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Animals adjust their leg stiffness and stride angle in response to changing ground
conditions and gait parameters, resulting in improved stability and reduced
energy consumption. This paper presents an online learning algorithm that
attempts to mimic such animal behavior by maximizing energy efficiency on the
fly or equivalently, minimizing the cost of transport of legged robots by adaptively
changing the leg stiffness and stride angle while the robot is traversing on
grounds with unknown characteristics. The algorithm employs an approximate
stochastic gradient method to change the parameters in real-time, and has
the following advantages: (1) the algorithm is computationally efficient and
suitable for real-time operation; (2) it does not require training; (3) it is model-
free, implying that precise modeling of the robot is not required for good
performance; and (4) the algorithm is generally applicable and can be easily
incorporated into a variety of legged robots with adaptable parameters and gaits
beyond those implemented in this paper. Results of exhaustive performance
assessment through numerical simulations and experiments on an under-
actuated quadruped robot with compliant legs are included in the paper. The
robot platform used a pneumatic piston in each leg as a variable, passive
compliant element. Performance evaluation using simulations and experiments
indicated that the algorithmwas capable of converging to near-optimal values of
the cost of transport for given operating conditions, terrain properties, and gait
characteristics with no prior knowledge of the terrain and gait conditions. The
simplicity of the algorithm and its demonstrably improved performancemake the
approach of this paper an excellent candidate for adaptively controlling tunable
parameters of compliant, legged robots.

KEYWORDS

adaptive control, bio-inspired robots, variable passive compliance, efficient legged
robots, online learning algorithms

1 Introduction

Mobile robots are employed for a wide range of applications and in various
environments. Energy efficiency of mobile robots is a critical issue as they carry
their power sources on them, and batteries must comply with space and weight
constraints. Unlike wheeled robots, legged robots can mimic animal behavior and
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adapt to unstructured environments that are inaccessible to wheeled
robots.

Animals adjust their leg compliance and gait parameters such
as the stride length and stride frequency of their gaits to traverse
more efficiently in response to environmental changes and/or
their locomotion speeds. Inspired by biology, this paper presents
strategies to adaptively reduce the energy consumption of legged
robots during gait by continuously adjusting leg stiffness and stride
angle. Although we consider only the adaptation of leg stiffness
and stride angle, the algorithm can be easily generalized to other
parameters of the robot design and of the gaits.

Passive compliance in distal legs of animals improves stability
and reduces energy consumption (Alexander, 1984). Animals can
store energy at the beginning of the stance phase from touchdown
to midstance and release it for use in the rest of the stance phase
(Dickinson et al., 2000). Geyer et al. (2006) have demonstrated that
a compliant leg model is needed to characterize normal walking
and running mechanisms in humans. Human runners increase
their leg stiffness on soft grounds and decrease it on hard grounds
(Ferris and Farley, 1997; Ferris et al., 1998). Humans also increase
their equivalent leg stiffness with increasing running speeds (Kim
and Park, 2011) and with increasing stride frequencies (Farley and
Gonzalez, 1996). The stride length and stride rate of human runners
increase with increasing forward velocity (Elliott and Blanksby,
1979). Animals also increase their stride length proportionately
to their forward speeds (Jayes and Alexander, 1978; Barrey et al.,
2002). Experimental analyses on humans and other bipedal and
quadruped animals have shown that they vary their stride lengths
while changing their forward velocities based on the anatomy of
their bodies and their legs (Alexander, 2004). It has been argued,
based on experimental results, that changing the stride length and
stiffness of the legs in various gaits and speeds conserves energy
(Elliott and Blanksby, 1979; Umberger and Martin, 2007; Shen and
Seipel, 2015).

Inspired by the biological phenomena described above, this
paper presents an online learning algorithm to continuously adapt
the leg stiffness and the stride length of a quadruped robot in
order to reduce its energy consumption during locomotion. These
parameters were updated using a block gradient algorithm with
the goal of reducing the cost of transport (CoT) (Kottege et al.,
2015). CoT is a non-dimensional metric used to compare the energy
efficiency of the transportation of different mobile robots and/or
animals. CoT is defined as the consumed power per 1 kg weight of
the robot/animal to traverse a distance of 1 m.

The leg stiffness of the quadruped robot was changed in real time
by varying the pressure in a pneumatic piston located in each distal
leg segment, and the stride length was adjusted by manipulating
the stride angle. Our approach has many advantages over the state-
of-the-art, including: (1) it is computationally efficient and can be
easily implemented in real-time; (2) it does not need to train the
robot in advance; (3) it ismodel-free, implying that precisemodeling
of the robot is not required for good performance; and (4) it can
be applied to a variety of legged robots and gaits beyond those we
implemented.

The performance of the online learning algorithmwas evaluated
using a large set of simulations and experiments performed on
an under-actuated quadruped platform (Gurney et al., 2023). The
results presented in the paper indicate that similar to biological

phenomena, our approach adapts the leg stiffness and stride
angle appropriately to achieve better energy efficiency in different
operating conditions.

The rest of the paper is organized as follows. Section 2 provides
a review of previous work related to design and control approaches
for improving the performance of robots including those associated
with energy efficiency, robustness to disturbances, and the ability to
track desired trajectories. Section 3 describes the design of the robot
and the online learning algorithm. Performance evaluation of the
robot using simulations and experiments is presented in Section 4.
Finally, our concluding remarks are provided in Section 5.

2 Related work

A number of approaches to improve the energy efficiency,
accuracy of trajectory tracking, robustness to disturbances, and
environmental changes of legged robots have been reported in the
literature.

