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Introduction: Measuring kinematic behavior during robot-assisted gait therapy
requires either laborious set up of amarker-basedmotion capture system or relies
on the internal sensors of devices that may not cover all relevant degrees of
freedom. This presents a major barrier for the adoption of kinematic
measurements in the normal clinical schedule. However, to advance the field
of robot-assisted therapy many insights could be gained from evaluating patient
behavior during regular therapies.

Methods: For this reason, we recently developed and validated a method for
extracting kinematics from recordings of a low-cost RGB-D sensor, which relies
on a virtual 3D body model to estimate the patient’s body shape and pose in each
frame. The present study aimed to evaluate the robustness of the method to the
presence of a lower limb exoskeleton. 10 healthy children without gait impairment
walked on a treadmill with and without wearing the exoskeleton to evaluate the
estimated body shape, and 8 custom stickers were placed on the body to evaluate
the accuracy of estimated poses.

Results & Conclusion:We found that the shape is generally robust to wearing the
exoskeleton, and systematic pose tracking errors were around 5 mm. Therefore,
the method can be a valuable measurement tool for the clinical evaluation, e.g., to
measure compensatory movements of the trunk.
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1 Introduction

An appropriate movement control is crucial for many activities of daily living including
gait. Brain dysfunctions, e.g., caused by stroke, traumatic brain injury, Parkinson’s disease,
multiple sclerosis or cerebral palsy, can lead to a disturbance of gait control not only in adults,
but also in children and adolescents. Typically, this means an increased risk of injuries and a
restricted mobility for the affected persons. Rehabilitative interventions are often designed to
practice specific movement patterns to (re-)learn movement skills, e.g., in robot-assisted gait
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therapy. Devices for robot-assisted gait therapy, e.g., Lokomat
(Colombo et al., 2001), Gait Trainer GT (Hesse et al., 2000) or
Ekso GT (Kressler et al., 2014), provide haptic guidance/resistance
and enable a high number of active repetitions while reducing the
physical effort for the therapist. During these interventions, therapists
can formulate specific instructions, e.g., “Try to do long steps!,” to
steer the patient behavior towards a more physiological gait pattern. It
has been shown that persons with neuromotor impairments can react
to instructions and adapt their gait pattern (Barrios et al., 2010; van
Gelder et al., 2017). However, these adaptions in one joint often
happen at the cost of an increased deviation from a physiological gait
pattern in other joints, especially around trunk and pelvis (van Gelder
et al., 2017). An understanding of these compensatory strategies could
provide valuable feedback to therapists on the effects of their therapy
decisions. However, this requires to measure the patients’ task
performance, which is commonly related to kinematic behavior,
with a clinically feasible set-up.

There are several options available to measure kinematics. In the
case of robot assisted-gait training, kinematics can be often retrieved
from inbuilt sensors of the device (Collantes et al., 2012). However, this
approach is very limited: i) The kinematicsmeasured by the devicemay
not represent the actual behavior of the patient either because not all
hardware adjustments are taken into account, e.g., different cuffs or
sliding bars, and/or because the link between the device and the person
is not fully rigid. ii) Only the angles of the sensorized joints can be
estimated, but no other body parts that are also relevant for walking,
e.g., trunk (Heyrman et al., 2014). In the past, gold standard methods
for motion analysis based on reflective markers have been used (Hidler
et al., 2008), but they also have some drawbacks.Marker-based systems
are impractical as several markers have to be accurately placed on bony
landmarks on the body. Due to time constraints, this is hardly feasible
in a normal therapy session. In addition, the presence of the structural
parts of the robot can easily occlude markers and deflect infrared
signals, which leads to gaps and noisy data. Finally, marker-based
systems often require multiple cameras and are too pricy for a routine
use in a clinical set-up. An alternative to marker-based systems could
be the use of inertial measurement units (IMUs). However, they still
require the placement of several sensors. The commercially available
full body tracking system Xsens (Movella, Nevada, US) for example,
uses 17 sensors and has difficulties in tracking abduction/adduction
(Zhang et al., 2013). Software that solely relies on 2D images can be a
low-cost alternative and have already been used (Aurich-Schuler et al.,
2019). Although this might be interesting for some applications, 2D
methods can often only evaluate movements in a single plane of
motion and are thus limited.

