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The concept of Industry 4.0 brings the change of industrymanufacturing patterns
that become more efficient and more flexible. In response to this tendency, an
efficient robot teaching approach without complex programming has become
a popular research direction. Therefore, we propose an interactive finger-touch
based robot teaching schema using amultimodal 3D image (color (RGB), thermal
(T) and point cloud (3D)) processing. Here, the resulting heat trace touching
the object surface will be analyzed on multimodal data, in order to precisely
identify the true hand/object contact points. These identified contact points are
used to calculate the robot path directly. To optimize the identification of the
contact points we propose a calculation scheme using a number of anchor
points which are first predicted by hand/object point cloud segmentation.
Subsequently a probability density function is defined to calculate the prior
probability distribution of true finger trace. The temperature in the neighborhood
of each anchor point is then dynamically analyzed to calculate the likelihood.
Experiments show that the trajectories estimated by our multimodal method
have significantly better accuracy and smoothness than only by analyzing point
cloud and static temperature distribution.

KEYWORDS

multimodal image processing, RGB-D-T-data, point cloud processing, finger trajectory
recognition, robot teaching, meshless finite difference solution

1 Introduction

Nowadays, robots are already capable of supporting humans for some precise or
dangerous tasks in a wide variety of fields, such as assembly robots, welding robots and
medical robots. In general, robots need some customization and system integration to satisfy
such specialized tasks, which requires users to have some expertise in robot operating. In this
respect, the most common basis task is trajectory teaching. In order to respond to evolving
industrialization levels, a modern dynamic production line requires an efficient approach
for robot trajectory generation. For this purpose, robot developers and manufacturers have
been trying to work on teach pendant. However, by using this device, the teaching of a
complex arbitrary trajectory containing an extremely high number of waypoints is very time-
consuming. If it needs to be more efficiently solved, a professional programmer is required.
Therefore, an easy-to-use and still effective trajectory teaching approach becomes a research
hotspot in recent years to lower the employment barrier for such skill based professions.

Regarding this application, there have been many studies in recent years. For example,
in the research (Braeuer-Burchardt et al. (2020)), a demonstrator system for selected quality
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checks of industrial work pieces with a human machine interaction
was proposed, in which the check position of a work piece
is determined by a finger pointer. In addition, the company
Wandelbots Teaching (Wandelbots (2022)) developed a robot
teaching system using a TracePen as an input device. The pen works
like a tracker for recording a sequence of waypoints (rotations and
translations under the robot base coordinate system) that can be
further refined manually by their software.

In this article, we will propose a vision-based trajectory teaching
method. In our approach, the core module is a finger trajectory
recognizer, which is realized by using a multimodal vision sensor
system. It consists1 of a color camera (RGB), a 3D sensor (D)
and a thermal camera (T) for multimodal point cloud (RGB-D-T)
recording. The touch of an object with a finger results in a slight
temperature change of the object surface. If the finger is moved on
the 3D-object along the robot’s imaginary motion path it leaves a
heat trace on the object surface resulting in a 3D-heat-trajectory,
which directly represents the robot motion trajectory.

To get an accurate 3D-trajectory one has to take into account
thatmostly finger trajectory recognizers are based on hand detection
or human skeleton detection, for example, (Halim et al. (2022);
Du et al. (2018)). Such approaches are usually inaccurate because
at the moment when the finger and the object are in touch, the
actual contact point will definitely be blocked by the finger at the
camera’s perspective. In our method, introducing multimodal point
cloud analysis, the finger movement process can be considered as
a heat transfer process caused by a moving Gaussian point heat
source. By analyzing the residual heat on the object surface, the
trajectory can be predicted more accurately. In recent years an
increasing number of multimodal sensor-based image processing
methods have been discussed and applied to scenarios with human
interaction. For example (Jeon et al. (2016)), introduced an outdoor
intelligent surveillance system with a color and a thermal camera,
which is capable of recognizing humans in both day and night.
In most approaches, temperature is analyzed as a static feature in
the same way as color. In fact, in comparison to color, even if the
heat source is fixed or removed, temperature still changes relative
to time and spatial variables. More attention should be paid to
these characteristics in order to extract more information from
multimodal point cloud to achieve more diverse human-machine
interactions. Therefore, according to the heat equation, a node in a
temperature field is in a heat dissipation state when it has a negative
divergence. The greater its absolute value, the higher the rate of heat
transfer. Thus in our method the node with a low divergence will be
considered as a candidate of contact point with a high probability.