One class of approaches was inspired by biological phenomena
and targets mechanical design principles. One example involves
designing robot legs with compliant actuators such as hydraulic
actuators as in HyQ (Boaventura et al., 2012) and SCalf
(Yang et al., 2019), and pneumatic pistons used by Mirzana et al.
(2018). Employing compliant actuators improves robustness to
unstructured environments for a wide range of dynamic locomotion
(Boaventura et al., 2012), but cannot reduce energy consumption
because such systems do not have a mechanism to store and
release energy as passive compliance systems do. Hua et al. (2019)
designed a hydraulic servo actuator with passive compliance
(HPCA) for SCalf and used a compliance control algorithm
based on a virtual model of the robot to improve its energy
efficiency. A number of systems employing passive compliance in
robot legs have been reported in the literature. Examples include
Cheetah-cub (Spröwitz et al., 2013), StarlETH (Hutter et al., 2012),
iSprawl (Kim et al., 2006), MIT Cheetah (Seok et al., 2013) ATRIAS
(Hubicki et al., 2018), ANYmal (Hutter et al., 2016) and COMAN
Kormushev et al. (2019) robots. Passive compliance conserves
energy and improves the robot’s robustness to disturbances caused
by external forces. Analyses of passive compliance systems have
shown that two configurations of springs and actuators, i.e., series
elastic actuators (SEA) and parallel elastic actuators (PEA) are more
energy efficient compared to rigid actuators (RA), and SEA is more
efficient than PEA (Verstraten et al., 2016; Kashiri et al., 2018). The
optimum stiffness of the springs in such systems was obtained
empirically in many designs (Kim et al., 2006; Spröwitz et al., 2013;
Kormushev et al., 2019). However, the optimum stiffness varies with
operating conditions. Passive compliance with adjustable stiffness
is a solution to conserve energy and tune the stiffness when the
operating conditions vary. For example, Koco et al. (2016) designed
a variable passive compliance system that enabled a quadruped
robot to adjust to grounds with different stiffness assuming that the
stiffness of the ground is known. Christie et al. (2019) verified the
effect of adjusting the leg stiffness on reducing the CoT by designing
a robot with magnetorheological-fluid-centric variable stiffness
legs.

The second class of approaches for designing high-performance
legged robots involves designing parameters of the robot
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or gait by employing optimization algorithms to minimize
energy consumption, trajectory tracking error, etc., improve the
smoothness of the motion and robustness to disturbances, or
achieve another appropriate objective. Many of these optimization
algorithms were implemented offline, and the resulting parameters
of the algorithm were kept frozen during locomotion. Examples of
such algorithms include variations of policy gradient methods such
as the policy gradient reinforcement learning implemented on Sony
Aibo (Kohl and Stone, 2004), the policy gradient learning combined
with interpolation between the policies used in Cassie (Xie et al.,
2018) and the guided constraint policy gradient method used in
ANYmal (Gangapurwala et al., 2020). Other than gradient-based
algorithms, methods such as Bayesian optimization approaches as
in (Lizotte et al., 2007) and (Calandra et al., 2014) and an archive-
based micro genetic algorithm implemented on the hexapod
robot in (Zhai et al., 2020) were employed to optimize the desired
objective functions. Jin et al. (2013) applied a non-linear quadratic
optimization approach to minimize the energy cost of a compliant
hexapod robot by finding the optimal velocity and duty factor. They
also showed via simulations that the values of duty factor, velocity,
and stride angle vary for various weights and payloads. Unlike
these approaches, our algorithm was implemented online and the
parameters can be adapted in real time.

Some of the recent optimization approaches for controlling
robot locomotion were designed to respond adaptively to
environmental changes, unknown initial conditions, and/or
damage. Examples include stiffness control of a simulated model
of a passive bipedal robot using a double-deep Q network presented
in (Wu et al., 2019) and intelligent trial and error algorithm for
robots to adapt to damage presented in (Cully et al., 2015). Both
algorithms require offline training. Arena et al. (2021) implemented
an adaptive controller based on the FitzHugh-Nagumo neuron to
reduce the energy consumption of a model of Mini MIT cheetah
while the robot walked on uneven grounds. They found the optimal
values of the parameters of the trajectory for five different values of
slopes and employed a state machine to update the parameters of
the trajectory with the optimal parameters of the closest slope. Even
though their method was implemented online, they only considered
five distinct slopes for one specific forward velocity, and the optimal
parameters were not computed for other values of forward velocities
and slopes.

Various adaptive optimization methods have been implemented
on robot arm manipulators to either follow desired trajectories
or identify the plant models online. These methods include fuzzy
neural networks (He and Dong, 2017), adaptive fuzzy full state
feedback control (Yu et al., 2020), and adaptive impedance control
(Li et al., 2016). Zhou et al. employed recurrent neural networks
(RNN) to control the compliance of redundant robot manipulators
(Zhou et al., 2020a) and an RNN combined with an adaptive online
identifier to learn the kinematic parameters of the manipulator
(Zhou et al., 2020b). However, the number of state variables in
multi-legged robots ismuch greater than in a robot armmanipulator.
This increases the computational complexity of the algorithms and
makes them challenging to implement in real-time.

The third class of approaches to improve the performance of
the robots involve creating efficient locomotion using appropriate
trajectory planning algorithms. For example, Kormushev et al.
(2019) employed a reinforcement learning approach that evolved

policy parametrization dynamically. Yu et al. (2018) generated
symmetric trajectories using a curriculum learning method.
Ordonez-Apraez et al. (2022) presented a maximum entropy
reinforcement learning architecture to derive the optimal policy
that minimized the energy of locomotion of two robots, one
bipedal and one quadruped, in a simulation environment. Liu et al.
(2015) used a particle swarm optimization method and Koco et al.
(2014) employed a genetic multi-objective optimization algorithm
and a pattern search method used in SCalf (Yang et al., 2019) to
determine the robot’s foot trajectory. All these algorithms were
implemented offline. In SoftLegs (Gasparri et al., 2018), a numerical
optimization algorithm was employed to generate a dataset of
optimized trajectories offline, and new trajectories were generated
online by synthesizing the trajectories using the dataset. Xin et al.
(2020) optimized the torque trajectory of ANYmal in the presence
of disturbances on an uphill ramp and on grounds with low friction.
Their controller combined a cartesian impedance control algorithm
with quadratic programming under certain stability constraints and
torque limits. The resulting algorithm was computationally efficient
and implemented online for static walking but there was no report
of implementing the system for dynamic gaits such as trotting. A
combination of model-based control and model-free reinforcement
learning framework was introduced in (Da et al., 2021) to adaptively
learn contact sequences. However, this framework requires training
on a simulated model of the robot and the authors only presented
the results of implementing their algorithm on a real robot at low
speeds.

