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Introduction: Duchenne muscular dystrophy (DMD) is a genetic disorder that
induces progressive muscular degeneration. Currently, the increase in DMD
individuals’ life expectancy is not being matched by an increase in quality of life.
The functioning of the hand andwrist is central for performing daily activities and for
providing a higher degree of independence. Active exoskeletons can assist this
functioning but require the accurate decoding of the users’motor intention. These
methods have, however, never been systematically analyzed in the context of DMD.

Methods: This case study evaluated direct control (DC) and pattern recognition
(PR), combined with an admittance model. This enabled customization of
myoelectric controllers to one DMD individual and to a control population of
ten healthy participants during a target-reaching task in 1- and 2- degrees of
freedom (DOF). We quantified real-time myocontrol performance using target
reaching times and compared the differences between the healthy individuals
and the DMD individual.

Results and Discussion: Our findings suggest that despite the muscle tissue
degeneration, the myocontrol performance of the DMD individual was
comparable to that of the healthy individuals in both DOFs and with both
control approaches. It was also evident that PR control performed better for
the 2-DOF tasks for both DMD and healthy participants, while DC performed
better for the 1-DOF tasks. The insights gained from this study can lead to further
developments for the intuitive multi-DOF myoelectric control of active hand
exoskeletons for individuals with DMD.
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1 Introduction

Duchennemuscular dystrophy (DMD) is the most common form of muscular dystrophy
in male children, affecting 1 in 4,000 individuals worldwide (Opstal et al., 2014). DMD is
caused by a gene mutation that compromises the production of dystrophin protein, the
absence of which causes progressive weakness in the skeletal, respiratory and cardiac
muscles. This leads to severe physical disability and shortened life expectancy (Nowak
and Davies, 2004). Boys with DMD become increasingly dependent on external aids in their
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daily activities due to the progressive paresis and the loss of
functional ability (Haley et al., 2010). However, over the last two
decades, life expectancy has improved significantly due to
improvements in healthcare, with the current estimate being
around 40 years (Bushby et al., 2010). This has led to a
significant increase in the number of DMD adults living with
severe physical impairments who have a strong dependency on
care (Rahbek et al., 2005).

Functional interaction with the world heavily relies on hand
manipulation, a central element for every individual in performing
the activities of daily living (ADL) (Lue et al., 2016). However, the
dynamic daily support of hand functioning in individuals with
DMD remains a challenge (Wagner et al., 2007).

Here, wearable robotic devices, such as hand exoskeletons, can
provide a solution (8). A recent study showed that the overnight use of
passive hand orthoses helps preserve the passive range of motion in
terms of wrist extension and thumb abduction (Weichbrodt et al.,
2018). The usage of active hand exoskeletons could further assist
DMD individuals in terms of tackling a greater range of motor tasks
(Bartels et al., 2011) as this would enable dynamic movements with
the active participation of the user (Lobo-Prat et al., 2017a).

For the intuitive and robust control of active hand exoskeletons,
accurate decoding of the user’s intention is the primary challenge
(Lenzi et al., 2012). A clinically viable way to enable robust control
involves the use of surface electromyography (sEMG) (Farina and
Sartori, 2016; Geethanjali, 2016; Negro et al., 2016; Negro and Orizio,
2017). Various sEMG-based control methods have been developed to
decode the handmotor intention of the user, with direct control (DC)
(Rahman et al., 2001; Lenzi et al., 2012) and pattern recognition (PR)-
based control (Parker et al., 2006) being the most common. While
regression (Muceli et al., 2012) and model-based approaches (Sartori
et al., 2016; Durandau et al., 2018) are being developed, they are not
yet broadly considered to be clinical standards. DC is broadly used
with upper extremity prostheses (Parker and Scott, 1986; Williams,
1990), while common PR classification methods include linear
discriminant analysis (LDA), support vector machines (SVM),
fuzzy approaches, regression and multi-layer perceptron (MLP)
(Dellacasa Bellingegni et al., 2017).