In this regard, the temperature analysis in 2D thermal images
is limited. By using a 2D camera, an temperature field can only
be accurately captured when the surface of the object is a plane
and parallel to the sensor plane. Otherwise, the spatial independent
variables (x-, y- and z-coordinates in the world coordinate system)
used to calculate divergence will be non-uniformly observed by a
2D camera. This unevenness is related to the complexity of the
object surface and the placement posture of the object. It leads to
errors in the solution of gradient or divergence. By using 3D point
cloud analysis, this problem can be avoided. However, a point cloud
is a meshless and unordered point set. Common finite difference
methods such as the central difference formula cannot be used
directly to calculate the numerical solution of the partial differential.

Therefore, in this paper we propose a fast method to find the
approximated solution of the divergence for each node in ameshless
3D temperature field (a thermal point cloud).

In overall terms, our approach follows Bayesian theory. A
candidate region (prior probability) is firstly determined with
the help of hand/object semantic segmentation in multimodal
point cloud. Then a distribution of the divergence (likelihood) is
calculated in candidate regions. Finally, the by finger obscured
contact points (posterior probability) will be estimated. By using
these contact points, a realistic robot motion trajectory is generated
through interpolation. In the experimental section, the error of the
approximated divergence solution and the deviation of robotmotion
trajectory generation will be evaluated and discussed.

2 Related work

Currently, most industrial robot manufacturers provide a teach
pendant with a manual motion mode, with which the robot can be
moved manually to a set of positions they are marked as waypoints.
The robot can then be simply programmed to execute a trajectory
consisting of these waypoints in sequence. As mentioned above, it
will be particularly time consuming when complex and arbitrary
trajectories with a large number of waypoints are defined. In this
regard, teaching by human body language has become a popular
area of research. The previous works (Braeuer-Burchardt et al.
(2020)) and (Wandelbots (2022)) demonstrate the application of
modern human-machine interaction methods for straightforward
robot teaching. However, they have some limitations. (Braeuer-
Burchardt et al. (2020)) brings a contactless interaction, but the
exact check position cannot be obtained by only a finger pointer.
The method of (Wandelbots (2022)) can avoid this problem, but an
expensive TracePen is required to achieve the tracking. Other than
that, in the works of (Liu et al. (2022); Jen et al. (2008); Yap et al.
(2014); Manou et al. (2019); Pratticò and Lamberti (2021)), Virtual
Reality (VR) technology was used to improve the human-robot
interface without the requirement for complicated command or
programming. Such as in the studies (Su et al. (2018); Abbas et al.
(2012); Stadler et al. (2016); Pettersen et al. (2003)), Augmented
Reality (AR) systems were designed to allow users to govern the
movement of real robots in a 3D space via a virtual one generated
through AR technology. Whether in the application using VR or
AR, the recognition of finger trace always plays the role of a
bridge between realistic movements and virtual trajectories. The
most intuitive solution to solve this core task is hand skeleton
recognition based on color or depth image, such as (Halim et al.
(2022); Baek et al. (2018); Cheng et al. (2021); Zhang et al. (2020);
Osokin (2018)). However, the finger trace defined by these methods
is not exactly equivalent to the robot motion trajectory on the
object surface. Due to the occlusion by finger, the trajectory cannot
be captured in real time by cameras. Hence, we recommend
introducing multimodal sensors (RGB-D-T) to collect more diverse
information, in order to improve prediction results closer to true
trajectories.

Guanglong et al. (Du et al. (2018)) introduced a particle filter
and neural network based gesture estimator using a multimodal
sensor system containing a RGB-D camera and an inertial
measurement unit, in which multimodal information including
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FIGURE 1
Basic concept of our approach.

RGB-D image, velocity and acceleration of hand as well as speech
are fused. Then a neural network is used to encode such data to
predict the finger trace. In the research of Zhang et al. (Zhang et al.
(2021)), by using PointNet (Qi et al. (2017a)), PointNet++ (Qi et al.
(2017b)) and RandLANet (Hu et al. (2020)), multimodal image data
with color, thermal and point cloud was encoded and decoded
to perform a pixel-wise hand/object semantic segmentation for
application of a hand over robot. Their experimental results showed
a better segmentation performance of the hand-object interaction
region with the help of thermal information compared to RGB-D-
based segmentation, if the object has a similar color or temperature
as the hand especially. However, temperature is analyzed only as a
static feature, like color. In other words it should be considered as a
multispectral 3D image analysis.

3 System overview

Figure 1 shows the basic concept of our approach. At first (step
1) the finger touches the object and moves along an imaginary
robot trajectory to teach in. During this movement the multimodal

3D-Sensor consisting of a 3D-sensor, a RGB-camera and a thermal
camera (picture right) capturing a series of RGB-D-T data resulting
in a 3D-heat trace data set (step 2). With the help of these collected
information, the trajectory with low resolution is estimated (step 3)
and then used to interpolate a dense smooth 3D motion trajectory
for robots (step 4). By using the 3D-data of the object, the orientation
of each waypoint of the 3D-trajectory will be recalculated, which is
equal to the surface normal vector at its position, to ensure that the
robot can always move perpendicularly to the object surface (step
5). Finally, this high-resolution trajectory is used as the input for an
identical movement of the robot (step 6).

