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In view of the need for emergency steering to avoid collision when the vehicle is in
a dangerous scene, and the stability control of the vehicle during collision
avoidance. This paper proposes a planning and control framework. A path
planner considering the kinematics and dynamics of the vehicle system is used
to formulate the safe driving path under emergency conditions. LQR lateral
control algorithm is designed to calculate the output steering wheel angle. On
this basis, adaptive MPC control algorithm and four-wheel braking force
distribution control algorithm are designed to achieve coordinated control of
vehicle driving stability and collision avoidance safety. The simulation results show
that the proposed algorithm can complete the steering collision avoidance task
quickly and stably.
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Introduction

The Advanced Driver Assistance Systems (ADAS) are effective in reducing crashes. Most
ADAS systems have one thing in common, that is, they all affect the longitudinal control of
the vehicle to avoid the collision (Borrello et al., 2020; Rabhi et al., 2021; Zha et al., 2021;
Hang et al., 2022; Wu et al., 2023).

Although, there are certain situations where a collision cannot be avoided by braking but only
by steering operations. However, lots of studies show that in the case of an impending rear-end
collision, many drivers tend to only brake rather than try to avoid obstacles by steering (Schieben
et al., 2014). There are different reasons for this behavior. Firstly, it is an instinctive reaction to
stop in order to reduce the impact of an impending collision. Secondly, steering is more complex
than braking, so it requires the driver to have a higher awareness of the situation and a higher
driving ability. Therefore, Automatic Emergency Steering System (AES) is of great significance.

For vehicle trajectory planning, Yang proposed a dynamic planning method for vehicle
collaborative trajectory planning under the scenario of forced lane change, which aims to
provide suggested lane change distance and reference trajectory for each autonomous vehicle
in a coordinated manner (Yang et al., 2022). A dynamic programming way is established to
determine the suggested distance of all vehicles and the non-convex quadratic constraint is
applied to characterize the trajectory determination problem. Considering driver comfort
and collision risk, Li et al. (2022) proposed a human-like motion planning strategy based on
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probabilistic prediction under dynamic environment. They realized
path generation based on quintic polynomials, and optimized the
target trajectory by using cost functions with four indexes including
safety, consistency, smoothness and distance from local path to
global path. Cheng et al. (2022) proposed a deep reinforcement
learning method based on time difference to solve the longitudinal
trajectory planning of autonomous vehicles at signal-controlled
intersections. Xiao et al. (2021) [10] proposed the control barrier
function method for critical safety control and developed a real-time
control framework that combines the optimal trajectory generated
with the computational efficiency method that provides safety
assurance.

Vehicle collision risk assessment is the key to trigger AES. For
vehicle risk assessment, Li et al., 2021 proposed a multi-scene collision
avoidance decision algorithm for autonomous vehicles, and used the
situation assessment module based on conditional random field to
assess the risk level of the surrounding traffic participants. Based on the
situation assessment module, collision avoidance strategies with driving
style preferences (such as aggressive or conservative) are proposed to
meet the needs of different drivers. Cui et al. (2021) proposed a layered
framework of manned or autonomous vehicles for collision avoidance
in emergency situations. They adopted finite-state machine (FSM)
technology to determine appropriate strategies for collision
avoidance, and established a collision risk model, taking into
account vehicle risks around overlapping areas, road attachment
risks and vehicle stability performance. Gilbert et al. (2021)
proposed a decision-making system that selects the lightest collision
when vehicles are confronted with inevitable collisions on the highway.
They applied the multi-attribute decision-making method to judge the
severity of the collision. For the autonomous lane change decision of
trucks, Chen et al. (2020) proposed a lane change decision model based
on support vector machine. Ren and Wu, 2020 proposed a fusion
architecture of decision planning under dynamic Environment And
Used Back Propagation Neural Network (BPNN) to predict the lane
change of vehicles around the block.