Methods based on RGB-Depth data have the potential to solve
some of these issues. They can be based on a single sensor that is
relatively cheap, e.g., Azure Kinect, and provide 3D information on
the scene. From this 3D information, kinematic data can be extracted
(Azure Kinect DK, 2022). Such markerless motion tracking methods
are less obtrusive and can be applied during a normal therapy session
with minimal setup time (Seo et al., 2019). However, the proprietary
motion tracking of the Azure Kinect (K4ABT) has been developed for
use cases with space and less equipment around the person of interest.
Therefore, the method is strongly influenced by the parts of the robot
and not useful in this context. Our own tests revealed that K4ABT
failed to track the leg movements. We observed that the leg
movements did not agree with the video, which was reflected in

no correlation with custom tracked markers on the body surface
(Pearson |r| < 0.01). Recently, we developed a method based on a
statistical 3D bodymodel that automatically adapts its pose and shape
to match the person in the recorded 3D information. From the
combination of pose and shape information, joint positions and
angles can be inferred. This method has been validated in a gait
lab against a Viconmotion capture system (Oxford, United Kingdom)
(gold standard) and was superior to the proprietary tracking of Azure
Kinect1. We expect this method to be robust against the robot parts in
close proximity to the person of interest, as the statistical body model
incorporates constraints on realistic body shapes.

The validation in the gait lab cannot be fully transferred to the
case of robot assisted gait therapy due to the robot parts, and further
analyses are necessary to ensure the validity of the method in such an
environment. Therefore, the present study aims to evaluate how
robust the estimation of i) the body shape and ii) the body pose is
while wearing an exoskeleton.

2 Materials and methods

2.1 Participants

Ten able-bodied children and adolescents were recruited by
convenience sampling between November 2021 and March 2022.
Participants between 5 and 18 years old were included. Exclusion
criteria were the presence of any factor that prevented the usage of the
Lokomat as specified in the device’s handbook (Tölgyessy et al., 2021).
Specifically, no person taller than 2 m and heavier than 135 kg or with
thigh length shorter than 23 cm could participate. Participants were
also excluded if they were unable to follow the study instructions or to
communicate pain and discomfort. Written informed consent was
provided by the legal guardian of each participant and by the
participants themselves if they were 12 years or older. Ethical
approval for the study was obtained from the Cantonal Ethics
Committee Zurich (BASEC Nr. 21-D0044), and the study
procedures were in accordance with the Declaration of Helsinki.

2.2 Study procedures

The participants walked for a total of 20 min in the robot-
assisted gait trainer Lokomat followed by 3 min of treadmill walking.
The last minute of each condition was recorded with an Azure
Kinect (Microsoft, Seattle, United States) placed approximately
1.5 m in front of the participants in portrait view. The Azure
Kinect includes both a RGB sensor (1920 × 1080 px, 30 fps) and
a time of flight depth sensor (640 × 576 px, 30 fps for the unbinned
narrow field of view mode). Two red stripes were placed on the
treadmill to identify a floor plane, and bright green stickers were
placed on eight prominent landmarks of the body (each left and
right, acromioclavicular joint, anterior Spina iliaca, patella and

1 Hesse, N., Baumgartner, S., Gut, A., and van Hedel, H. J. A. (2023).
Concurrent validity of a custom method for markerless 3D full-body
motion tracking of children and young adults based on a single RGB-D
camera. Trans. Neural Syst. Rehabilitation Eng. 2023.
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hallux) as reference points for the evaluation of pose tracking
accuracy (Figure 1). These landmarks were selected based on
three main criteria: (a) Landmarks are easy to detect and thus
the placement of markers is replicable, (b) Landmarks are close
to joint centers, which could be influenced by the presence of the
robot, (c) Landmarks are visible in the RGB-D images at angles,
which can be reliably detected (Tölgyessy et al., 2021). Therefore, no
marker could be placed directly on the ankle joint.