As mentioned above, the core component of our approach is a
finger recognizer. A finger trajectory recognition can be regarded
as a branch of the task of object (contact point) tracking. The
process of such tasks is often described as a hidden discrete-time
Markov chain and a number of solutions for this are theoretically
based on Bayesian theory. The concept of such solutions is divided
into three steps. Firstly, the prior probability is inferred from
the system model. Then the likelihood is estimated based on the
observation model. Finally, the posterior probability is calculated
dependently on the prior probability and the likelihood, which
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FIGURE 2
Method architecture.

will be used to produce the prediction for the target random
event. Our system is also developed along this lines, in which
a random event of whether a point in a candidate region is a
contact point will be predicted. As shown in the Figure 2, our
finger recognizer schema is divided into four modules. In module
1, see chapter 4, the multimodal sensor system and robot base
need to be calibrated in order to calculate intrinsic parameters and
extrinsic parameters of cameras and the robot. They will be utilized
to fuse multimodal 3D image data as well as to interconvert 3D
waypoints (orientation and position) between the camera and robot
coordinate systems. Then the hand and objects will be semantically
segmented in point cloud. In module 2, see chapter 5, by using the
segmentation results, a set of anchor finger-object contact points
on time series is estimated roughly, and a neighborhood searching
is performed for each anchor point to determine a local candidate
region. The prior probability Pprior is calculated for each point in
the candidate region. Furthermore, based on these local candidate
regions, the computational complexity of estimating the real contact
points is reduced significantly. Module 3 (see chapter 6) provides
thermodynamic analysis in each candidate region to obtain the
likelihood distribution L. It is worth mentioning here that we
introduce a divergence-based temperature field analysis, which has
a noticeable advantage over the analysis based only on temperature
distribution for trajectory estimation. Meanwhile it is verified in the
experimental chapter 8. Finally, the true contact points are predicted
by calculating posterior probability

Pposterior = w1Pprior +w2L, (1)

wherew1 andw2 are the weights for prior probability and likelihood.
In our experience, setting these weights needs to consider the heat
transfer coefficient of the object and the speed of finger movement.

Finally, the finger-object contact points will be defined as

ContactPoint = argmax(Pposterior) . (2)

In module 4, see chapter 7, a high-resolution trajectory will be
interpolated based on these contact points in order to achieve
smooth robot motion.

4 Multi-modal point cloud fusion and
segmentation (module 1)

4.1 Multimodal sensor system

As shown in Figure 1, our multi-modal 3D imaging system
consists of a high-resolution active stereo-vision 3D sensor based on
GOBO (Goes Before Optics) projection (Heist et al. (2018)), a color
camera (Genie Nano C1280 (Genie (2022))) and a thermal camera
(FLIR A35 (FLIR (2022))).

4.2 Multimodal image data fusion and hand
object segmentation

Inspired by (Zhang et al. (2021)), the multimodal sensor system
was calibrated using a copper-plastic chessboard as the calibration
target.Themultimodal image data was then fused using the intrinsic
and extrinsic parameters as well as further hand-object segmented
using RandLANet (Hu et al. (2020)). RandLANet is a lightweight
neural network with a multi-level architecture designed for large-
scale 3D point cloud semantic segmentation. In each level, a random
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FIGURE 3
(A): hand/object segmentation and the method for defining anchor points (Panchor) (B): the concept to define the candidate region (Ci) and a
visualization of the prior probability (Pprior), likelihood (L) and posterior probability (Pposterior).

downsampling is used to enable that the point density of the point
clouds is progressively decreased. By using a local spatial encoding
module (LocSE) in each neighborhood, XYZ-coordinates of all
points, Euclidean distances as well as XYZ-differences between the
centroid point and all neighboring points are explicitly encoded
using shared multi-layer perceptron. Additionally, in between two
adjacent levels, an attentive pooling is utilized to aggregate the
features. Then, multiple LocSE and attentive pooling units with
a skip connection are stacked as a dilated residual block, which
is repeatedly used in the RandLANet. A hierarchical propagation
strategywith distance-based interpolation and a cross level skip links
is adopted to upsample the point clouds to the original size.

