.0789 0.0788 0.0747 0.0933 0.0871

As shown in Figure 4A, the mobile sensors have been organized
into four triangle cells and five rectangle cells, where the blue
dots represent the mobile sensors, the orange triangles represent
cell centers, and the blue lines represent the edges of each
individual cell. The shape of each cell is fixed due to the
predetermined communication graphbyAssumption 2.1, and there
is no requirement for the cell shapes to be symmetric. The five
rectangles in the initial formation are symmetric, while the four
triangles are asymmetric.

In Figure 4B, the dashed contours represent the level curves
of the field values, and the colored lines are the trajectories of the
nine cell centers. The smaller formation on the bottom left is the
initial location, and the larger formation on the upper right is the
final location. Driven by Eq. 42, the mobile sensors will adjust the
distances between neighbors according to the norms of estimated
gradients, which leads to non-rigid gradient-based formation for the
mobile sensor networks and also explains the size difference between
initial and final formations.

The field estimations generated by the proposed distributed
constrained filtering at the cell centers of cell 2 and cell 8 along
trajectories are provided in Figure 5.The noisy field values indicated

by the blue dashed lines are relatively inaccurate, compared with
the true field values marked by purple solid lines. Both the
unconstrained and constrained filtering strategies (marked by red
and yellow, respectively) are capable of reducing the noise. These
four lines in each plot of Figure 5 share the same trajectory. At each
time step, we run the distributed constrained cooperative Kalman
filter in Eq. 37 for each cell, and then the formation control in Eq. 42
is updated based on the estimated gradient information. At the same
time, a distributed unconstrained filter is also running for each cell
to obtain an unconstrained state estimation, but such estimation
will not be used to update the formation control. The constrained
one shows improved performance, which demonstrates that more
accurate estimation can be generated when more field information
is incorporated by adding PDE constraints. We also observe the
differences in estimation performance among cells, as shown by the
two example cells in Figure 5. According to Figure 4A, cell 2 is
the center cell of the formation, and it has eight neighboring cells,
which provide information for updated constrained state estimation,
while cell 8 only has three neighboring cells. This explains why
when comparing with unconstrained estimations, the constrained
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estimations in cell 8 show less improvement than the constrained
estimations in cell 2.

Statistical data of estimation errors at cell centers rc1 ,…,rc9
are provided in Table 1 along with the corresponding data of
measurement noise. The subscripts n,u,c represent measurement
noise, unconstrained estimation error, and constrained estimation
error, respectively. The first row denotes the nine cells. Rows 2–4
represent the means of the errors between true field value and noise,
unconstrained estimation, and constrained estimation, respectively.
The last three rows represent the standard deviations of the errors
between true field value and noise, unconstrained estimation, and
constrained estimation, respectively.

According to Table 1, both unconstrained and constrained
filtering improved the estimation of z(r, t), and the constrained
filtering had a lower standard deviation than unconstrained filtering
in all cells. This validates that more accurate estimation can be
generated when more field information is provided.

9 Conclusion and future work

In this paper, we proposed a distributed cooperative Kalman
filter constrained by the advection–diffusion equation, which solves
the estimation problem using a large number of mobile sensors in a
distributed way. Both convergence analysis and simulation results
demonstrate the effectiveness of our proposed filtering strategy,
and the mobile sensors can maintain gradient-based formation.
For the next step, we will generalize our method to higher-
order PDEs and incorporate parameter identification for the PDE
models.
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