2.3 Data processing

Throughout the data processing, the sequence of RGB-D images
was converted into kinematic information described by the 3D body
model, i.e., body surface and joint kinematics. Data processing and
fitting was performed on a XPS Desktop PC (Dell Technologies Inc.,
Texas United States ) with a GeForce RTX3070 graphics card
(NVIDIA Corporation, California, United States).

2.3.1 Preprocessing
The recordings were unpacked, and RGB images were downscaled

and aligned with the depth image using the Azure Kinect SDK, and
then converted into 3D point clouds (Azure Kinect DK, 2022). We
considered the first 900 frames per recording, which equals to 30 s. All
further steps were implemented and computed with Python 3 (Python
Software Foundation, Beaverton, United States). The 3D point clouds
were segmented into person of interest and background by using an

estimated ground plane and simple distance thresholds. The robotic
parts in close proximity of the body could not be reliably detected, and
were therefore not removed.

2.3.2 Statistical body model
The body surface of a statistical body model is represented as a

mesh, which consists of triangular faces, which are defined by the
three corners, so-called vertices (see Figure 1). Consequently, the
shape and pose of the body can be changed with two sets of
parameters, which have been learned from a large number of
high resolution body scans. Here, the Sparse Trained Articulated
Human Body Regressor (STAR) body model is used, which is freely
available for research purposes (Osman et al., 2020), and provides
10 parameters to adapt the body shape and 72 parameters to adjust
the body pose. The pose parameters correspond to three degrees of
freedom for 23 body joints and one root joint. As STAR was learned
from adult body scans only, it can have difficulty to cope with the
different body proportions of children. This was solved by
interpolating STAR with a skinned multi-infant linear model,
SMIL (Hesse et al., 2020). As an additional constraint, the model
height was fixed to the actual height of the participants.

2.3.3 Model fitting
The statistical body model was registered to the point cloud by

optimizing shape and pose parameters of a virtual bodymodel with a
method based on (Hesse et al., 2020). The source code for the model
fitting will be made available to the public (https://github.com/

FIGURE 1
Ourmethod takes a RGB-D recording as input and provides body shape, pose and 3D joint information as an output. The RGB image recorded by the
Azure Kinect is used to segment the depth image. Consequently, the segmented depth image is converted into a 3D point cloud. Shape and pose
parameters of a virtual body model are optimized to match the point cloud. The virtual body model consists of triangular faces and vertices (corners). For
the validation, the distance between each sticker and the nearest vertex on the mesh is calculated. As the sticker might not be placed exactly on a
vertex, the total error consists of an offset (to the closest vertex) and the actual fitting error.
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nh236/smplify-kids). The main objective of the optimization was to
minimize the distances between points of the 3D point cloud and the
model surface. To improve themethod for the present use case, three
modifications were made. i) As the shape of the shanks and the feet
was altered by the robot’s foot straps, which secure a proper foot lift
during the swing phase, we temporarily added an auxiliary model of
the foot straps consisting of 8 vertices and 6 degrees of freedom. ii)
Shape parameters were only optimized during the first five frames,
after which the shape was fixed to the average of these five
initialization frames, and only the pose was optimized in the rest
of the frames. iii) Two additional terms were introduced and added
to the objective function. Firstly, movements of the auxiliary vertices
were allowed, but controlled with a loss. Secondly, excessive flexion
of the ankle was limited by a quadratic loss dependent of the angle. A
detailed description of the optimization and the weights of the
different loss terms can be found in the Supplementary Material.

2.3.4 Sticker tracking
Due to the aforementioned issues with marker-based motion

capture systems, they are difficult to be used during robot-assisted
gait therapy. In addition, in a previous study we found that reflective
markers distort the body surface1. Both issues together limit a fair
comparison of the method in our case. Instead, we used colored
stickers, which we detected and tracked in the 3D data as a reference
for evaluating the accuracy our method. The accuracy of the
measurement of the Kinect Azure was found to be reliable for
the distances in the context of this study (Tölgyessy et al., 2021). The
eight stickers were segmented in each RGB image using a color filter
and the corresponding 3D locations of the pixels were obtained from
the aligned depth image. Subsequently, the final sticker position was
estimated from the median position of all the 3D points forming one
sticker. This resulted in a 3D time series per sticker acting as an
reference point for a body part in the 3D data. In some cases, stickers
were not correctly detected (e.g., through an arm movement
masking the sticker in the image). This led to missing data and
the corresponding segment of the time series was not included in the
analysis.