The algorithm of this paper updates the parameters of the robot
design and angular trajectory of the hip/shoulder joints with the
goal of reducing the CoT for dynamic gaits. Unlike a number of
previous algorithms that employed offline optimization methods
and/or required a large training data set and hours of training on
either the real robot or a model of the robot, our algorithm can be
easily implemented online, and in real-time. A drawback of training
a robot and using the trained parameters without adjustments
during normal operations is that the performance of the robot
will, in general, degrade over time. Performance degradation can
arise from changes in the operating conditions as well as changes
in the robot during operation. Our approach mitigates all these
problems.

3 Methodology

This Section describes the robot platform and the online
learning algorithm designed to reduce energy consumption online
and in real-time.

3.1 Robot platform

The online learning algorithm was implemented and tested on
an under-actuated quadruped platform, UPed, designed and built
at the University of Utah Gurney et al. (2023). The left panel of
Figure 1 displays a picture of the robot. A schematic of one of the
robot’s legs is shown separately in the right panel.

The leg design involved an elbow back and knee forward
configuration, with passive compliance at the knee/elbow joints and
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FIGURE 1
Left: A side view of UPed Gurney et al. (2023). Right: A schematic of one of the robot’s legs designed in solid works. Used with permission of ASME,
from [UPed: A Quadruped Robot Platform to Study Directional Leg Compliance, Gurney and Filsoofi et al., vol 15, no 1, 2023]; permission conveyed
through Copyright Clearance Center, Inc.

the distal limb Lee and Meek (2005). Previous work Meek et al.
(2008) has shown that this configuration reduces pitch rate
compared to the elbow forward and/or knee backward designs.
Lower pitch rate improves the inherent pitching stability of the
robot’s gait. The robot was restricted to planar motion because each
of its legs was actuated in the plane perpendicular to the main body
by a DC motor located in the hip/shoulder joint. The proximal and
the distal segments of the leg were connected together with a passive
torsional spring. The proximal limb was a solid bar; however, the
distal limb was composed of a linear translational spring in parallel
with a pneumatic piston. Details of the robot design are provided in
Gurney et al. (2023).

During the stance phase of each leg, a valve is closed preventing
air flow in the cylinder, making it act like a passive spring. The
air pressure, Ptd, in the pneumatic piston adapts and controls the
stiffness of the leg. Consequently, we can use the piston as a
compliant element with variable stiffness, and adjust its stiffness in
real time by varying the air pressure in the piston. Using the ideal gas
law, the force exerted by the parallel combination of the pneumatic
piston and the linear spring during stance phase is related to their
displacement as

F =
PtdAL0

(L0 − x)
− PatmA+Klinx (1)

where L0 and Ptd represent the length and the pressure, respectively,
of the pneumatic piston at the time of touchdown, the parametersA,
Patm and x denote the area of the piston, the ambient pressure and
the displacement of the piston with respect to L0, respectively, and
Klin represents the stiffness of the linear spring. The stiffness of the
passive compliance is the derivative of the force Fwith respect to the
displacement x, and is given by

K = dF
dx
=

PtdAL0

(L0 − x)
2 +Klin (2)

The adaptive parameters of the robot are the stiffness of the legs
and the stride angle of its gait. Based on the results in (1) and 2, we
adapt the pressure of the pneumatic spring to control the stiffness
of the passive compliance of the leg. The stride angle r is defined as
the maximum deviation of the hip/shoulder angles from the static
stance phase.

FIGURE 2
Plot of pitch rate vs. pitch angle for r = 14°, Ptd = 3× 105 Pa and angular
velocity ω = 90 deg/s. The black triangle displays the beginning of the
cycle.

Our robot was restricted for planar motion in the longitudinal
direction. As a result we can make inferences about the stability
of the robot by analyzing its pitching motion. (Meek et al., 2008).
demonstrated that the elbow-backward, knee-forward configuration
results in lower pitch oscillations than three other configurations.
In this work, we empirically swept through stride angle and
touchdown pressure and selected a subset of all possible parameter
ranges in which the robot’s pitching motion was bounded. During
deployment, the adaptation of the parameters were restricted to this
subset, allowing the robot to operate in a stable manner. Figure 2
displays the plot of pitch angle-pitch rate for a simulated model
of the robot n MATLAB-Simulink using the Simscape Multibody
library Simulink Documentation (2018) for stride angle r = 14°
and touchdown pressure Ptd = 3× 105 Pa which belonged to the
parameter set that produced a stable gait. Since the trajectory of the
pitch rate fits inside a circle with bounded radius, this periodic gait
is asymptoticly stable. Furthermore, (Usherwood and Granatosky,
2020), demonstrated that the knee-forward and elbow-backward
configuration reduces joint and limb work and pitch moment. This
indicates a direct relationship between energy consumption and
the pitch accelerations of biological systems. In addition, pitch
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rate and CoT had similar trends in the experiments performed on
UPed (Gurney et al., 2023) for various conditions. Our algorithm
adaptively reduces the energy consumption of the robot. This leads
to reduced pitch acceleration and improved the stability of pitching
motion of the robot.

3.2 Adaptation of leg stiffness and stride
angle

Although easily generalized, we developed an online learning
algorithm for adapting the stride angle of the robot’s gait and the
stiffness of the passive compliance of its legs, with the objective
of reducing the average value of the consumed energy at each
time interval since our main target is to minimize the statistical
expectation of a positive power of the CoT. For simplicity of
implementation, the CoT is computed over an integer Nb number
of strides. In the rest of the paper, we denoteNb strides as one block.
Assuming that the robot has already traversed the (m− 1)th block,
our objective is to reduce a positive power of the CoTwhile the robot
is traversing the mth block, i.e., reduce

E{CoTd (m;U (m) ,θ)} (3)

where E{.} is the statistical expectation of ⋅, θ = [r,Ptd]T

is the vector of optimization parameters consisting of the
stride angle r and touchdown pressure Ptd and U(m) =
[U[T(m)]T,…,U[T(m+ 1) − 1]T]T represents the augmented
vector of all control signals for block m. Let U[n] =
[I1[n], I2(n), I3(n), I4(n)]

T be the vector of control signals at time
n where Ij(n) is the current drawn by the jth motor at time n. Let
block m start at time T(m). The CoT for block m is defined as
Kottege et al. (2015).