The experimental results in (Zhang et al. (2021)) indicate that
based on an XYZ-RGB-T (XYZ: spatial coordinate, RGB: color,
T: thermal) point cloud, the RandLANet can learn the complex
aggregation and combination of multimodal features. In this way,
the information from each channel compensates for their respective
weaknesses. The segmentation of the XYZ-RGB-T point cloud has
better robustness than the XYZ-RGB and XYZ-T for some objects
that have similar color, surface texture, or temperature as the hand.
For example, the heat trace left on the object by the finger did not
worsen the segmentation results. This statement is an important
premise for the application of this article.

5 Calculating the candidate region
(module 2)

5.1 Anchor points estimation

By using the segmented hand and object point clouds (HPC and
OPC), a number of anchor points can be simply determined by the
mean of the nearest point pair between them. However, such an
anchor point is not optimal, because it will be identified as a point on
top of the fingertip rather than a point on the object surface (contact
area between finger and object). On the other hand, the 3D points
within these areas usually cannot be reconstructed by a 3D sensor
due to occlusion. Hence, in order to estimate an anchor point pianchor

that is closer to the true contact point at time ti, we use two different
distance thresholds d1 and d2 to segment two point clouds P1 and
P2 from the object point cloud OPCi. They consist of a number of
object points whose distance to their nearest hand points is less than
d1 and d2. Since both P1 and P2 are subsets ofOPCi, then a difference
set Pdiff = P2\ P1 can be calculated using set operator simply. Pdiff is
approximately an annular point cloudwhose centroidwill be defined
as the anchor point pianchor, as shown in Figure 3A. Details of the
algorithm will be given in Supplementary Appendix SA.

5.2 Candidate regions estimation

Obviously, at time ti, the candidate regionCi should be located in
the spherical neighborhoodNi of the anchor point p

i
anchor. As shown

in the Figure 3B, at the time ti−1 in Ni−1, there is an area that was
obscured by the finger.This area will be observed at the time ti inNi.
It will be defined as the candidate region Ci−1. For calculating Ci−1,
we need to determine the difference set of Ni−1 and Ni. However,
Ni−1 and Ni were captured at different times, thus this difference set
cannot be calculated by using set operators.We introduce a tolerance
rc. If a point in Ni has a nearest point in Ni−1 and their distance is
less than rc, this point will be considered that it has an approximate
overlapping point inNi−1.Then a point cloud consisting of a number
of points in Ni without overlapping points in Ni−1 will be defined as
the candidate region Ci−1 at time ti−1. In other words, the range of
Ci−1 is determined at time ti−1, while the information (point position
and temperature) is acquired at time ti. The details of this algorithm
will be explained in Supplementary Appendix SB.

5.3 Prior probability calculation

In each candidate region, a prior probability density function
related to the distribution centered on the corresponding anchor
point can be defined as

Pprior (x) = ∫G (x)C (x)dx, (3)
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where x denotes the position of randomvariables in a domain. In our
case that is the 3D coordinates of the object points in the candidate
region. G(x) denotes a Gaussian probability density function and
C(x) denotes a function to describe the relationship between the
distribution of the candidate points and the probability whether
they are true contact points. In which, a point has the probability
that is negatively correlated with its distance to the anchor point.
In other words, a point closer to the anchor point has a higher
probability, as shown in Figure 3B.

6 Calculating the optimized contact
point (module 3)

In this section we discuss how to solve the divergence of
each point in the candidate region. Based on the divergence, the
likelihood is further calculated to complete the Bayesian approach.
In this regard, the candidate region can be considered as a local
temperature field, in which the finger can be considered as a moving
Gaussian point heat source. The heat transfer state of the residual
heat trace on the object surface can be described by the heat equation
in a Cartesian coordinate system:

∂u
∂t
= α(∂

2u
∂x2
+ ∂

2u
∂y2
+ ∂

2u
∂z2
), (4)

where (x,y,z) and t denotes the spatial variables and time variable
of each point. In our case the object is assumed isotropic
and homogeneous, thus the thermal diffusivity of the medium
α will be constant. This equation indicates that the first-order
derivative of temperature U related to time variable ∂u

∂t
exhibits a

linear relationship to the second-order derivative related to spatial
variables ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
. Also the divergence of a 3D temperature

field can be solved by

Divergence = ∂
2U
∂x2
+ ∂

2U
∂y2
+ ∂

2U
∂z2
. (5)

We do not have to perform heat conduction simulation, but only
to find the divergence of each point in the temperature field. Then
the point with a lower divergence (faster cooling) has a greater
probability to be a finger-object contact point. Hence, the numerical
solution of these three second-order partial derivative terms ∂2u

∂x2
, ∂

2u
∂y2

and ∂2u
∂z2

at each point in the candidate region need to be calculated.
Unfortunately, for a non-grid ormeshless structure such as point

cloud, the common second-order central difference formula

∂2u
∂x2
≈
U(x0 +Δx,y0,z0) − 2U(x0,y0,z0) +U(x0 −Δx,y0,z0)

Δx2
(6)

is not available. Because in the point cloud, which cannot be ensured,
the temperature at both of the two points (x0 +Δx,y0,z0) and
(x0 −Δx,y0,z0) can be observed by the cameras at the same time.
To solve this problem, we propose a fast meshless finite difference
method, in which a temperature difference field needs to be firstly
calculated for each point in the candidate region. Then a system of
differential equations based on Taylor expansionwill be solved using
an elimination method for calculating the divergence.