The AES control layer will track the trajectory planned by the
decision layer. For the vehicle trajectory tracking, Ge et al., 2022 rely on
the precise model for the traditional MPC. When the autonomous
vehicle encounters external interference and perturbation, the steady-
state non-offset tracking cannot be realized, and the MPC solver is
biased to solve the coupling control problem. Li et al. (2021) studied that
under extreme driving conditions, the coupling between the
longitudinal and transverse motion of the vehicle becomes
significant due to the highly non-linear force of the tire, which
affects the stability of the vehicle. They proposed a model prediction
controller of electric vehicle driven by four-wheel independent motor,
in which changes in the longitudinal velocity are regarded as
interference in the vehicle dynamics model. Then, the additional
torque generated by the model-based controller with the multi-
objective design is considered for balance. Tork et al. (2021)
proposed an independent model control based on neural network
for path tracking control. The control scheme utilized the input of
steering Angle and torque to realize cooperative control of transverse
and longitudinal motion.

In summary, collision avoidance and stabilization are the two critical
issues when an autonomous vehicle in an emergency situation, which
usually occurs in a short time and requires large actuator inputs, as well
as a highly non-linear response. Real-time vehicle decision-making,

planning and control plays an important role in avoiding collisions
while stabilizing autonomous vehicles in extreme scenarios. Liu et al.
(2017) proposed a method to establish the stability criterion of vehicle
yaw based on the phase plane method of sideslip-yaw rate, which solved
the problem of judging the type of vehicle stability region under different
driving conditions, and provided a theoretical basis for the intervention
algorithm of stability control system. Zhang et al. (2017) considered the
influence of tire slip and actuator torque saturation on driving and
braking, and designed a dynamic controller to overcome integral
saturation by using a conditional integrator to ensure accurate
tracking of the required signals under the influence of tire force and
actuator constraints. Vehicle state and parameter estimation is an
important part of vehicle dynamic control. Liu et al. (2021) proposed
a new estimation method of vehicle side-slip angle based on kinematic
model, which integrated the information of Global Navigation Satellite
System (GNSS) and inertial Measurement Unit (IMU). Xia et al. (2018)
proposed a method to estimate the attitude and lateral velocity of an
autonomous vehicle with the assistance of vehicle dynamics using a six-
degree-of-freedom IMU. Liu et al. (2018) proposed a method based on
kinematics model that integrates intelligent vehicle sensors to estimate
sideslip angle, aiming at the problem that the non-linear characteristics
and parameter uncertainties of vehicles make it difficult for the method
based on dynamic model to estimate the sideslip angle of vehicles under
harsh working conditions. Xiong et al. (2020) proposed a new automatic
vehicle sideslip angle and attitude estimation method based on IMU for
low sampling rate GNSS speed and position parallel adaptive Kalman
filters.

The existing steering collision avoidance system often only
considers the safety risk of collision avoidance, but does not
consider the impact of dynamic factors on stability. At the same
time, stability has a certain impact on tracking control accuracy,
which should also be considered. Therefore, the contribution of this
paper is to propose a real-time emergency steering collision
avoidance and stability control method, and design a simulation
experiment based on the influence of stability control on tracking
accuracy and other factors.

As shown in Figure 1, the lateral path planning and path tracking
control considering motion stability designed in this paper are parts of
the coordinated control architecture of vehicle driving stability and
collision avoidance safety, which can realize automatic collision
avoidance control and ensure the vehicle’s security and stability.
Based on perception and state estimation information, the
framework judges driving safety and collision risk and makes
decisions based on TTC (time to collision), and uses dynamic
programming and quadratic programming methods to plan paths
and determine collision-free paths. Then, according to the
characteristics of stability control in emergency collision avoidance
scenarios, an adaptive MPC control algorithm is designed. Finally, the
obtained steering wheel angle and four-wheel braking force are applied
to the actual vehicle.

Vehicle dynamics model

3-DOF vehicle dynamics model

We rationally simplified the vehicle model (Wu G. 2021) to
obtain a three-degree-of-freedom(3-DOF) vehicle dynamics model,
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as shown in Figure 2, which mainly includes vehicle longitudinal,
lateral and yawmotions, where δf is the front wheel angle, and FXi is
the wheel braking force, FYi is the wheel lateral force, vx is the
longitudinal speed, vy is the lateral speed, v is the speed of the
vehicle, β is the sideslip angle, lf and lr are the distance of the center
of mass and the front and rear axles, ls is the wheelbase, βf is the
sideslip angle of the front wheel, Td is the sum of the yawmoment of
the vehicle, r is the yaw rate of the vehicle.