CoT (m) =
Pavg (m)
MgV (m)

(4)

where Pavg(m) is the sum of the average power consumed by all the
motors of the robot while the robot is traversing the interval of block
m,V(m) is the robot’s average linear forward velocity in the interval,
g is the acceleration due to the gravity, andM is the total mass of the
robot. The average power consumed by the motor that actuates the
ith leg for block m may be estimated as

Pi (m) =
1

T (m+ 1) −T (m)

T(m+1)−1

∑
n=T(m)
{RIi(n)2 + |ωi (n)RGktIi (n) |}Δt (n) (5)

where R, kt , and RG represent the motor coil resistance, torque
constant, and gearbox ratio, respectively, of the motors actuating
the shoulder/hip angle movements, ωi is the hip/shoulder angular
velocity of the ith leg (after the gearbox), Ii is the current consumed
by the ith motor, and Δt(n) is the sampling period for the
measurements. In (5), it is assumed that all four motors have the
same values of R, kt , and RG.

We employed a stochastic gradient adaptation method to
update the optimization parameters online and in real-time. The
adaptive algorithm does not assume knowledge of the functional
relationship between the parameters of the robot and the CoT.
Instead, approximations of the gradients of CoT(m;θ) with respect

to the adaptive parameters are calculated numerically. The basic
online learning strategy, then, is to employ update equations of the
form:

r (m) = r(m−mr) − ηrCoT(m−mr) fr (∇̂rCoT(m−mr)) (6)

and

Ptd (m) = Ptd (m−mP) − ηPCoT (m−mP) fP (∇̂PCoT (m−mP))
(7)

where fr and fP are non-decreasing functions that are bounded
above and below by finite numbers to avoid large changes of the
adaptive parameters that are updated. The parameters mr and mP
represent the number of blocks between successive updates of r and
Ptd, respectively, and ∇̂rμ(m) and ∇̂Pμ(m) denote the numerically
calculated gradient of the mean of the CoT with respect to r and
Ptd, respectively at the mth block. For every successive block, the
gradient is calculated only for the parameters that are updated. Let r
be the parameter that updates at blockm. The gradient at blockm is
estimated as the slope of the CoT with respect to r as

∇̂rCoT (m) =
CoT (m) −CoT (m− 1)

r (m) − r (m− 1)
(8)

Similarly, if Ptd is updated at block m the gradient is estimated as

∇̂PCoT (m) =
CoT (m) −CoT (m− 1)
Ptd (m) − Ptd (m− 1)

(9)

Although other more accurate approximations for the gradients are
possible, we chose the definitions in (8) and 9 for computational
simplicity. In this paper, the adaptive parameters are updated
sequentially i.e., only one parameter is updated during each block.
Simultaneous update of the parameters causes a 100% correlation
between the update directions of the parameters which constrains
the changes of the parameters to be always in one direction. We
avoid this problem by updating one of the two parameters during
each update cycle and keeping the value of the other parameter
the same as it was in the previous block. For the sequential block-
wise stochastic gradient descent algorithm described above, we used
hyperbolic tangent functions for fr and fP in (6) and 7. That is,

fr (∇̂rCoT (m)) = tanh(Sr∇̂rCoT (m)) (10)

and

fP (∇̂PtdCoT (m)) = tanh(SP∇̂PtdCoT (m)) (11)

TABLE 1 Block-wise stochastic gradient descent algorithm.

Initialize: ηr , ηP, Sr and SP

For block m: CoT(m) =
Pavg(m)
MgV(m)

For m odd

{{{
{{{
{

∇̂rμ(m− 2) =
CoT(m− 2) −CoT(m− 3)

r(m− 2) − r(m− 3)

r(m) = r(m− 2) − ηr{CoT(m− 2)}tanh(Sr∇̂rμ(m− 2))

For m even

{{{
{{{
{

∇̂Pμ(m− 2) =
CoT(m− 2) −CoT(m− 3)
ptd(m− 2) − ptd(m− 3)

Ptd(n) = Ptd(m− 2) − ηP{CoT(m− 2)}tanh(SP∇̂Pμ(m− 2))
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Here, Sr and SP denote constant scaling factors of the numerically
calculated gradients of r and Ptd, respectively, and control how
quickly the incremental update values saturate. The parameters
ηr , ηP, Sr and SP are constant values and are chosen empirically.
The update equations are tabulated in Table 1 for the case when
mr =mP = 2.

For the experiments and simulations in this paper, we chose
d = 2 in (3). For this case, we can interpret the update strategy
to be using a time-varying learning rate given by ηr(P)CoT(n− 2).
Therefore, the equivalent learning rate compared to the vanilla
stochastic gradient descent algorithm is ηr(P)CoT(n− 2).

4 Results

A large number of simulations and experiments were performed
to assess the capabilities of the online learning algorithm.
Representative results presented here will demonstrate that the
algorithm is capable of adapting the parameters of the robot and
tracking time-varying operating environments online and achieving
near-optimal performance.

4.1 Simulations

4.1.1 Simulation setup
A model of the quadruped robot described in Section 3.1

was built in MATLAB-Simulink using the Simscape Multibody
library Simulink Documentation (2018). The foot-ground contacts
were modeled as point contacts. The ground at contact points was
modeled as a parallel spring-damper system in each dimension
Silva et al. (2013). Uneven grounds were built by perturbing the
stiffness, damping coefficients, and the longitudinal slope of the
ground by adding a zero-mean pseudo-Gaussian noise sequence to
the nominal values of these parameters. The additive noise sequence
was modeled as the output of a single-pole lowpass filter, computed

recursively as

xη (n+ 1) = αxη (n) +√(1− α2)ζ (n) (12)

Here, ζ(n) and the initial value xη(1) were chosen as independent
and identically distributed (i.i.d) Gaussian variables with zero mean
value and standard deviation equal to the standard deviation of the
ground parameter. The parameter α in (12) belonged to the interval
[0,1] and defined the spectrum of the added noise. Values of α closer
to one resulted in smoother perturbations than otherwise.