6.1 Temperature difference along each axis

Given a pointP0 in the candidate region, a further neighborhood
search is performed for P0 to obtain its neighbor point set. Then
a vector set of temperature difference Δ⃗U between each neighbor
points and P0 is calculated. In which, Δ⃗Ui is a vector whose direction
is the same as P⃗0Pi and its norm equals the temperature difference
between the points Pi and P0. Then based on Δ⃗U, the components of
temperature difference along the X-axis, Y-axis andY-axis directions
ΔUx, ΔUy and ΔUz can be calculated using

ΔUk
i = ‖P⃗

x
i ‖
‖Δ⃗Ui‖
‖P⃗0Pi‖
; i = [1,Num] ; i ∈ ℕ; k ∈ {x,y,z} , (7)

where P⃗xi denotes the X-component of P⃗0Pi along the X-axis and
Num denotes the number of points in the neighborhood of P0.

6.2 Solving second-order derivative

It is well known that the Taylor series is fundamental for
solving partial differential equations. In our case, if Δx ≠ 0,
Δy = 0 and Δz = 0, the second-order Taylor expansion of U(p)
for a 3D point p0 (x0,y0,z0) and one of its neighbor point
pi (x0 +Δx,y0 +Δy,z0 +Δz) is

U(x0 +Δx,y0,z0) = U(x0,y0,z0) +ΔxU
′
x +

Δx2

2
U′′xx +E2, (8)

where E2 denotes a second-order error term. In our case, it is
considered to be approximately equal to zero.We use an elimination
method to solve this system of equations. Thus a coefficient vector
A will be introduced and each Taylor expansion for p0 and each
neighbor point pi is multiplied by the coefficient ai ∈ A and then
summed to obtain

A ⋅ (U0 +ΔUx)T ≈ A ⋅UT
0 +C1U

′
x +C2U

′′
xx

C1 = A ⋅ΔXT

C2 =
1
2
A ⋅ (ΔX◦ΔX)T,

(9)

where ΔUx denotes a vector consisting the x-components of
temperature difference between p0 and pi that was obtained in the
previous section. ΔX is a vector consisting of the X-components of
distances between p0 to pi. U0 denotes a vector consisting of the
temperature at the point P0, in which all the elements are equal. We
need to find the coefficient vectorA that meets the conditionsC1 = 0
andC2 ≠ 0.Then the second-order partial derivative ofU at the point
p0 with respect to x can be solved using

∂2U
∂x2
≈ 2A ⋅ΔUxT

A ⋅ (ΔX◦ΔX)T
. (10)

In Supplementary Appendix SC, an algorithm for solving this
system of differential equations will be described in detail. Similarly,
∂2U
∂y2

and ∂2U
∂z2

can be solved for and the divergence can be calculated
using Eq. 5.

6.3 Likelihood calculation

A likelihood function related to the divergence field is defined as

L (x) = ∫L (D (x))dx, (11)
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FIGURE 4
Simulated test data for the experiment to evaluate the accuracy of divergence solution. (A): simulated thermal point cloud with a trajectory including
three Gaussian point heat sources (B): the ground truth of divergence solved by the second-order central difference formula.

TABLE 1 The parameters for three Gaussian point heat sources.

Heat source 1 (bottom left) Heat source 2 (middle) Heat source 3 (top right)

Amplitude 40°C 30°C 20°C

Standard deviation 0.01 m 0.005 m 0.001 m

where x denotes the spatial variables (point position) in the
candidate region. The function D(x) describes the divergence
distribution, i.e., Eq. 5. L(D(x)) refers to the likelihood distribution
negatively relative to the divergence distribution, as shown in
Figure 3B. Finally, by using the Eqs 1, 2, the real finger-object
contact points will be calculated.

7 Robot motion trajectory calculation
(module 4)

Furthermore, the normal vector of each contact point will
be calculated using the 3D-data to allow that the robot moves
always perpendicular to the object surface. However, it is obvious
that the resolution of the trajectory obtained by this method is
limited by the width of the finger. Hence, in response to this,
we have to perform linear interpolation twice, the first time
in 3D spatial space to achieve a smooth path (positions and
orientations) for the end effector and the second time in robot
joints space ensure limited angular velocity for the robot joint
motion.