The differential equations of motion of the vehicle:

∑ Fxi � m _vx − r × vy( )∑ Fyi � m _vy + r × vx( )
lf Fy1 + Fy2( ) − lr Fy3 + Fy4( ) + ls Fx1 + Fx3( ) − ls Fx2 + Fx4( ) � Td

⎧⎪⎪⎨⎪⎪⎩
(1)

So far, the establishment of the 3-DOF model of the vehicle
considering the lateral, longitudinal and yaw motions has been
completed, and this model will be used to describe the basic
characteristics of the vehicle during motion.

Linear tire model

In the case of a small vehicle front wheel angle, the relationship
between the wheel lateral force and the sideslip angle of this wheel can
be approximately regarded as a linear relationship (Wu G. 2021), thus:

FYi � kf βf i � 1, 2
FYi � krβr i � 3, 4

{ (2)

Where kf and kr are the cornering stiffnesses of the front and rear
axles, respectively. Front and rear wheel sideslip angles, vehicle
sideslip angle and their derivatives are:

βf � β + lf r
vx

− δf

βr � β − lrr
vx

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

β � vy
vx

_β � _vyvx − _vxvy
vx

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (4)

Collision avoidance trajectory planning

The goal of trajectory planning is to generate a smooth enough
curve to change the position of the vehicle under the premise of
ensuring the safety of the vehicle. The smoothness is to ensure that
the vehicle can track along the trajectory. The trajectory planning
module will receive the environment information including vehicle
location information and road information. A planned trajectory is
transmitted to the vehicle motion control module as shown in Figure 3.

FIGURE 1
Coordinated control for vehicle driving stability and collision avoidance safety.
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Usually trajectory planning can be decomposed into speed planning
and path planning. Since the change of speed is not considered in the
planning process of steering collision avoidance, we assume that the
longitudinal speed is constant in the planning process, and only the path
planning is designed here.

Path planning

Using numerical methods, the path planning problem in
discrete space can be abstracted as a quadratic programming
problem, and the construction of this problem mainly includes
two parts: the design cost function and the determination of the
constraints of the problem. In designing the cost function, we
need to consider the requirements of smoothness, not deviating
from the road centerline and being away from obstacles. At the
same time, in order to accelerate the solution, we first use
dynamic programming to open up feasible space and therefore
determine the constraints of the planning problem. After the
problem is constructed, we use the iterative method to solve the
quadratic programming problem.

The cost function of path planning can be divided into
smoothing cost, reference line cost and obstacle cost. The road is
discretized along the centerline and its perpendicular direction, x is
the coordinate of the road centerline, and y is the coordinate of the
point which is perpendicular to the road.

The smoothing cost Cpsmooth is divided into three parts,
Wpsmooth1, Wpsmooth3, and Wpsmooth3, and their meanings

correspond to the cost weights generated by the first, second, and
third derivatives of the path:

Cpsmooth � Wpsmooth1y′
Ty,+Wpsmooth2y″

Ty″ +Wpsmooth3y″′
Ty‴

(5)
The reference line cost is Cpref, and Wpref represents the

corresponding weight:

Cpref � Wpref y
Ty (6)

The obstacle cost is Cpcollision, Wpcollision represents the
corresponding weight, and d represents the distance between the
obstacle and the vehicle, where Wpcollision is a rather large value.

Cpcollision �
0 , if d ≥ 4

1000
d

  , if 3< d < 4

Wpcollision, if d ≤ 3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

Combining the above three formulas, the total planning cost
Cpnode of each discrete point can be obtained, and its value is equal
to the sum of the above three costs:

Cpnode � Cpsmooth + Cpref + Cpcollision (8)

The planned trajectory needs that the curvature is continuous.
Δx is the sampling interval in the direction of the road centerline, yi′
is the first derivative of y to x at the i-th sampling point, yi″ is the
second derivative of y to x at the i-th sampling point:

yi+1′ � yi′ + yi″Δx +
1
2
yi″Δx2 +

1
2

yi+1″ − yi″
Δx( )Δx2 (9)

The solution of the planning is first to obtain the initial solution
by dynamic programming, and then to obtain the final result by
secondary programming, as shown in Figure 4. In order to speed up
the calculation of the quadratic programming problem, the result of
the dynamic programming is regarded as a rough solution and a
feasible space is opened up. ymax(j), ymin(j) is the maximum and
minimum value of the feasible space, ymin(j)′, ymax(j)′ is the value range of the
path restricted by the road, y obs is the position corresponding to
the obstacle car, width/2 is the width of the obstacle car:

ymax j( ) � min ymax j( )′ , y obs − width/2( ), if  ydp path > y obs

ymin j( ) � max ymin j( )′ , y obs + width/2( ), others
⎧⎪⎪⎨⎪⎪⎩

(10)
After a lot of tuning, the parameters of the

planning algorithm are finally selected
Wpsmooth1 � 15;Wpsmooth2 � 20000;Wpsmooth3 � 5000; Wpref � 15.