For all the simulations described here, α was chosen to be 0.95
for all noise sequences. The standard deviation of the noise added
to the ground stiffness and damping coefficients were 10% of their
nominal values. The standard deviation of the longitudinal slope
regardless of its mean value was equal to 0.5° and the transverse
slope was equal to zero. A zero-mean i.i.d Gaussian noise sequence
was added to the measured CoT with a standard deviation of
0.005 regardless of the value of the CoT which produced, for
the simulation conditions, a signal-to-noise ratio in the range of
32 dB–38 dB.

The algorithm was implemented for various hip/shoulder
angular velocities and nominal values of the ground parameters,
tabulated inTable 2. In all simulation setups summarized inTable 2,
the nominal value of the ground damping coefficient in all directions
was chosen to be 100 N/m. The online learning algorithm updated
optimization parameters r and Ptd in the beginning of each block
which is equal to Nb = 5 strides. Unless otherwise stated, all the
simulations involved the robot trotting for 300 blocks. The actual
duration of each simulation varied because the time of travel
for each block depended on the hip/shoulder angular velocity ω
and the stride angle r, and the stride angle was adapted in these
simulations. The results presented are averages computed over 50
independent simulations, run for the sameoperating conditions.The
initial choices of r and Ptd were 12° and 4× 105 Pa, respectively, in
all simulations involving online parameter learning. These choices
resulted in the stable operation of the robot in all the simulation
conditions explored here.

TABLE 2 Simulation setup, optimum parameter values, and steady-state statistics of the online learning algorithm.

Simulation parameters Optimum values Steady state statistics

Slope ω Kgnd CoT r Ptd CoT r Ptd
SS(CoT)−opt(CoT)
opt(CoT) × 100%

(deg) (deg/s) (KN/m) (deg) (Pa) (deg) (Pa)

+6 140 100 0.3344 17.25 2.75 ×105 0.3477 ± 0.0111 16.43 ± 0.60 3.23 ± 0.30 4.9

0 140 100 0.2932 18 2.75 ×105 0.3080 ± 0.0104 17.88 ± 0.54 3.15 ± 0.24 5.0

−6 140 100 0.2718 18.75 3.00 ×105 0.2944 ± 0.0104 18.15 ± 0.53 3.25 ± 0.27 8.3

+6 105 100 0.2705 14.75 2.5 ×105 0.2748 ± 0.0089 14.85 ± 0.49 2.51 ± 0.29 1.5

0 105 100 0.2513 15.0 2.5 ×105 0.2580 ± 0.0098 14.72 ± 0.46 2.71 ± 0.36 2.7

−6 105 100 0.2460 15.25 3.25 ×105 0.2493 ± 0.0116 14.62 ± 0.38 3.06 ± 0.35 1.3

0 70 100 0.2098 13.5 2.00 ×105 0.2249 ± 0.0089 13.03 ± 0.50 2.54 ± 0.33 7.2

0 105 20 0.2523 14.75 3.5 ×105 0.2647 ± 0.0168 14.27 ± 0.48 3.42 ± 0.33 4.9

0 140 20 0.2811 18.25 3.5 ×105 0.2957 ± 0.0183 17.94 ± 0.49 3.57 ± 0.28 5.2

0 70 20 0.2314 16 2.75 ×105 0.2515 ± 0.0114 13.73 ± 0.43 3.75 ± 0.17 8.7
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4.1.2 Performance benchmarks
To establish the performance benchmarks, we determined the

optimal values of r and Ptd that minimized the CoT for all the
conditions simulated. For each operating condition considered,
we simulated the robot for 3 minutes for each value of the stride
angle between 10° and 25° in steps of 0.25◦, and touchdown
pressure between 2× 105 and 10× 105 Pa in steps of 0.25× 105 Pa.
For each set of parameters, the average of the CoT values was
calculated over the 3-min run. The optimal values of CoT and
the two parameters are tabulated in Table 2. Similar ranges of
stride angle and touchdown pressure were used in simulations
involving online learning. Lower touchdown pressures increased the
pitching motion of the robot excessively and resulted in unstable or
close to unstable behavior. The reason is that at lower touchdown
pressures, or equivalently, smaller values of leg stiffness, the force
exerted by the legs may not be sufficient to provide the demanded
momentum for the robot’s motion. Therefore, the minimum
allowable touchdown pressure increases by increasing the forward
velocity. For an angular velocity of 140 deg/s, pressure values below
2.5× 105 Pa were not simulated for the same reason. Ptd greater than
10× 105 Pa was not feasible in the robot platform, and therefore not
simulated.

A heat map of CoT values associated with the robot
trotting on the ground with the slope of 0° ± 0.5° and
stiffness of 100± 10 kN/m with ω = 105 deg/s is displayed
as a function of touchdown pressure and stride angle in
Figure 3. There were three local minima for this specific
simulation setup corresponding to CoT values of 0.2513 when
(r,Ptd) = (15,2.5× 105), 0.2593 when (r,Ptd) = (20.75,2.5× 105) and
0.3269 when (r,Ptd) = (16.5,6.25× 105), where the units of r and Ptd
are degree and Pascal, respectively. The online learning algorithm
can converge to any of these local minima. Exhaustive analysis of
simulation results has suggested that initialization as done in our

FIGURE 3
Heat map of CoT values for the robot trotting with ω = 105 deg/s on
the ground with the stiffness of 100± 10 kN/m and the slope of
0±0.5°. CoT values greater than 0.6 are displayed in white color to
provide sufficient contrast for values closer to the optimal values.

simulations may result in convergence to parameter values close
to the global optimum. However, additional work is still needed to
guarantee convergence to the global minima of the performance
surface.