8 Experiments

8.1 Experiment for divergence solution

In this section we will present an experiment to evaluate the
accuracy of the divergence solution. In order to avoid the influence
of sensor-specific noise on evaluation results, we built a uniform
regular point cloud that can be gridded, as shown in Figure 4A.
This simulated data was a board with a spatial resolution of 0.5 mm

as well as its length and width are 0.1 m. A temperature field was
initialized with a heat trace caused by three different Gaussian point
heat sources. The parameters of these heat sources are shown in
Table 1.

Heat source 3 has a lower amplitude and standard deviation
compared to heat sources 1 and 2. This indicates that heat source
3 is a new heat source, but it has a lower temperature than others.
In contrast, heat source 1 has the highest temperature but it is
the oldest heat source (Gaussian function with a lowest standard
deviation). Hence, these three heat sources (hs1, hs2 and hs3) at
time t1, t2 and t3 have temperature that consistent with 1 > 2 > 3,
and their divergence were consistent with 1 < 2 < 3, as shown in the
Figure 4.The experiment was set up in this way because the residual
temperature of the finger on the object depends on the contact area
between the finger and the object as well as the duration of contact.
In other words, a new contact point is not certainly hotter than an
old one.

By using the finite difference method (Eq. 6), the ideal
divergence was calculated as ground truth from the uniform grid
data, as shown in Figure 4B. The point cloud was then randomly
downsampled into meshless data. Finally, our method was utilized
to solve partial derivative solution in the sampled meshfree point
cloud.

In order to solve the divergence, a further neighborhood search
should be performed for each point in the candidate region. In
this experiment, two common neighborhood search methods (k-
nearest neighbor (KNN) and radius nearest neighbor (RNN)) were
evaluated. Figure 5 shows the results (mean divergence deviation
for each point in sampled point clouds) by using RNN with various
search radius r = (0.005 m,0.03 m) and using KNN with various
number of neighbors k = (100,500).Meanwhile, the uniform regular
point cloud was downsampled with various downsampling rate
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FIGURE 5
The results of the experiments to evaluate the accuracy of divergence solution. (A): mean deviation of divergence using RNN neighbor search with
various search radius r = [0.005m,0.03m] and downsampling rate r = [0.1,0.99] (B): mean deviation of divergence using KNN neighbor search with
various number of neighbors k = [100,500] and downsampling rate r = [0.1,0.99] (C): comparison between the best results using RNN (r = 0.015m) and
KNN (k = 500).

FIGURE 6
Visualization of a calculated divergence distribution (left) and the corresponding error distribution (right) using our method, where brighter points in the
error distribution indicate greater errors.

β = (0.1,0.99). This downsampling rate is defined as

β =
Nsampled

Noriginal
, (12)

where Nsampled and Noriginal denote the number of points in the
sampled and original point cloud.

The results of RNN show that the radius of 0.015 m has
the lowest mean error. It is also robust towards a variety of
downsampling rates. The radius of 0.005 m has the worst results
and there is a clear tendency for the results to be worse as the
downsampling rate β is decreased. This is because the random
downsampling not only leads to a reduction of the spatial resolution
of point cloud, it also causes some randomdefects in the point cloud.
These defects result in a non-uniform distribution of samples in
the eight quadrants of neighborhoods for solving the divergence
at a point. The non-uniformity significantly affects the accuracy of
the solution for divergence. As shown in Figure 6, the left point
cloud shows the predicted divergence and the absolute deviation
for each point is presented by the right cloud, with the brighter

points having a greater error. Obviously, the error is larger in areas
where the neighbor samples are unevenly distributed and where
the absolute value of the divergence is great (there is a strong
positive or negative heat transfer). A straightforward solution to this
problem is to dilute the non-uniformity with a large search radius.
However, unfortunately a large search radius also dilutes the fine-
grained information. Therefore, with a radius of 0.03 m, the error
is consistently large, although there is robustness towards different
downsampling rates, as shown in Figure 5A. This is also reflected in
the results of KNN (as shown in Figure 5B). With a fixed number of
neighbors, the perceptual field of the neighborhoods grow up as the
sampling rate increases, leading to more errors. Figure 5C shows a
comparison of the best results by RNN and KNN respectively. It is
clear that RNNhas better robustness thanKNN,which is in linewith
our expectations. In the point clouds captured by a real 3D sensor,
some defects will inevitably appear because there are always some
object points that cannot be 3D reconstructed. The neighborhood
determined by KNN cannot even ensure that the target point is
located in the geometric center of the neighborhood. Therefore, in
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FIGURE 7
These figures show the results of the experiment to evaluate the accuracy of divergence solution. (A) Shows the ground truth of the divergence
distribution; then, the results (top) and errors (bottom) using RNN with search radius (top to bottom: 0.008 m (B), 0.01 m (D) and 0.015 m (F)) are
presented; finally, the results using KNN with number of neighbors (top to bottom: 200 (C), 300 (E) and 500 (G)) are presented. Each subfigure also
shows the results with various same downsampling rates (left to right: 0.1, 0.4, 0.7, 0.9).

our case it is an optimal choice to adopt a suitable search radius,
provided the spatial resolution of the 3D sensor is already known.