Importantly, there is a limited amount of systematic analyses on
the feasibility of forearm sEMG as a source of control signals for
active hand exoskeletons in individuals with DMD (Nizamis et al.,
2020). However, two studies involving participants suffering from
other forms of muscular dystrophy (Vogel et al., 2013; Polygerinos
et al., 2015) showed promising results in terms of the functional
decoding of motor intention from the hand/wrist. Meanwhile, the
performance of sEMG control was recently compared to force
control with an active planar support for the shoulder and elbow
in DMD individuals (Lobo-Prat et al., 2017a). Here, it was shown
that both methods are able to decode intended arm movements.
However, the possibility of decoding wrist-handmovements was not
explored. Our previous research, showed promising results when
trying to characterize offline the neuromotor profile of the forearm
of DMD individuals using PCA analysis in combination with high-
density EMG (Nizamis et al., 2020), as well as for the real time
control of a robotic hand exoskeleton using DC control over
1 degree of freedom (DOF) (Bos et al., 2019).

In this paper, we make the first attempt to evaluate the real-time
sEMG decoding of wrist-hand motor intention of one DMD

individual for PR and DC control for 1-, and 2- DOF
movements. We compare sequential DC and PR as potential
sEMG control methods and provide an analysis of their
differences, during a target-reaching task in 1- and 2-DOF. For
this study, our PR method incorporates an MLP, while both our
approaches combine myocontrol with a first-order admittance
model (Lobo-Prat et al., 2017a), which allows for the
manipulation of the interface virtual dynamics and a subsequent
further tailoring of the control across all the participants. This is
beneficial, especially in terms of the participant with DMD, who is
expected to have different assistance requirements than the healthy
participants. Real-time myocontrol, admittance modelling and out-
of-the-lab use are central requirements for the function-related use
of assistive technology in DMD sufferers’ everyday lives.

2 Materials and methods

2.1 Participants

The experiment was carried out with ten healthy adults (seven
males and three females) aged between 20 and 33 who have no hand-
related impairment, and one male adult with DMD of age 25 who is
unable to use his hands in terms of simple tasks such as, for example,
holding a pen (Brooke score of 6 out of 6 (Jung et al., 2012)). The
DMD individual consistently experiences early onset fatigue and
extensive hand/wrist related contractures. The Medical Ethics
Committee of Twente approved the study design, the experimental
protocol and the procedures, while all the participants were fully
informed about the study through a letter and subsequently provided
written informed consent (Protocol number: NL59061.044.16). Each
participant took part in one session, where they performed the
proposed target-reaching task with both myocontrol methods. The
healthy participants serve as a baseline of the relative feasibility of the
proposed methods for the individual with DMD.

2.2 Experimental setup and signal
acquisition

The experimental setup is shown in Figure 1, left. During the
experiment, each healthy participant was seated in a chair in front of a
computer screen, with their forearm placed on a soft foam-padded
arm support on the table, in a neutral position. Meanwhile, the DMD
participant was similarly positioned, while his arm rested on the arm
support of his wheelchair, in a supinated position due to contractures
not allowing the neutral position (Figure 1, left). Six dry, active bipolar
sEMG electrodes (Trigno Lab, Delsys, United States) were placed
around the dominant forearm of each of the participants.

Firstly, one electrode was placed on the muscle belly of the flexor
carpi ulnaris (FCU), and one on the muscle belly of the extensor
carpi ulnaris (ECU). Due to the difficulties of people with DMD to
independently activate muscle groups (found in our previous work
(Nizamis et al., 2020) and also via pilot tests with the participant of
this study), we decided to implement a mode switch between DOFs
when it comes to DC control, inspired by Wurth et al. (Wurth and
Hargrove, 2014). The co-contraction of the FCU and the ECU was
used in order to switch between DOF during the 2-DOF DC for the
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healthy participants. Meanwhile, the other four electrodes were
placed in between, equidistantly, while for the DMD participant,
an extra electrode was added to his gastrocnemius muscle. This was
used as a trigger to switch between DOFs during 2-DOF DC (blue
line in Figure 2), since he could not co-contract his forearm muscles
in a controlled fashion and without experiencing severe fatigue.
Prior to the electrode placement, the skin was cleaned with alcohol
to ensure optimal electrode-skin impedance, while the sEMG signals
were obtained through the use of a real-time computer (xPC Target
5.1, MathWorks Inc., United States). The analogue-to-digital
conversion was performed using a National Instruments card
(PCI-6229, National Instruments Corp., United States) at a
sampling frequency of 1 kHz and with a 16-bit resolution. A
National Instruments USB-data-acquisition device (6259,
National Instruments Corp., United States) was used to record
the offline data to train the MLP. The controllers were running
on a real-time computer and were sending position commands
through UDP/IP communication to a Windows PC in order to
control the position of the cursor in the screen.