2.4 Statistics

As the position of the joint centers is inferred from the body
shape, robustness of both shape and pose against noise and additional
data points belonging to the robotic device were considered.

2.4.1 Model shape comparison
The model fitting is mainly based on the minimization of the

distance between each data point and its closest vertex on the body
model. Points in the data that do not belong to the person of interest
might “pull” the model towards them and lead to an overestimated
size of the person’s shape. Our aim was to evaluate the influence of
robot parts in close proximity to the human on the fitting result by
comparing the body shapes between the treadmill walking (without
robot) and robot-assisted walking. To this end, we computed the
mean distance between corresponding vertices, i.e., vertices with the
same vertex ID of the two fitted models, for seven body parts (see
Figure 2A). Then, the median and interquartile range per segment
across all participants were computed.

2.4.2 Model-sticker distance
Besides influencing the body shape, the additional points could

also lead to pose errors by drawing the model towards the robot
parts during fitting. To this end, we used the stickers on the body
parts as reference points in the 3D point cloud, from which the
model would deviate if it was drawn away from the true body
position. It was not possible to predetermine one vertex for all
participants, as the vertex matching the landmarks might vary due to
different body types. Therefore, we determined the vertices with the
smallest Euclidean distance to the corresponding reference point in
each frame. A single vertex, which matched the marker best across
all frames, was selected. In addition, the agreement of this selected
vertex with the corresponding landmark was visually verified. The
same vertex was used to evaluate the model regarding shifts with
respect to the corresponding sticker for all frames. As the position of
the reference points might not exactly coincide with a vertex, the
evaluation of the absolute difference between the reference point and

FIGURE 2
(A) illustrates the regions on the body model for which the average vertex-vertex distances per subject were calculated to compare the model
shapes between walking with the robot and walking on a treadmill. The boxpots showmedians and IQRs across subjects. The auxiliary shapes were only
temporarily introduced and are thus not part of the evaluation. (B) The boxplots show the average distances per segment across the 10 subjects. The total
shape difference is the mean across all vertices.
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its closest vertex, e.g., by a root mean square error, includes a
systematic offset (see Figure 1, total error). In case of a perfect fitting,
the anchor and the closest vertex would always move together.
Therefore, we evaluated the fitting error by measuring the
fluctuation of the distance, i.e., the standard deviation, between
each reference point and its closest vertex in combination with 3D
correlation of the signals (Pearson’s r). The error was further
decomposed in a random component, which can be removed by
segmenting the data into strides and averaging a sufficient number
of strides, and a systematic component, which occurs at a harmonic
frequency of the gait cycle and can be extracted with a filter that lets
these frequencies pass. A good tracking quality would therefore result in
a low systematic error, in combination with a high correlation
coefficient. To get an estimate of the distribution of the error
magnitudes, we calculated the percentage of samples with an error
below 5 mm, 10 mm, 20 mm, 30 mm 50mm and 100 mm for each
sticker individually. The results of the left and right side were averaged.

3 Results

None of the 10 subjects had to be excluded. The subjects covered a
wide range of body heights ranging from 1.25 m to 1.76 m. The
computation time for the fitting typically ranges between 1 and 2 s
per frame.

3.1 Model shape

The shape comparison (see Figure 2) revealed a median
difference between corresponding vertices of 2.7 mm between

treadmill walking and Lokomat walking. Eight of the 10 subjects
had an average vertex-to-vertex distance of less than 4 mm. The
difference was smallest at head, trunk and arms and largest at the
distal segments shanks and feet (see Figure 2B). For the feet, which
showed the largest shape deviations, the shape difference was
smaller than 7 mm in 8 out of 10 subjects.

3.2 Model-sticker differences

The differences between the stickers and the model are smallest
around the trunk (~4 mm) and largest at the feet (~15 mm)
(Table 1). Similarly, the systematic error is largest at the feet but
less than 5 mm for the rest of the body parts (Table 1). At the feet,
errors larger than 50 mm occur in 1%–2% of the frames. In 80% of
the frames, the errors are smaller than 10 mm (Figure 3).