Figure 7 shows some visualization of this experiment.
Figure 7A presents the ground truth of the divergence field. Then,
Figures 7B, D, F exhibit the results by RNN with search radius
of 0.008 m, 0.01 m and 0.015 m respectively, where the top-left
graph shows the perceptual field of the search radius. The following
presents in turn the results (top) and errors (bottom) for sampled
point clouds with various downsampling rates of 0.1,0.4,0.7 and 0.9.
Figures 7C, E, G show the results and errors ofKNNwith number of
neighbors of 200, 300 and 500 towards the identical downsampling
rates respectively. In the error plots, brighter points denote higher
errors.

The results of RNN show that there is the lowest mean
error at the search radius 0.015 m. However, compared to the
result of the radius 0.01 m, it has a noticeably larger error in
the nearby region of heat source 3 hs3. It confirms what was
aforementioned, that too large a search radius will dilute the fine-
grained information and lead to deviation. In fact, we always
focus more on these high frequency areas in practice, because
in our case the points with the lowest divergence require more
attention. Therefore, the principle for setting the search radius
should be carried out by choosing the smallest radius while ensuring
a uniform distribution of samples in the neighborhood. Compared
to RNN, KNNperformsweakly in bothmean error and fine-grained
error.
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FIGURE 8
Experiment environment and our demonstrator system.

FIGURE 9
(A) Shows the straight line pen mark on the object surface (left), the ground truth of finger movement (top left) and the correspondent thermal point
cloud (B) shows the evaluation criteria (Mean deviation of the trajectory and step length between each two adjacent contact points of the trajectory) of
the experiment to evaluate the estimation for a straight line finger trajectory (C) shows the estimated contact points of a trajectory using method 1
(left), method 2 (middle) and method 3 (right), which are presented with color point cloud (top) and thermal point cloud (bottom). (Method 1 (left):
anchor points were defined directly as contact points. This means that this method is not based on temperature analysis. Method 2 (middle): contact
points were estimated using likelihoods that were positively correlated with temperature in the neighborhoods of the anchor points. In other words, in
this method the temperature is analyzed as a static feature similar to color. In method 3 (right), likelihoods negatively dependent on the divergence
were used for prediction (our method)).

8.2 Experiments for linear finger trace
estimation

In the subsequent experiments, the performance of our finger
recognition method will be validated in a real environment. As
shown in Figure 8, the measuring object is placed roughly 1 m in
front of the sensors and the robot is situated between them. A 15 cm
long straight line mark was drawn on the object surface with a pen.
In themultimodal point cloud, the points belonging to this line were
found based on color and further in fitting a 3D straight line as
ground truth of a finger trajectory, as shown in Figure 9A. Then the
finger drew a heat trace along this line, which was repeated 30 times.
Finally, 15 contact points were estimated on each heat trace by using
three different methods, as shown in Figure 9C. Method 1 (left):
anchor points were defined directly as contact points. This means
that this method is not based on temperature analysis. Method 2

(middle): contact points were estimated using likelihoods that were
positively correlated with temperature in the neighborhoods of the
anchor points. In other words, in this method the temperature is
analyzed as a static feature similar to color. In method 3 (right),
likelihoods negatively dependent on the divergence were used for
prediction (our method).

The first row in Table 2 shows the mean deviation (as shown
in Figure 9B) of the results by using these three methods on the
30 heat traces relative to ground truth. It is obvious that method
2 and method 3 have significantly lower deviation than method
1. It confirms that the application of multimodal data processing
provides significant enhancement for this task. In Figure 9C, by
method 2, it is surprising that the number of contact points which
can be observed is less than 15, due to the overlap of multiple
points. In fact, when this heat trace was created, the finger pressure
on the object surface was not homogeneous, leading to excessive
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TABLE 2 Mean deviation and step length standard deviation of the contact point estimation using threemethods.