Quadratic programming problem solving

The advantage of Dynamic Programming (DP) is to decompose
each column of the discrete space into a sub-problem and solve the
optimal path from the last column through the inverse method. On
the basis of discretization of the solution space, the initial path can be
calculated by using dynamic programming. According to this path, a
preliminary decision can be made on the path planning problem to

FIGURE 2
3-DOF vehicle dynamics model.
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reduce the search range of the quadratic feasible space, as shown in
Figure 4. The advantage of the iterative method for solving quadratic
programming problems is that it can balance the solution time and
effect. This article does not focus on this aspect, so directly call the
quadratic planner solution function in MATLAB.

Control strategy of collision avoidance
system

In this paper, a path-following control system considering motion
stability is proposed. Its purpose is to judge the risk of collision when an
obstacle appears in front of the vehicle, and automatically implement

emergency collision avoidance with the stability of the vehicle body, as
shown in Figure 5. The structure of the system can be mainly divided
into three parts: TTC risk assessment, LQR lateral control and adaptive
Model Predictive Control (MPC) stability control.

First, according to the collision risk assessment module, the collision
time TTC is calculated according to the state of the vehicle and the
environment perception information to judge the safety of the current
vehicle. TTC refers to the time it would take for a collision to occur at the
prevailing speeds, distances, and trajectories associated with the driver’s
vehicle and the closest lead vehicle. TTC can be kinematically defined as
the range between a following and lead vehicle divided by the relative
velocity between these vehicles. Hence, TTC provides a measure of crash
risk or the time before impact if prevailing conditions continue (Coelingh

FIGURE 4
Path planning feasible space(DP).

FIGURE 3
Trajectory planning during the steering.
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et al., 2010; Han et al., 2014). We have carried out related research in this
part, but it is not the focus of this article. Considering the complex and
changeable traffic conditions, as well as the possible instability of the
vehicle caused by the large action of the actuator, this paper designs an
adaptive MPC module to control the yaw moment of the vehicle to
ensure the stability of the vehicle. The module judges whether to
intervene. In addition, the linear quadratic regulator (LQR) controller
is proposed in this paper to calculate the output signal steering angle δ
according to the lateral error eh and heading angle error ey, so that the
vehicle can always track the road centerline. Finally, in terms of braking
force control and distribution, the braking force distribution and control
module will calculate the braking forces FX1、FX2、FX3、FX4

according to the expected deceleration and the expected additional
yaw moment of the vehicle, and From this, the braking pressures
PX1、PX2、PX3、PX4 of each wheel cylinder are further obtained.

LQR lateral control

The main purpose of lateral control is to control the lateral error
within a certain range. As a result we can get a better track of the desired
path and the heading angle of the vehicle. The content of this section is
mainly based on the LQR to design the controller to track path. The state
variables of the control system are four parameters, including: lateral error
ey, rate of change of lateral error _ey, and heading angle error eh, the rate of

change of heading angle error _eh. The following formula is the state space
equation of the system:

_ey
ëy
_eh
ëh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0 1 0 0

0 1
mu (kf + kr) − 1

m
kf + kr( ) 1

mu
lf kf − lrkr( )

0 0 0 1

0
1

Iz vx
lf kf − lrkr( ) − 1

Iz
lf kf − lrkr( ) 1

Izvx
lf

2kf + lr
2kr( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ey
_ey
eh
_eh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0

−kf
m
0

−akf
Iz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
δf +

0
1

mvx
akf − bkr( ) − vx

0
1

Izvx
a2kf + b2kr( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
_δf (11)

Where:

A �

0 1 0 0

0 1
mvx

(kf + kr) − 1
m

kf + kr( ) 1
mvx

lf kf − lrkr( )
0 0 0 1

0
1

Izvx
lf kf − lrkr( ) − 1

Iz
lf kf − lrkr( ) 1

Izvx
lf
2kf + lr

2kr( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

0

−kf
m

0

−akf
Iz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

0

akf − bkr
mvx

− δf

0

a2kf + b2kr
Izvx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Eq.11 can be expressed as:

_err � Aerr + Bu + C _θr (13)
Error:

err � ey _ey eh _eh[ ]T (14)

FIGURE 5
Vehicle emergency steering and collision avoidance stability control.