4 Discussion

4.1 Model shape

The results show that most of the errors are in the range of 4 mm
for differences in shape, and largest around the feet (maximum
around 8 mm). This difference is small considering that at a distance
of 1.5 m from the camera, 4 mm are equal to a single pixel. The
difference is largest around the feet, and there are two reasons why
this might be the case. Firstly, the shape parameters are determined
during the first few frames and then kept fixed to avoid drifts in the
body shape instead of kinematic changes. However, the initialization
was not tied to a certain foot position and therefore the initialization

FIGURE 3
The graph illustrates the percentage of frames (y-axis) below a certain error threshold (x-axis). 95% of the frames had an error smaller than 2 cmwith
the errors around the feet being slightly larger than elsewhere.
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could have happened close to heel strike in one condition (e.g.,
treadmill walking) and close to toe off in the other condition (e.g.,
robot-assisted walking). This would change the point of view of the
foot and might have had some impact on the fitting result. Secondly,
the foot straps of the robotic device partially occluded the view of the
foot, introducing noise in the point cloud around the shanks and the
feet. Although partially modeled by the auxiliary shapes, this is the
biggest difference to the treadmill condition. Despite the comparably
larger errors around the feet, it is unlikely that these differences of a
few millimeters bias the fitting results such that they impact the
interpretation of extracted kinematic patterns.

4.2 Model-sticker differences

The comparison of vertices to the stickers showed small tracking
errors together with almost perfect correlations. Thus, the point cloud
and the model move together. Only in less than 1%–2% of the frames,
the feet lost the point cloud illustrated by errors larger than 5 cm. A
substantial portion of the observed errors is due to noise and could be
reduced by handling gait recordings with standard procedures like
segmentation into gait cycles, registration and averaging of multiple
strides (Chau et al., 2005). For example, 10 steps would be required to
detect a difference in step length of 1 cmwith a statistical significance of
0.05 and a statistical power of 0.8 for a t-test based on the measured
variability. However, the analysis also revealed that a systematic error
(with a harmonic frequency of the gait cycle) remains even if an infinite
number of strides would be used. This is especially apparent at the knee
and the feet. A visual inspection of the recordings revealed that this error
occurs especially around toe-off. In this position, the foot is the furthest
from the cameras, and, also due to the noise introduced by the foot
straps, less points are available to obtain an accurate fitting of the foot.
However, due to the very high correlations between the stickers and the
corresponding model vertices, this does not pose a problem for
comparisons measured with the same tracking method.
Nevertheless, users should be aware of this issue, which mostly
affects the distal body parts. The distribution of the tracking errors
shows that the foot of the model loses the point cloud only in very few
frames (1-2 out of 100). Considering that the typical cadence is around
1.2 Hz (Winter 1984) and the frame rate of the Azure Kinect is
30 frames per second, this occurs in one frame every three strides
and the tracking can be considered robust.

Advancements in the field of computer vision might further
increase the accuracy of the fitting. On the one hand by improving
the models, especially around the feet [e.g., SUPR (Osman et al.,

2022)], and on the other hand by improving the pose estimation
(e.g., by improving the optimization described in section 2.3.3).

An advantage of the method presented here is that it is based on a
shape prior learned from a large number of high-resolution depth scans
(Tölgyessy et al., 2021). The model can therefore deal well with
occlusions that involve only smaller parts of the body. For example,
the model coped well with Bodyweight Support System straps or cuffs
around the thighs. This strength is what makes the method presented
here so interesting for use in the context of human-robot interfaces.
However, occlusions were more problematic when they covered a
significant portion of a segment in close proximity to a joint. In the
present study, the Lokomat occluded a portion of the lower leg and
ankle, resulting in an unstable fit. Therefore, auxiliary shapes were
introduced to improve the accuracy of fitting around the ankle. These
auxiliary shapes were treated as an additional body part during
optimization before being removed prior to analysis. In this use
case, the auxiliary shapes improved the stability of the fitting. This
observation has some implications for users who want to adapt the
method for other devices: (a) First and foremost, the position of the
camera should be chosen to avoid occlusions as much as possible. (b)
Small occlusions (e.g., cuffs in the middle of the lower or upper thigh)
are not problematic because the shape prior prevents strong distortions.
(c) The influence of larger occlusions and occlusions around joints can
be mitigated by temporarily including a 3Dmodel of the occluding part
in the optimization. Since many exoskeletons use a similar fixation
system as the Lokomat, based on cuffs and straps, we assume that the
presented results are transferable to other devices (Osman et al., 2020).

