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Soft robot’s natural dynamics calls for the development of tailored modeling
techniques for control. However, the high-dimensional configuration space of
the geometrically exact modeling approaches for soft robots, i.e., Cosserat rod
and Finite Element Methods (FEM), has been identified as a key obstacle in
controller design. To address this challenge, Reduced Order Modeling (ROM),
i.e., the approximation of the full-order models, and Model Order Reduction
(MOR), i.e., reducing the state space dimension of a high fidelity FEM-based
model, are enjoying extensive research. Although both techniques serve a similar
purpose and their terms have been used interchangeably in the literature, they
are different in their assumptions and implementation. This reviewpaper provides
the first in-depth survey of ROM and MOR techniques in the continuum and soft
robotics landscape to aid Soft Robotics researchers in selecting computationally
efficient models for their specific tasks.

KEYWORDS
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1 Introduction

Robots with continuum structures can mimic highly dexterous and deformable
biological bodies, follow curved paths through body lumens (e.g., vessel interiors) in
minimally invasive medical interventions, enable safe interactions with the environment
(Rus and Tolley, 2015). Considering compliant structures, however, brings forth issues such
as uncertain deformations, limited control feedback, reduced control bandwidth and slow
response, stability problems, underdamped modes causing persistent vibrations, and lack of
precision under external loads (Cianchetti et al., 2013; Blanc et al., 2017).

Soft Roboticists have approached such challenges by proposing new theoretical
frameworks and tailored software packages (Sadati et al., 2020a).On one hand, geometrically
exact Cosserat rod Variable Curvature kinematics and Finite Element methods (FEM)
have proven to be of high fidelity (Trivedi et al., 2008; Coevoet et al., 2017; Grazioso et al.,
2019), but bring forth computational obstacles when used in real-time applications, such
as control, are considered. On the other hand, Reduced Order Modeling (ROM) and
Model Order Reduction (MOR) techniques, where low-dimensional continuous or discrete
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representations are used to approximate the full-order system
(i.e., variational) kinematics representation or FEM solution
for a continuum structure, can both address modeling
challenges and improve computational performance (Book, 1990;
Della Santina et al., 2110; Goury, Duriez). Such methods have
pioneered methods for flexible-link structures (Book, 1990) and
highly articulated (Chirikjian, 1993) robots and, more recently,
have been permeating the soft robotics community (Goury, Duriez;
Sadati et al., 2018; Singh et al., 2018).

Although Reduced Order Modeling and Model Order
Reduction terms are utilized interchangeably in the literature,
this paper makes a distinction and highlights their different
assumptions, implementation steps, and capabilities, in order
to help with deciding the most appropriate method for a given
application. To this end, as instances of Reduced Order Modeling,
we review discretization-based, modal, and strain techniques, where
the continuum kinematics is constructed based on simplifying
assumptions. Alternatively, schemes where the high dimensionality
of a continuum robot is reduced, e.g., neglecting the less dominant
deformation modes in a FEM solution, are considered as instances
of Model Order Reduction. In this paper, we don’t consider reduced
order integration schemes, e.g., (Boyer et al., 2020; Godage et al.,
2016; Caasenbrood et al., 1089), which may simplify the derivation
of the dynamics without necessarily reducing the modeling state
space.

Detailed review papers have recently discussed modeling
of continuum robots and slender rods, and readers, novice
or expert, can find details on modeling assumptions therein
(Della Santina et al., 2110; Rao et al., 2020; Gilbert, 2020;
Sadati et al., 2017a; Armanini et al., 2023). Our paper instead
provides a classification based on classic continuum mechanics
that highlights how to combine assumptions for a soft robot
kinematics, governing equations, material mechanics, and solution
strategies. More specifically, we reflect on the Reduced Order
modeling techniques, as an emerging trend in the Soft Robotics
community, and highlight the need for further studies to explore
their full potential. Our goal is to provide a “recipe” that supports
researchers, with moderate knowledge of the field and an interest
in Reduced Order Modeling techniques, in identifying the most
suitable modeling assumptions and solution strategy for their
application.

The rest of this article is organized as follows. A brief review
of the necessary elements of a soft robot model is discussed in
Section 2. A detailed review of Reduced Order Modeling and
Model Order Reduction methods and complementary states space
coordination and solution strategies is provided in Section 3. The
main features, advantages, and shortcomings of their different
implementations are listed and contrasted in Tables 2–5. The
manuscript concludes in Section 4. Table 1 lists the acronyms in
literature, although we mostly use their expanded from in the rest
of this manuscript.