2.3 Experimental protocol

A screen-based target-reaching task was employed in this study
to evaluate the performance of the two myocontrol methods in 1-,
and 2-DOF. The experiment consisted of one session with two parts,
one for each of the different myocontrol methods compared. Both
DC and PR were coupled with an admittance model (see section
2.4). At the beginning of each part, the maximum voluntary
contraction (MVC) of each participant was recorded during
isometric contractions. MVC was acquired as the mean envelope
signal over a period of 3 s of contraction. Afterwards, participants
were instructed to relax their muscles, and the researcher acquired
the average of the processed sEMG envelope signal during the last 3 s
of rest. This was used later to calculate voluntary sEMG (see Eq. 1).
For each type of controller, tasks were performed both in1-DOF and
2-DOF (Figure 1, right). Both the 1-DOF tasks and the 2-DOF tasks
included four target locations. For targets 1-4, the participants had to

move only in 1-DOF for every trial, while for targets 5-8 they had to
sequentially move in 2-DOF (Figure 1, right). Between tasks, the
participants were provided with rest periods of five to 10 min,
depending on the reported experienced muscle fatigue. Each task
consisted of eight targets with ten trials per target. Meanwhile, each
target appeared ten times and the order of appearance is shown in
Figure 1, right.

The order of the evaluation of the myocontrol methods was
randomised across the participants in order to avoid order effects in
the results. Each trial began with the appearance of a target on the
screen, where the participants were then instructed to move the cursor
as fast as possible from its initial to the target position and keep it there
for 2 s. The cursor returned to the initial position upon trial completion
and the next trial would then start in 2 s. The participants first
familiarised themselves with each myocontrol method before starting
each part. For every target, the first two trials were discarded and were
not included in the analysis to account for learning.

For the DMD individual, the experiment was conducted including
only targets 1, 2, 6, 8 (2 for 1-DOF and 2 for 2-DOF, Figure 1, right).
This was dictated by the need to comply with ethically viable standards
in terms of avoiding the onset of extensive contractures that would
result in pain. The reduced subset of targets was chosen in order to
capture the maximum variability of movements (1-DOF targets 1 and
2 required opposite movements, as did 2-DOF targets 6 and 8).

2.4 Myoelectric control

Before performing a movement, the participants were presented
with a target appearing on the screen. Then they generated a neural
commandwithin their nervous system, which resulted in the subsequent
activation of their forearm muscles (Esen) that was measured via dry
surface bipolar sEMG electrodes. Raw sEMG signals were digitally
filtered with a second-order Butterworth high-pass filter with a 20 Hz
cut-off frequency to reduce any movement artefacts.

The envelopes were calculated through full-wave rectification of
the signal and the subsequent application of a fourth-order
Butterworth low-pass filter with a 2 Hz cut-off frequency (Lenzi

FIGURE 1
On the left side, the participant with Duchenne muscular dystrophy controlling a virtual cursor in 1 and 2 degrees-of-freedom, while resting his arm
on his wheelchair. The wireless EMG bipolar electrodes can be seen around his forearm. On the right side, the locations of all possible targets (red) shown
by their target number, and the cursor (yellow). Targets 1-4 are part of the 1-DOF trials and targets 5-8 of the 2-DOF. Each trial accepted as successful
when participant kept the cursor inside the target for 2 s. The trials with a green number (1,2,6, and 8) are those performed by the individual
with DMD.
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et al., 2012). The envelopes were normalised to the MVC.
Normalised-filtered sEMG signals were then used to create the
control signal (Uvolx,y) for both the pattern recognition (PR)
method and the direct control (DC) method, as shown in Figure 2.