We can observe in Table 2 and Figure 4 that the optimal
values of the CoT and the optimization parameters vary with the
angular velocities of the hip/shoulder joint, ground stiffness, and
longitudinal slope. Variations in the optimal values of the stride
angle and leg stiffness have been reported for humans and animals
for different ground conditions and forward speeds (Jayes and
Alexander, 1978; Elliott and Blanksby, 1979; Farley and Gonzalez,
1996; Barrey et al., 2002; Umberger andMartin, 2007; Kim andPark,
2011; Spröwitz et al., 2013; Lussiana et al., 2015; Shen and Seipel,
2015). The trends in how changing the operating conditions such
as forward velocity and ground stiffness vary the stride angle and

FIGURE 4
Top three plots display the optimum values of stride angle, touchdown pressure and CoT when the robot trots on uneven grounds with
Kgnd = 100 kN/m and mean slope of zero with various hip/shoulder angular velocity. Bottom three plots display the optimum values of stride angle,
touchdown pressure and CoT when the robot trots with ω = 70 deg/s on uneven grounds with various ground stiffness and mean slope of zero.
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the leg stiffness of biological models, generally comply with our
observations for the simulated robot. For example, the optimum
pressure is higher for faster trotting on flat ground because stronger
force is needed to evoke higher velocities (Spröwitz et al., 2013).
Similarly, a direct correlation between the forward speed of human
runners and their leg stiffness was reported by Kim and Park
(2011). The optimum stride angle of the simulated robot is higher
for higher velocities similar to the results reported in (Jayes and
Alexander, 1978; Elliott and Blanksby, 1979; Barrey et al., 2002)
for humans and animals. The optimum touchdown pressure of
the simulated robot’s leg increases on softer grounds in agreement
with the biophysical data reported in (Ferris and Farley, 1997;
Ferris et al., 1998). The authors of (Ferris et al., 1998) have argued
that the equivalent stiffness of the leg and the ground should
be constant in order to keep the same gait dynamics on various
grounds. Similarly, the optimal values of touchdown pressure of
the simulated robot were higher for softer grounds. There are
conflicting reports of how the stride length and leg stiffness change
in animals when the slope of the ground changes (Telhan et al.,
2010; Lussiana et al., 2015; García-Pinillos et al., 2019). As a result,
it is not possible to make a meaningful comparison of how
the leg parameters of our robot and animals change on sloped
terrains.

4.1.3 Online learning simulations with various
operating conditions

The algorithm was simulated for different choices of ground
conditions and trotting speeds as tabulated in the first three
columns of Table 2. The hip/shoulder angular velocities of ω = 140
deg/s, ω = 105 deg/s and ω = 70 deg/s, respectively, corresponded
to average forward velocities of 0.65± 0.01 m/s, 0.44± 0.06 m/s and
0.30± 0.04 m/s, respectively. The variation in forward velocities in a
condition with constant angular velocity is caused by varying the
stride angle and touchdown pressure. The positive and negative
signs of the ground slopes represent uphill and downhill slopes,
respectively. The nominal values of the ground stiffness were chosen
to be 100 kN/m (tiled floor Bosworth et al. (2016)) or 20 kN/m
(mulch layer Bosworth et al. (2016)), respectively.

Table 2 also summarizes the steady-state statistics (mean± STD)
of the CoT and the adaptive parameters in these simulations. The
calculations assumed that the last 100 blocks represented the steady-
state and the mean results reported are the averages over the last
100 blocks and 50 independent runs. The steady-state variance of
each run was calculated separately over the last 100 blocks and the
square-root of the mean value of the variances are reported as the
standard deviation for each case. The values of hyper-parameters
i.e., ηr , ηP, Sr and SP were chosen empirically by searching over a
wide range of parameters. The values of ηr and ηP were empirically
selected to be 0.6

CoT(1)
degree for the ω = 140 deg/s and 0.3

CoT(1)
× 105

Pa, respectively and to be 0.3
CoT(1)

deg and 0.15
CoT(1)
× 105 Pa, respectively,

for ω = 105 deg/s and ω = 70 deg/s regardless of ground parameters.
Sr and SP were chosen to be equal to 25 regardless of the values of
the angular velocity and the ground parameters. The last column of
Table 2 shows the ratio of the difference between the steady-state
and the optimal values of the CoT to the optimal values of the CoT
for each case.Themaximum deviation from the optimal value of the
CoT in any of these simulations was 8.7%.

The evolution of the average CoT computed by averaging over
50 independent simulations during each block for the simulations
on uneven ground with a mean slope of 0, nominal ground stiffness
of 100 kN/m, and all three angular velocities evaluated are displayed
with solid lines in Figure 5. The dotted lines display the empirical
optimum values of the CoT of the plots with the same colors. The
shaded area surrounding each curve corresponds to the standard
deviation of the CoT at each point.

Similar to the results of the experiments on human subjects
running on flat, uphill and downhill slopes reported in Kim and
Park (2011); Farley and Gonzalez (1996); Elliott and Blanksby
(1979); Barrey et al. (2002); Jayes and Alexander (1978); Shen and
Seipel (2015); Umberger and Martin (2007); Lussiana et al. (2015);
Spröwitz et al. (2013), our online learning algorithm converged to
different values of stride angle and touchdown pressure on different
longitudinal slopes and velocities. Similar to biological models
that adapt their leg stiffness on grounds with different surface
stiffness Ferris et al. (1998); Ferris and Farley (1997), our algorithm
converged to different values of touchdown pressure for different
ground types. Although some of the minima of the performance
surface may not match the observations on human and animal
behavior in prior research, when the robot parameters and the CoT
values converged to the global minimum, the resulting evolution of
the leg parameters was similar to how animals and humans change
leg stiffness and stride angle during gait.