4.3 Limitations

It is important to consider some limitations that are associated with
this study. First of all, the tracking method was not validated against the
gold standard in this set-up as this is associated with issues mentioned
before. Instead, both reference and the method rely on RGB-D images.
However, the comparison did not focus on whether the measurement of
the RGB-D camera is valid, as it has already been shown that themethod
performs well (without robot) in comparison to a gold-standard motion
tracking system1. Instead, our comparison focused on whether the
method and the placement of the model in the point cloud was
robust to the presence of an exoskeleton. On the one hand, the
model used to track the movement relies on a large number of
points and is therefore less sensitive to noise in the RGB-D image,
but there is no clear attribution which points do or do not belong to the
body. On the other hand, the tracking of the stickers relies on less points

TABLE 1 Sticker to model error, systematic error in millimeters & Pearson correlation coefficient averaged across subject.

Segment Mean error (standard deviation) Mean systematic error (standard deviation) Pearson correlation coefficient

Feet 14 (6.2) 8.8 (7.9) 0.99

Knees 6.8 (1.8) 4.8 (2.2) 0.99

Hips 6.2 (1.9) 3.2 (1.6) 0.99

Shoulders 4.6 (2.5) 1.6 (1.3) 0.99

Average 7.9 (5.1) 4.6 (4.9) 0.99
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and is therefore affected more by the sensor noise, but it can be clearly
defined which points do or do not belong to the stickers. Therefore, the
tracking of the stickers is not affected by the robot, which allows to use
them as a reference (Seo et al., 2019)We cannot rule out that some of the
error can be also attributed to the tracking of the stickers. However, a
recent study found that the depth noise of the Azure Kinect was around
2mm at the distances relevant in this study (Tölgyessy et al., 2021). In
addition, the robust statistics used to compute the center of the marker
limit the influence of noisy data. Therefore, large deviations which would
impact the interpretation can be excluded. The focus of the present study
was to demonstrate that this method is robust to the presence of robot
parts for gait training and the method can be used to obtain kinematic
measures in a clinical set up with minimal obtrusion of the normal
clinical workflow.

Furthermore, a limitation of the method is that the
optimization can get stuck in a local minimum. This is
dependent on the noise in the data and can be a problem when
only few data points are available during the initialization. This is
especially relevant if the foot is far away from the camera and
covers fewer pixels, while in case of correct initialization of the
model, errors rarely occur as demonstrated above. As a
consequence, the initialization stage needs to be manually
verified, and an automated selection of eligible initialization
frames needs to be developed to make the pipeline fully
automatic. However, time demands and skills required to set up
the measurement system are very low and it is possible to record
the kinematic behavior in a clinical environment without
interfering with the therapy procedures. Thereby, the
measurement can be done without a contribution from the
patient and the therapist and the majority of the workload
occurs during data processing, which is a major advantage over
other methods and the gold standard.

Lastly, the final stage, the inference of the joint positions was not
part of the analyses in the absence of a gold standard with the
exoskeleton. However, this stage depends only on the results of the
previous stages. Therefore, it is not influenced by the presence of an
exoskeleton and was already covered elsewhere1.

5 Conclusion

We were able to demonstrate that our motion tracking method is
able to record accurate data sets of human kinematics of childrenwalking
in an exoskeleton. This method has substantial advantages over marker-
based motion tracking systems, as no contributions of therapists and
patients are required. This is beneficial for measurements in a clinical
environment and might therefore improve the acceptance by therapists
and compliance by the patients. The virtual body model-based tracking
enables researchers and clinicians to evaluate trunk compensatory
movements, quantitative evaluation of improvements within the
system or reactions to therapeutic instructions and could thereby help
to improve the effectiveness of the therapies.
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