2.4.1 DC method
Both DOF on the x-axis and the y-axis were controlled using

the sEMG from an antagonistic muscle pair (see Table 1). Here,
two out of the six electrodes that were placed on the forearm were
used. The one on the muscle belly of the FCU, and the one on the
muscle belly of the ECU. The envelopes of the sEMG signals
(Eenvdc) were computed and the average of the processed sEMG
envelope signal during rest (Erest) was subtracted from them to

acquire the voluntary sEMG signals (Evoldc) and divided by the
MVC to acquire the voluntary control signals ((Ue,f)) for flexion
or extension, that were finally subtracted from each other to
acquire the final direction of the control signal (Uvoldc),
according to the following equations:

Evoldce,f � Eenvdce,f − Ereste,f (1)

and

Ue,f � Evoldce,f

Emvcdce,f
(2)

Uvoldc � Ue − Uf (3)

FIGURE 2
Diagram of implemented control methods, adapted from Lobo-Prat et al. (Lobo-Prat et al., 2017a). Bold font style symbols indicate vectors and
regular font style symbols indicate scalars. The upper section represents the physiological system (participant), while the lower section represents the
experimental system. To perform a movement participant first see the target on the screen (Ptarx,y). The target is generated by a python script running in
the host computer. This generates a neural command (Cnrl) with their central nervous system, which results in muscle activation at forearmmuscles
where sEMG signals (Esen) are measured. Intention of the user is decoded from these sEMG signals. In direct control the sEMG signals (Esendc) are
measured from agonist/antagonist muscle pair from forearm (Flexor Carpi Ulnaris/Extensor Carpi Ulnaris) and the resting sEMG (Eres) is subtracted to
acquire the voluntary sEMG (Evoldc). The signal is normalized to the maximum voluntary contraction (MVC) and control signals are generated from each
muscle (Ue,Uf). A voluntary control signal (Uvoldc) is obtained by subtracting the control signal of the flexor muscle from that of the extensor muscle
(reverse for left handed participants). A co-contraction switch, was used to alternate DOF. In case of the DMD participant, an electrode in the
gastrocnemius was used to switch (blue line). In pattern recognition control sEMG signals (Esenpr) are measured from six electrodes placed on forearm
(hexagonal grid). Time domain features (FE) were extracted frommeasured sEMG signals and these features were then used by ANN classifier to identify
themovement class (Acls). This class is then used to select the final control signal (Uvolx,ypr). This control signal (Uvolpr) is the normalizedmean envelope of
the six electrodes. In both control methods the estimated voluntary forces (Festx,y) are used as input to a first order admittance model (Hadm) that
resembles the dynamics of amass-damper system. The resulting velocity of the cursor ( _Pcurx,y) is send to an integrator (Pcurx,y) and then to thewindows PC
to control the position of the cursor on the screen. This motion was sensed by the participants proprioception and by visual feedback and was used to
generate new neural commands to reach new target positions (Ptarx,y).
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Finally, mode switching between different DOFs was achieved
through the co-contraction of the FCU and the ECU (the threshold
of co-contraction was adjusted to a comfortable level for each subject
during the familiarization time). For the participant with Duchenne
muscular dystrophy (DMD), an extra electrode was added to his
gastrocnemius muscle. This was used as a trigger to switch between
DOFs (blue line Figure 2), since he could not co-contract his forearm
muscles in a controlled fashion and without experiencing fatigue. The
use of the switch determined the final voluntary normalised control
signal (Uvolx,ydc) that served as input to the admittance model.

2.4.2 PR method
A pattern recognition artificial neural network (ANN) myocontrol

method was implemented using MATLAB’s Neural Network Toolbox
(TheMathWorks Inc., Natick,MA) for the followingmotion classes: hand
open and close; wrist flexion and extension; and no motion. Each motion
class corresponded to a different DOF movement of the cursor (see
Table 1). The method chosen in this study was a multilayer perceptron
method–which is one of the most popular PR classification methods
(Ortiz-Catalan et al., 2013) since it yields high classification accuracy
compared to other commonly used PR methods (Dellacasa Bellingegni
et al., 2017) – with one hidden layer consisting of ten neurons.