FIGURE 6
Four-wheel braking force distribution.
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The control quantity is δf.
From the above state equation, we can get the objective function

and corresponding constraints of the LQR controller:

Min J � 1
2
∫tf

t0
(err t( )TQerr(t) + u t( )TRu(t)dt

s.t. _err � Aerr t( ) + Bu
(15)

Where [t0, tf] is the time domain, Q and R represent the weighted
matrix of state and control quantity.

The optimal solution of this problem satisfies the following:

J* � err t( )TP err t( ) (16)
The expression of P is:

_P � P t( )A t( ) + AT t( )P t( ) − P t( )B t( )R−1 t( )BT t( )P t( ) + Q t( )
(17)

The LQR controller is:

uk � −K t( )X t( ) (18)
Where K � −R−1(t)BT(t)P(t) represents the controller gain.

Adaptive model predictive control stability
control module

In order to trade off the calculation efficiency and calculation
accuracy, we assume that the longitudinal velocity vx in the Formula.
1 of the vehicle dynamics model remains unchanged. At this time,
the three-degree-of-freedom model of the vehicle is simplified to
two-degree-of-freedom. At the same time, it is brought into the
Formula. 4, where the longitudinal velocity vx is a time-varying
model parameter, and the sideslip angle and the yaw rate are taken as
the state quantities, which can be finally simplified to obtain the
following state space equation:

_r
_β

[ ] �
lf
2kf + lr

2kr
vxIz

lf kf − lrkr
Iz

kf lf − krlr
mvx

2 − 1
kf + kr
mvx

− _vx
vx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r
β

[ ] +
1
Iz
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦Td +
−lf kf
Iz

− kf
mu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦δf
(19)

Where select x � [ r β ]T as the state quantity, and u � Td as the
control quantity.

Eq. 9 will calculate the reference values of the vehicle’s yaw rate
and sideslip angle. The deviation value is used as the index of vehicle
lateral stability, and the larger the value, the greater the risk of lateral
instability of the vehicle.

rref �
vx/ lf + lr( )
1 + Kvx

2 δf

βref �
lr +mlf vx

2/ krlf + kf lr( )
lf + lr( ) 1 + Kvx

2( )
K � m

lf + lr( )2
lf
kr

− lr
kf

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

rref, βref are the reference yaw rate and sideslip angle,
respectively, and K is the stability factor.

MPC is a feedback control strategy that discretizes the vehicle
dynamics equation, and sets the sampling time as Ts � 5 × 10−4s.
For time k, there is the following discrete equation:

x k + 1( ) � Ax k( ) + Buu k( ) + Bdd k( )
y k( ) � Cx k( ) + Du k( ){ (21)

Where,

A � TspAc + I,Bu � BcuTs,Bd � BcdTs,C � Cc,D � Dc

x(k), u(k), y(k) represent the state, control input and output
of the system at time k, respectively. Assuming that the
prediction time domain is ps, and the control time domain is
ms, the control quantity will not change when the time exceeds
the control time domain. Then the input and output predicted by
time k are:

yp k + 1|k( ), yp k + 2|k( ), ..., yp k + ps
∣∣∣∣k( ){ } (22)

u k|k( ), u k + 1|k( ), ..., u k + ps − 1
∣∣∣∣k( ){ } (23)

The control goal is to track the target and reduce the tracking
error, that is,

r k + 1( ), r k + 2( ), ..., r k + ps( ){ } (24)
At the same time, the control constraints and output constraints

of the system are set. Finally the optimization goal function that can
characterize the control performance of the system is proposed. It
needs to consider the cost of the expected tracking error and some
other performances, such as the control action as small as possible.
The objective function is:

J y k( ),U k( )( ) � ∑ps

i�1 Γy r k + i( ) − yp k + i|k( )( )!!!!! !!!!!2
+∑ms

i�1 Γu u k + i|k( ) − u k + i − 1|k( )( )‖ ‖2 (25)

Γy is the weight of the output quantity, and Γy u is the weight of the
control quantity increment. For time k, the open-loop optimization
problem is transformed into solving min(J(x(k), U(k), ms, ps)) for
the control variable U.