Method 1 (mm) Method 2 (mm) Method 3 (mm)

Mean deviation 9.046 2.842 2.185

Standard deviation of step length 3.989 7.943 3.506

FIGURE 10
Robot motion trajectory predictions for two arbitrary finger movements are shown in figures (A,B). In each subfigure, the first column shows a color
object point cloud (top) and a residual heat trace presented within a thermal point cloud (bottom); the following columns show the predicted contact
points (top) and interpolated 3D trajectories (bottom) obtained using various three methods. (left to right: Method 1: anchor points were defined
directly as contact points. This means that this method is not based on temperature analysis. Method 2: contact points were estimated using
likelihoods that were positively correlated with temperature in the neighborhoods of the anchor points. In other words, in this method the temperature
is analyzed as a static feature similar to color. In method 3, likelihoods negatively dependent on the divergence were used for prediction (our method)).

temperatures in some areas than others. Around these areas,
the temperature-related likelihood (method 2) provides incorrect
information, guiding the contact points to a deviated position
(hottest position). In this respect, we further calculated the standard
deviation of the step length between each two adjacent contact
points of a trajectory (as shown in Figure 9B) using

std = √ 1
N

N

∑
i=1
|si − s|2, (13)

where s denotes the mean step length of a trajectory and N denotes
the contact point number of a trajectory. The results are shown in
the second row of Table 2. It exhibits that the contact points in

trajectories obtained by method 2 always have non-uniform step
length. In the case where the finger trajectory is no longer a straight
line but an arbitrary curve, it results in the robot trajectory being
interpolated not smoothly and imprecisely. In the next experiment,
this hypothesis will be confirmed.

8.3 Experiments for arbitrary finger trace
estimation

As shown in Figure 10, in this experiment two different
arbitrary finger movements and the predicted robot motion
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trajectories are presented. In each subfigure, the image on the top
left shows the target object, in the bottom left image the heat traces
left on the object surface are displayed by a thermal point cloud.
The second column of plots shows the predicted contact points
by method 1 (top) and the robot motion trajectory obtained by
interpolation based on these contact points (bottom). The third
and last columns show respectively the results using method 2 and
method 3.

It can be observed that the prediction of the trajectory calculated
by method 1 are not accurate or smooth. Temperature-based
(method 2) contact point prediction has improved in terms of
accuracy (all of the contact points land within the hot areas).
However, as mentioned previously, since the residual temperature
depends on the touch area and touch duration between finger and
object, the temperature of a new contact point is not definitely higher
than an old one. Therefore, the temperature-based contact points
will be clustered with multiple overlaps in high temperature regions,
resulting in distorted and non-smooth interpolated trajectories.
In contrast, the trajectory obtained by method 3 has significant
advantages in terms of precision and smoothness.

9 Discussion and conclusion

This work proposed a multimodal vision-based robot
teaching approach. By using RandLANet, Hand/object semantic
segmentation is performed on multimodal 3D image data
containing temperature, color and geometric features. Then a
dynamic analysis for meshless 3D temperature field is achieved
by our elimination method. Furthermore, the hand/object
contact point is precisely estimated based on Bayesian theory.
The experimental results show that based on our method, the
multimodal information is sufficiently extracted, and the resulting
robot motion trajectory has good accuracy (mean deviation:
2.185 mm) and smoothness.

We consider that for physical quantities such as temperature,
for which the derivative related to time and spatial variables
has a constant relationship, we should explore more deeply the
useful information hidden behind them, rather than handling
them as static features in the same way as color. This is a
remarkable difference between multi-modal image processing and
multi-channel or multi-spectral image processing.

In our method, semantic segmentation is achieved using a deep
neural network technique and analysis of the temperature field is
realized based on a traditional method (heat transfer equation).
We believe that it is worth exploring to choose the occasion for
neural network technology rationally when it is so widely applied
nowadays. For example, when a validated physical model is already
existent for temperature field analysis, traditional methods should
be chosen.This will improve the interpretability of the entire system
and reduce the strong dependence on datasets in similar deep neural
networks.

The experiments proved that our schema works. It also raises
a common problem for point cloud processing that the adjust of

some parameters such as the search radius for neighborhood, is still
based on experience. Also, the search radius in the RandLANet is
actually a hyper-parameter that needs to be adjusted artificially. In
the future, if an adaptively adjustable parameter mechanism can be
devised, the technical barrier for robot teaching will be lowered even
further.

Moreover, this article represents only the first step of our Long-
Term plan. Our future goal is to develop a self-heating pen that is
much cheaper thanWandelbot’s TracePen, yet provides significantly
higher accuracy than the finger-based method described in
this article. Currently, a significant cause of trajectory errors
(mean deviation: 2.185 mm) is due to the width of the finger,
which is typically about 1 cm. A self-heating pen with a very
fine nib can significantly improve accuracy. Additionally, a pen
with adjustable temperature can help the system adapt to the
effects of varying ambient temperatures. We are planning to
increase the accuracy of this system to meet the low accuracy
requirements of some industrial manufacturing scenarios. In such
cases, implementing non-contact methods may be difficult to
achieve.
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