For the training of the supervised classification algorithm, sEMG
signals were collected prior to the PR session during five repetitions
of 2-s comfortable contractions for each motion class. The classifier
was trained with the use of five commonly used time-domain
features: root mean square, mean absolute value, number of zero
crossings, slope sign changes and waveform length (Hudgins et al.,
1993). The features were extracted using a window of 250 ms (which
is within an acceptable range for real-time myoelectric applications)
(Smith et al., 2011) with an overlap of 125 ms. Similar to the DC
methods signal processing the envelopes of all six electrodes were
computed (Eenvpr) and the resting sEMG (Eres) was subtracted to
calculate the voluntary sEMG (Evolpr). The voluntary sEMG
envelopes of all six electrodes were first averaged (Evolmpr) (Eq.
4), and then normalised to the mean of the envelopes of the six
electrodes during the MVC (Eq. 5) to create a control signal
proportional to the overall muscle activity:

Evolmpr � ∑
6
1Evoldc

6
(4)

Uvolpr � Evolmpr

Emvcmpr
(5)

The input to the admittance model (Uvolx,ypr) was a vector with
five elements (motion classes). One element was equal to the Uvolpr

and the remainder equal to zero (depending on which motion class
was decoded by the classifier (Acls).

For both myocontrol methods, the participants practiced the target-
reaching task prior to the experiment in order to grasp the motion
mapping (Table 1). In the case of the ANN, the machine learning
algorithm was re-trained in case any participant was not comfortable
with the control of the cursor (low responsiveness, misclassifications and
fatigue). This occurred 1-2 times on average per participant (no difference
between the healthy participants and the one with DMD was noted).

2.5 Admittance model

Both myocontrol methods were used in combination with a
first-order admittance model (Hadm) (Eq. (6)), which received the
sEMG estimated control signal Uvolx,y multiplied by a conversion
gain of 1N (Figure 2) in order to acquire the estimated force (Festx,y),
which served as input to a first-order admittance model. The output
was the cursor velocity (P_curx,y).

Hadm � _Pcurx,y s( )
Festx,y s( ) �

1
As + B

(6)

where A is the virtual inertia related parameter, B is the virtual
damping related parameter, and s is the Laplace transform variable.
For the healthy participants, the parameters of the admittance model
were fixed a priori based on pilot trials and were left unchanged for all
of them (Section 3.2). Meanwhile, for the DMD participant, the
parameters were fine tuned. While we initially asked the DMD
participant to perform the experiment with the same parameters
as the healthy participants, this proved to be too fatiguing for him.
Subsequently, we adjusted the parameters according to his feedback
through trial and error, in order to achieve an acceptable compromise
between less fatiguing control and precision of the cursor.

2.6 Data analysis

Reaching time was used to analyze the reaching performance of the
participants (The dataset, including all reaching times for all participants,
is available online (Nizamis et al., 2022). Reaching timewas defined as the

TABLE 1 Mapping of limb motion to cursor motion during PR and DC myocontrol.

Myocontrol
Method

Participant Cursor left Cursor right Cursor up Cursor down

Pattern
Recognition

Right Handed (S1-S5, S7-S10) Wrist Flexion Wrist Extension Hand Open Hand Closed

Left Handed (S6) Wrist Extension Wrist Flexion Hand Open Hand Closed

DMD Hand Closed Hand Open Wrist Extension Wrist Flexion

Direct
Control

Right Handed (S1-S5, S7-S10) Wrist Flexion Wrist Extension Wrist Flexion Wrist Extension

Left Handed (S6) Wrist Extension Wrist Flexion Wrist Extension Wrist Flexion

DMD Wrist Extension Wrist Flexion Wrist Extension Wrist Flexion
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time needed to reach the target as it appeared on the screen, starting from
themoment the target appeared. The 2 s of settling time, inside the target
were not included in the reaching time. The performance metrics were
averaged across all healthy participants for every trial of every target per
session. Since the statistical comparison between one participant with
DMD and ten healthy would not be valid, we performed descriptive
statistics (mean and standard deviation), and compared the data using
histograms of the distribution of reaching times in all trials (Figure 3) for
healthy and DMD. participants. The healthy data are the results of the
average of all 10 participants for all trials (N = 32, for eachDOF and each
controlmethod, as they performed four targets eight times perDOF). For
the participant with DMD N = 16 (as he performed half the trials
compared to the healthy controls).