In order to improve the calculation efficiency, the
longitudinal velocity vx is assumed to be constant when
calculating the state space equation, but in the process of
emergency collision avoidance, its longitudinal velocity vx is a
time variable. At this time, the internal model of MPC will also
change with time, so an adaptive MPC solution method is
proposed. The longitudinal velocity and longitudinal
acceleration output by the system are fed back to the MPC
controller to update the internal model of the controller,
which is beneficial to improve controller performance.

After a large number of parameter tuning and system
identification, the system can maintain the best performance
as much as possible, and the corresponding parameters of the
adaptive MPC controller are selected: prediction time domain
ps = 10, control time domain ms = 5, and add hard constraints to
the control input, Take u min � 4000Nm, u max � 4000Nm,
Δu max � ± 1000Nm, Γu � 0.02, Γy � [ 1 2 ].

So far, the parameter setting of the adaptive MPC controller is
completed, and the optimal additional yaw moment ΔM can be
calculated to avoid vehicle instability.
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Vehicle tire braking force distribution
strategy

The additional yaw moment Td required by the vehicle has been
obtained from the MPC controller as shown in Figure 6:

Td � ∑4

i�1 −1( )iFxiLi (26)

Fri, Ffi are the longitudinal forces of the front and rear tires,
dri, dfi are the lateral distances from the front and rear tires to the
center of gravity of the vehicle. I represents the left or right side of the
vehicle.

At present, the braking force distribution schemes for active braking
of vehicles can be roughly divided into two types, single-wheel braking
and multi-wheel braking. The braking force provided by the multi-wheel

FIGURE 7
Tire selection strategy.

FIGURE 8
Carsim simulation diagram.
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braking scheme is greater than that of the single-wheel braking scheme,
but at the same time, the impact generated by the double-wheel braking
scheme in the active braking process is also relatively large. In addition,
the additional yawmoment generated by thewheel braking scheme is also
larger. Therefore, in the face of emergencies, a multi-wheel braking
scheme with faster control speed and larger upper limit of additional
yaw moment is often adopted.

During the turning, the effects of braking different wheels on the
steering dynamic performance are different, and the single-wheel
control strategy will select different wheels for control under
different vehicle states. If it is a two-wheel braking scheme, when
the car is about to flick or understeer, the system will adopt the method
of active braking the two wheels on the outer side of the vehicle’s
rotation direction at the same time to adjust the body state. The two

wheels on the inner side of the steering wheel perform active braking to
correct the body condition.

Then, it is necessary to select the most effective wheel to generate
Td according to the actual situation. If the front wheels cannot
provide enough additional yaw moment, the remaining yaw
moment can be generated by the training wheels. In order to
design the wheel selection strategy, define the following formula:

ƛ � ƛM · ƛγ, ƛM � sgn Td( ), ƛγ � sgn r( )( ) (27)
As shown in Figure 7, the wheel selection strategy is proposed

based on ƛM and ƛγ. In Figure 7 [left front, right front wheel, rear left
and right rear wheel], when the value in the vector is set to 1,
corresponding tire brakes, when the value in the vector is set to 0, tire
don’t brake, 0|1 said whether need the auxiliary brake wheel brake,

FIGURE 9
(A) Ego vehicle speed (B) Obstacle avoidance trajectory.

FIGURE 10
(A) Variation of yaw rate with time (B) Variation of heading angle with time.
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for example, if the right front wheel braking does not produce
enough yawing moment, we need to brake the right rear wheel to
generate enough yaw torque. If the vehicle is oversteering (ƛ<0), the
priority braking wheels are the front outer wheels of the vehicle.
When the vehicle understeers (ƛ>0), the priority braking wheel is the
rear inner wheel. Once the yaw moment provided by the front
wheels is not enough, the remaining yaw moment can be generated
by the selected auxiliary wheels.

Finally, according to the selected braking wheels, the distributed
four-wheel braking force can be obtained from Formula. 26.