4.1.4 Robot behavior during abrupt changes in
forward speed

This set of simulations were designed to investigate the effect
of the abrupt changes in the angular velocity of the hip/shoulder
joints while the robot was trotting and the ability of the algorithm to
converge to near-optimal CoT values after the change. The ground
stiffness for these simulations was chosen to be 100± 10 kN/m
and the longitudinal slope of the ground was 0± 0.5°. The angular
velocity changed from 105 deg/s to 70 deg/s halfway through each
run for one set of simulations, and vice versa (70 deg/s to 105 deg/s)
for another set. Each simulation contained 600 blocks. Figure 6

FIGURE 5
CoT of the robot trotting on uneven grounds with the mean slope of
zero and three different angular velocities. The dotted lines display the
optimal values corresponding to the curve with the same color. The
duration of simulations is different for the three cases because the
angular velocities are different for the three different cases, and the
stride angle of the robot evolves differently for each operating
condition.
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FIGURE 6
CoT of the robot trotting on uneven ground with the slope of 0±0.5°
and ground stiffness of 100± 10 kN/m when ω changed from
105 deg/s to 70 deg/s and vice versa abruptly after 300 blocks. The
dashed and dotted lines represent the optimal values for ω = 105 deg/s
and ω = 70 deg/s, respectively.

displays the average CoT values of 50 independent simulations with
solid lines and their standard deviations with the shaded area for
each case. The learning rates were set the same as in the simulation
setups in section 4.1.3; Table 3 reports the statistics of the last 100
blocks before the abrupt change of the angular velocity (first row
of each set) and the final 100 blocks for each case (second row
of each set). According to Table 3, the algorithm could converge
to the values within 6.67% and 3.5% of the optimal values after
abruptly reducing the angular velocity (set 1) and increasing it (set
2), respectively.

4.2 Experiments on a robot platform

4.2.1 Setup
A number of experiments were conducted using the robot of

Figure 1 trotting on a treadmill. These experiments were performed
to show the effectiveness of the online learning algorithm on a

TABLE 3 Steady-state statistics of Figure 6.

ω (deg/s) CoT r (deg) Ptd (×105 Pa)

Set 1 105 0.2597 ± 0.0161 14.70 ± 0.49 2.65 ± 0.34

70 0.2238 ± 0.0088 13.72 ± 0.32 2.56 ± 0.26

Set 2 70 0.2256 ± 0.0099 13.10 ± 0.41 2.53 ± 0.33

105 0.2602 ± 0.0142 14.55 ± 0.57 2.73 ± 0.37

real platform. The robot used for these experiments is the UPed
Gurney et al. (2023), an under-actuated quadruped robot platform
explained in Section 3.1. The robot used PID controllers to drive
the motors in the hip/shoulder joints, and generate sufficient
torque to track desired angular trajectories. The PID controller as
well as the online learning algorithm were loaded onto a dSpace
MicroLabbox (Paderborn, Germany), a control prototyping system,
which provided all motor and pneumatic control to the robot, and
set the gait and compliance parameter values.

4.2.2 Performance benchmarks
The CoT of the UPed was calculated for the robot trotting

with the angular velocity of 105 deg/s and 70 deg/s on a treadmill
with longitudinal slopes of 0 and −6° with the stride angle
between 12° and 19.5° in steps of 1° and touchdown pressure
between 2× 105 and 7× 105 Pa in steps of 0.5× 105 Pa. Figure 7
displays CoT values, as a function of r and Ptd, of the robot
trotting on a flat treadmill with ω = 105 deg/s. There are two local
minima for this case corresponding to CoT values of 0.3090 when
(r,Ptd) = (14.5,7) and 0.3274 when (r,Ptd) = (16.5,2). Depending on
the initial conditions, the algorithm could converge to either of
them. Similar measurements for the other 3 cases were performed
and the corresponding global and local minima are reported in
Table 4.

As expected, and similar to the simulation results, Table 4
indicates that the optimal CoT values are different for different

FIGURE 7
CoT values of the robot trotting on flat ground with ω = 105 deg/s as a function of Ptd and r. The colored squares show the end point of each run. All
runs started from the black triangle.
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TABLE 4 Experimental setups, and empirically measured values and
parameters of the global and local minima.

Simulation parameters Global minimum Local minima

Slope ω CoT r Ptd CoT r Ptd

(deg) (deg/s) (deg) (×105 Pa) (deg) (×105 Pa)

0 105 0.3090 14.5 7 0.3274 16.5 2

−6 105 0.2850 15 6.5 - - -

0 70 0.1717 12 3.5 0.1928 12 6.5

0.2525 15 5.5

−6 70 0.1215 14 4.5 0.1684 15 6.5

forward velocities and longitudinal slopes. Further, similar to
biological models, our robot also adapts its stride angle and
touchdown pressure to improve its energy efficiency in different
ground conditions and operating environments. For example,
similar to what has been observed in humans Kim and Park (2011);
Elliott and Blanksby (1979), analysis of the experimental results
indicate that the optimal values of the stride angle and the stiffness
of the leg of the robot are also higher in higher velocities.

4.2.3 Online learning algorithm on the robot
platform

Our online learning algorithm was implemented on the
UPed in operating conditions tabulated in Table 4. For each
experimental setup, 10 independent runs were performed. The
initial conditions were chosen to be far from the optimal values.
On flat ground, the initial conditions for ω = 70 deg/s and
ω = 105 deg/s were equal to (r,Ptd) = (17.5,3) and (r,Ptd) = (14,4.5),
respectively. On the downhill slope, the initial conditions for
ω = 70 deg/s and ω = 105 deg/s were equal to (r,Ptd) = (15,4) and
(r,Ptd) = (18,6.5), respectively. The learning rates for all cases
were set to μr =

0.3
CoT(1)

degrees and μP =
0.15

CoT(1)
× 105 Pa. The

length of each run was approximately 600 s, but the number of
blocks varied from run to run because of the variations in the
stride angle due to adaptation and various hip/shoulder angular
velocities.

Because the performance surface is multi-modal, the algorithm
is only guaranteed to converge to one of the local minima of the
surface. Table 5 summarizes the average and standard deviation
values of the measured CoT, stride angle and touchdown pressure,
computed over the last 60 blocks of each run, and the number of runs
Nr that was determined to have converged to each local minimum.
For the case of flat terrain and ω = 105 deg/s, Figure 7 displays the
end points of each of the ten runs (averaged over the last 60 blocks.)
Six of the ten runs converged (or is close to convergence) to the
global minimum, and three converged to the local minimum of
the CoT surface. Analysis of the trends of the parameters of the
remaining run suggested that, at the end of the run, the stride angle
was reducing and the touchdown pressurewas increasing, indicating
that the system was traversing toward the global minimum, but
may have needed a much longer run time to get there. The cost of
transport associatedwith the global and localminimawere relatively
close to each other, and the online learning algorithm reduced the

TABLE 5 Experimental setups and steady-state statistics.