3 Results

3.1 Healthy vs. DMD

This subsection presents the results of the comparison
between the reaching times of the DMD participant and those

of the healthy population for both myocontrol methods and types
of tasks.

As illustrated in Figure 3, the participant with DMD exhibited
comparable reaching times to the average of the healthy controls for
both the 1-DOF and the 2-DOF tasks. For the 1-DOF tasks the
participant with DMD achieved an average reaching time of 2.6 ±
0.8 s (mean ± SD) for DC control and 7.3 ± 6 s for PR, while the
average time of the healthy participant for the same tasks was 2.8 ±
1.2 s for DC control, and 5.8 ± 3 s for PR (Figure 3). For the 2-DOF
tasks the same can be observed in Figure 3. The participant with
DMD, achieved on average a reaching time of 10.9 ± 6.6 s for DC
control and 5.7 ± 2.4 s for PR. For the same tasks, the average time of
the healthy participants was 12.2 ± 3.2 s for DC control, and 8 ± 1.9 s
for PR.

When it comes to the different control methods, the reaching
time during DC control for the participant with DMD is lower than
that with PR for 1-DOF tasks, while the opposite is observed for the
2-DOF tasks. The exact same pattern is found also when looking at
the healthy participants reaching time data, with their DC control
performance being better for 1-DOF tasks and worse for 2-DOF
tasks.

FIGURE 3
Histograms for all participants. 1-DOF and 2-DOF tasks were compared separately. (A) The distribution of reaching times for all 1-DOF and 2-DOF
tasks for the participant with DMD. Since every DOF includes two targets and each target was performed 8 times, we have 16 events per histogram. (B) The
average distribution of reaching times for all 1-DOF and 2-DOF tasks for the ten healthy participants. Since every DOF includes four targets and each
target was performed 8 times, we have 32 events per histogram. The full vertical lines represent the mean and the dashed the standard deviation.
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3.2 Admittance model personalization

In our approach we differentiated the parameters for the
admittance model for the healthy controls and the DMD
participant. The latter was more comfortable with a lower virtual
inertia related parameter than the healthy population (A = 6.6·10−4
and A = 5·10−4 respectively). The virtual damping-related parameter
was higher for the participant with DMD (B = 6·10−4) than for the
healthy population (B = 4·10−4).

4 Discussion

In this case study, inspired by our previous work on the offline
feasibility of myocontrol for people with DMD (Nizamis et al.,
2020), we tested for the first time two very commonly used
myocontrol methods combined with an admittance model and
evaluated them among ten healthy participants and one
participant with DMD using virtual target-reaching tasks. Despite
the muscular degeneration, the DMD individual displayed a
comparable myocontrol performance in relation to the healthy
individuals. Moreover, our proposed admittance model enabled
the setting of appropriate virtual dynamics for the DMD
participant, facilitating a myocontrol capacity catered to the
patient’s needs. This suggests that a personalised myocontrol
scheme can successfully decode intention in DMD sufferers
despite the degeneration in the underlying muscle tissues.