Simulation experiments

In order to verify the effectiveness of the algorithm in this
paper, a joint simulation model was built in Carsim and

MATLAB/Simulink, as shown in Figure 8. During the
operation of the collision avoidance algorithm, the vehicle is
driving at a speed of about 84 km/h. The obstacle car is located at
(40, −2) position, as shown in Figure 9B. At this time, the vehicle
is about to have a frontal collision, and the collision avoidance
algorithm starts to run and the steering wheel is turned to the
right. As shown in Table 1, the simulated vehicle parameters are
selected from Carsim.

Without the stability control

Without the stability control, the planning algorithm and the
lateral control algorithm as shown in Figures 9, 10 perceive that
there is a slow-moving car at a speed of 10 km/h 40 m ahead, and
then start to perform lane change to avoid obstacles. After about
2 s, the ego vehicle avoids obstacles, and in about 6 s, the heading
angle gradually stabilizes near 0, but the yaw angle speed
stabilizes slowly. At this time, the longitudinal velocity vx of
the ego vehicle remains basically unchanged.

The tracking performance can be represented by the change
of lateral error (The distance between the vehicle and its
projection to the planned path) with time, as shown in the
following Figure 11.

TABLE 1 Vehicle parameters.

Parameters Units Value

mass kg 1570

The moment of inertia of the body around the z-axis kg ·m2 4192

Vehicle center of mass to front axle distance m 1.04

Vehicle center of mass to rear axle distance m 1.56

Vehicle front axle cornering stiffness Nm/rad −78329

Vehicle rear axle cornering stiffness Nm/rad −78329

FIGURE 11
Variation of lateral error with time.

FIGURE 12
(A) Vehicle speed (B) Obstacle avoidance trajectory.
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With the stability control

The stability control intervenes within 2–4 s after the vehicle avoids
the obstacle as shown in Figures 12, 13. At this time, the change of the
yaw rate is quickly suppressed. At the same time, it can be seen that the
heading angle stabilizes rapidly to 1° in 2.5 s. But there is a certain
heading angle error. The reason why 2–4 s is chosen is due to the
consideration of stability control on path tracking accuracy. Firstly,
before avoiding obstacles (that is, before 2 s, this time is calculated by
TTC), the stability control has a certain impact on obstacle avoidance,
and may even lead to accidents, which should be avoided as much as
possible. Secondly, if the stability control intervention time is too long or
the stability control intervenes when the yaw angle is large, the lateral
control algorithm cannot control the heading angle error to zero. This
will cause the planning control algorithm to be unable to track the path

stably according to the road centerline after the lane change. The change
of tyre braking force with time as shown in Figure 14.

Trajectory planning

On the premise of keeping other planning parameters
consistent, we changed Wpsmooth2 from 1000 to 20,000 for a
total of 20 tests (indicated by different colored trajectories). It can
be seen that our algorithm successfully avoided the obstacle car
ahead under the condition of considering the smooth trajectory
as shown in Figure 15, which proves the effectiveness of our
algorithm.

FIGURE 13
(A) Changes of yaw rate with time (B) Changes of heading angle with time.

FIGURE 14
Change of tyre braking force with time.

FIGURE 15
Trajectory planning.
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6 Conclusion

In this paper, the planning algorithm during steering and collision
avoidance is studied based on the information and data given by vehicle
environmental information perception and vehicle state parameter
estimation The coordinated control of vehicle stability and safety is
studied. The paper has carried out the following work: 1. Considering
the calculation efficiency and control requirements of the model, a
three-degree-of-freedom vehicle dynamics model and a linear tire
model are established. 2. The planning module is proposed by the
method of quadratic programming. This module will plan the driving
trajectory of the vehicle by comprehensively considering the constraints
and safety of vehicle execution. 3. Considering the vehicle trajectory
tracking performance and stability, LQR lateral control and adaptive
MPC control algorithms are proposed and the intervention time is
proposed. 4. According to the results output by theMPC algorithm, the
four-wheel braking force is distributed to realize the vehicle collision
avoidance control under the comprehensive consideration of safety and
stability. The results show that the planning algorithm in this paper can
give a safe and reliable collision-free motion trajectory, and the
proposed stability and safety coordination control algorithm can
track the collision avoidance trajectory with high precision and
stabilize the vehicle’s heading angle about 0.5s after avoiding obstacles.
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