Experimental parameters Steady-state values

Slope ω Nr CoT R Ptd

(deg) (deg/s) (deg) (×105 Pa)

0 105 6 0.3117 ± 0.0187 14.66 ± 0.24 6.41 ± 0.14

3 0.3534 ± 0.0369 17.44 ± 0.26 2.39 ± 0.32

1 0.4273 ± 0.0120 17.05 ± 0.16 4.86 ± 0.16

−6 105 10 0.3480 ± 0.0109 16.01 ± 0.21 5.64 ± 0.20

0 70 5 0.2969 ± 0.0097 12.88 ± 0.19 2.66 ± 0.07

3 0.4143 ± 0.0114 14.43 ± 0.15 5.29 ± 0.15

2 0.3098 ± 0.0207 13.56 ± 0.19 6.17 ± 0.14

−6 70 3 0.1724 ± 0.0043 16.46 ± 0.19 5.09 ± 0.06

7 0.1851 ± 0.0051 15.63 ± 0.16 6.21 ± 0.06

FIGURE 8
CoT of the robot trotting on a flat treadmill with the angular velocity of
105 deg/s for 10 independent runs.

CoT from its initial value of 0.59 by more than 45% in all nine
cases that converged to one of the two minimum locations. Even
the single run that had not converged, resulted in a substantial
reduction of the CoT value from 0.58 to 0.43, indicating that our
approach is capable of achieving significant improvement in energy
efficiency.

Figure 8 displays the evolution of the CoT for all individual
runs for the experimental setup with ω = 105 deg/s and zero slope.
Each run, depicted in a specific color, started from the black triangle
in Figure 7 and ended at the square with the same color as the
trajectory shown in Figure 8. As explained earlier, the run shown
in yellow in the two figures had not converged at the end of
the run, but still showed a substantial reduction in the cost of
transport. The cost of transport of the run shown in red displayed
somewhat erratic behavior in the interval between 200 and 400 s Of
the run. During this time, the parameters wandered between two
possible convergence locations. However, the system could escape
this “unstable” region and converge to near-optimal value by the end
of the run.

According to Table 4, the CoT values at the local minimum of
ω = 105 deg/s and zero slope was very close to the global minimum.
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Consequently, theCoTvalues are near-optimal values evenwhen the
online learning algorithm converges to the local minimum rather
than the global minimum. In the angular velocity of 70 deg/s, the
algorithm converged to the other local minima in some runs which
have higher CoT values compared to the global minima. However,
the algorithm could still reduce the energy consumption by as much
as 50% compared to the initial conditions.

In most cases, the trends of the optimum values of adaptive
parameters observed for both UPed and its simulated model
were similar. For example, the optimum values of stride angle,
touchdown pressure and CoT increase with increasing forward
velocity. However, the CoT values of UPedwere greater compared to
its model in similar operating conditions and the optimal values of
stride angle and the touchdown pressure were different for the actual
robot and the simulated robot.One reason for themismatch between
the actual robot and the simulated model of it is that estimating
the parameters of the robot precisely is not a trivial task. Even with
precise estimation of systemparameters, they vary over time. In spite
of these differences, we can observe from Tables 2, 4, 5 that both
simulation and the actual robot have the same order of magnitude
for the CoT values. Therefore, we tuned the hyper-parameters of the
simulation model by searching over a wide range of parameters and
employed similar values of hyper-parameters for the experiments on
UPed.

5 Concluding remarks

An online learning algorithm based on gradient descent
was presented in this paper to adaptively reduce the energy
consumption of a quadruped robot trotting on grounds with
unknown characteristics. This algorithm updated the stride angle
and leg stiffness in real-time while the robot was trotting.The online
learning algorithm was implemented on a simulated model of an
under-actuated quadruped robot and also experimentally evaluated
using the UPed platform. The algorithm was computationally
efficient for implementation in real-time. Different operating
conditions associated with different hip/shoulder angular velocities,
ground characteristics, and longitudinal slopes were explored.
Performance evaluation using simulations and experiments
suggested that the online learning algorithm presented in this paper
was capable of converging to near-optimal values of the cost of
transport for given operating conditions, terrain properties, and
gait characteristics.

The approach presented in this paper is a general framework
that works without training and can be implemented on any legged
robots with adaptive parameters and for any gait, and can also
be generalized to optimize more than two parameters. Examples
of other such parameters include knee/elbow stiffness, knee/elbow
rest angle and asymmetry in the stiffness of the forelegs and the
rear legs. Analyses of a model of a horse galloping in a simulation
environment (Herr and McMahon, 2001) and the data taken
from actual horses (Heglund and Taylor, 1988) have showed that
the optimum values of the stride angle and the stride frequency
that minimized the CoT vary with forward velocity. Additionally,
Wei et al. (2015) demonstratedwith a simulatedmodel of a galloping
quadruped robot that the leg stiffness should be adjusted for
different forward velocities to reduce the CoT. The online learning

algorithm presented in this paper can be implemented on fast
gaits such as galloping to reduce the CoT of legged robots by
updating changeable parameters of their legs. The hyper-parameters
of the update equations should be tuned appropriately when applied
to other robots and gait conditions. The algorithm can also be
modified by using different functions for fr , fP, and different values
of d in (6) and 7. A simplified model using d = 1, and fr and
fP as signum functions was presented in Aboufazeli (2018) on a
model of a quadruped robot similar to the one presented in this
paper.

The results of the online learning algorithm showed that
adaptively updating the leg stiffness and the stride angle during
locomotion reduces the CoT in various ground conditions and
forward velocities. Several observations reported in Kim and Park
(2011); Farley and Gonzalez (1996); Elliott and Blanksby (1979);
Barrey et al. (2002); Jayes and Alexander (1978); Shen and Seipel
(2015); Umberger and Martin (2007); Lussiana et al. (2015); García-
Pinillos et al. (2019); Telhan et al. (2010) show that animals and
humans adjust their leg stiffness and stride angle in various ground
conditions and forward velocities. Our results in both simulations
and experiments agreed with these observations and demonstrated
the usefulness of real-time updates of the stride angle and leg
stiffness in legged robots.
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