The participant with DMD was able to control the cursor on the
screen with success using both the DC and the PR methods.
However, for mode switching in DC, the participant with DMD
used a switch placed on the gastrocnemius muscle, since controlling
the switch via the co-contraction of his forearm muscles was rather
fatiguing. Same as the healthy participants, the DMD individual
exhibited lower reaching times while using DC for 1-DOF and PR
for 2-DOF. This result has been observed previously with amputees
in similar tasks (Jiang et al., 2014;Wurth and Hargrove, 2014; Young
et al., 2014). While the reaching times of the DMD participant for 1-
and 2-DOF were similar to those of the healthy participants, this
might be attributed to the fact that the former performed a reduced
version of the experimental protocol used for the healthy
population, which allowed for comparable cognitive and physical
demands. Additionally, the different switching mode may have
given an advantage to the participant with DMD, as mode
switching can be difficult and confusing for novel myocontrol
users (Jiang et al., 2014). Nevertheless, the results suggest that the
DMD participant was able to perform the requested tasks and that
both myocontrol methods were both comfortably and successfully
used. This is a promising result for the further investigation of the
presented myocontrol methods as potential ways to decode hand/
wrist motor intention in people with DMD, since the successful
decoding of their intention will enable them to control active hand
exoskeletons. Additionally, since this subject has the highest Brooke
score (6 out of 6) we assume that despite our sample size of 1, our
results about the feasibility of myocontrol can be generalised to more
people with DMD.

The use of an admittance model in combination with sEMG can
provide an advantage for DMD, since it offers an additional level of
customisation that is absent in most conventional myoelectric

control methods. Table 1 shows that the individual with DMD
required a different level of assistance than the healthy participants.
In fact, the former preferred a lower parameter A (related to the
virtual mass) and a higher parameter B (related to the virtual
damping). This enabled him to move the cursor in a less
fatiguing way (lower virtual mass) and to achieve stable
myocontrol (higher virtual damping). As we found in our
previous study (Nizamis et al., 2020), the absolute amplitude of
the sEMG of people with DMD is considerably lower than this of
healthy participants and they present a lower amount of
independent muscle activations in the forearm. Therefore, we
expect that in future studies, a person-specific adaptation of both
parameters (virtual mass and damping-related parameters) will be
required in order to allow some adjustment in terms of the level of
the individual needs of each subject with DMD, which can vary
according to the level of disease progression and the rehabilitation
measures received.

In line to what was found in previous similar studies with
amputees (Jiang et al., 2014; Wurth and Hargrove, 2014), the
switching between the DOFs that was required for DC control
appeared to be unintuitive for a number of the healthy participants,
which was reflected in the higher reaching times for DC during the
2-DOF tasks. Hence, the reaching times for DC may have been
slightly underestimated, given that PR allowed the participants to
perform uninterrupted movements. The appearance order of the
targets during the target-reaching tasks for both DOFs and the
myocontrol methods was not randomised (they always appeared
sequentially in their numerical order: 1-4 for 1-DOF and 5-8 for 2-
DOF). While this may have created a learning effect throughout
the experiment, we do not believe this presents a major concern
since the directions of the targets were alternating one after
another, and, as a result, the participants had to perform
different movements to reach the target. Moreover, this setting
was applied in all the conditions tested, meaning it affected them
all in equal measure.

The participant with DMD consistently experienced early
fatigue onset throughout the tests. However, the modification in
the protocol ensured that enough trials were performed with the
appropriate variability for extracting useful insights while ensuring
any ethical requirements were met. Non-etheless, our research was
limited due to the low number of available participants with DMD,
which made it difficult to recruit multiple participants. Hence, our
conclusions must be regarded with some caution as a higher number
of participants would be required to ensure they are appropriately
robust.

Future work should involve an evaluation of the effect of
forearm orientation in hand/wrist motor intention decoding with
individuals with DMD. Despite its limitations, our study indicates
that for the decoding of simple 1-DOF motions of the hand, DC
demonstrates better performance than PR. This feasibility of DC
control for the real-time myocontrol for a 1-DOF hand exoskeletons
was also demonstrated in our previous work (Bos et al., 2019). As it
has also become clear by previous research, sEMG may be the most
feasible way of controlling assistive devices as the disease progresses
(Lobo Prat, 2016). Despite the loss in muscle strength, sEMG is
retained in DMD even in late stages of the disease (Lobo-Prat et al.,
2017b). In contrast, in terms of 2-DOF tasks, DC performs worse
than PR. In future work we will implement these myocontrol
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methods and validate their use with an active hand exoskeleton for
multiple DOFs (Bos et al., 2018; Bos et al., 2019).
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