2 Soft robot modeling: assumptions
and solution strategies

This section categorizes the key elements of a continuum
manipulator model from continuum mechanics theory point of

view. This is to better understand how Reduced Order Modeling
techniques fit in the soft manipulator modeling framework. The two
key elements in theoretical modeling of a soft robot (except for deep
learning approaches) are:

I. the modeling assumptions for:
A. system kinematics,

B. system mechanics ( governing equations or conservational
law),

C. material mechanics (constitutional law); and
II. the solution strategy (direct or indirect) for the resultant system

of differential equations.

In the rest of this paper, we utilized the term “state space” to refer
to the time-variant states of a continuum manipulator model. This
is to distinguish between the time-variant states of a Reduced Order
model (e.g., modal contribution or fitting function coefficients) with
the robot configuration (e.g., strains, position, and orientation) and
joint (e.g., joint angles and displacements in a Pseudo Rigid Body
model) spaces.

2.1 Continuum robot kinematics

The kinematics of a continuum robot can be represented based
on:

1. Full-order representations, i.e.,:
a. Variable Curvature (VC), also calledContinuum,Differential,

Cosserat Rod, Geometrically Exact Kinematics (Trivedi et al.,
2008; Rucker and Webster, 2011; Till et al., 2019),

2. Shape (Basis) function-based, also called Geometrical Kinematics
(Armanini et al., 2023), solutions that approximate the bending
angle (Gravagne and Walker, 2000; Gravagne and Walker,
2002; Gravagne et al., 2003; Gravagne and Walker, 2012),
strain field (Orekhov and Simaan, 2008; Della Santina et al.,
2020a; Della Santina and Rus, 2020) or shape (Godage et al.,
2011a; Godage et al., 2011b; Godage et al., 2011b; Godage et al.,
2015a; Sadati et al., 2018; Singh et al., 2018; Sadati et al., 2020a;
Rao et al., 2022) of the entire robot backbone via modal or fitting
approaches,

3. Discretized representations, i.e.,:
a. Pseudo Rigid Body (PRB) approach that approximates the

robot kinematics as a highly-articulated serial rigid-link
mechanism with states defined in relative coordinates, i.e.,
strains as rotation and translation of rigid-robot joints
(Howell and Midha, 1995; Howell et al., 1996; Yu et al., 2005;
Sadati et al., 2017a; Shiva et al., 2019; Sadati et al., 2020a;
Rao et al., 2020; Schultz et al., 2022),

b. Piecewise Constant Curvature (PCC) that discretizes the
backbone as a series of Constant Curvature infinitesimal
segments with states defined in relative coordinates
(Sadati et al., 2020a; Caasenbrood et al., 1089; Rao et al.,
2020; Shiva et al., 2019; Renda et al., 2018; Renda, Giorgio-
Serchi, Boyer, Laschi, Dias, Seneviratne),

c. Piecewise Variable Curvature (PVC), with basis function-
based (e.g., a polynomial) estimation of curvature value along
each segment (Boyer et al., 2020), or
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TABLE 1 Acronyms used in the literature for the simplified kinematic representation of a continuum robot.

Acronym Explanation Acronym Explanation

ANCF Absolute Nodal Coordinate Formulation PRB Pseudo Rigid Body assumptions

CC Constant Curvature PS Polynomial Shape parametrization

FEM Finite Element Method PVC Piecewise Variable Curvature

MOR Model Order Reduction PVW Principle of Virtual Work

PC Polynomial Curvature parametrization ROM Reduced Order Model

PCC Piecewise Constant Curvature VC Variable Curvature

d. Absolute Nodal Coordinate Formulation (ANCF), based on
position and orientation of finite number of nodes along
the backbone as the system states defined in absolute
coordinates (Shabana, 2018; Sadati et al., 2020a; Huang et al.,
2021; Shabana and Eldeeb, 2021).

Constant Curvature (CC) kinematics can considered as a special
case of basis function-based fitting for a continuum segment
(Webster and Jones, 2010; Mustaza et al., 2019; Della Santina et al.,
2020b). In the case of Piecewise Constant Curvature kinematics,
the transformations between the segments can be derived based
on rotation matrices (Sadati et al., 2017a; Shiva et al., 2019),
quaternions (Sadati et al., 2020a), or screw theory (Renda et al.,
2018; Renda, Giorgio-Serchi, Boyer, Laschi, Dias, Seneviratne).
The underlying transformation can be based on Constant
Curvature assumptions (Sadati et al., 2017a; Sadati et al., 2017b;
Della Santina et al., 2020b; Rao et al., 2020), discretization of
Cosserat Rod (i.e., Variable Curvature) kinematics (Renda et al.,
2018; Shiva et al., 2019; Sadati et al., 2020a), or deformation map
of an Euler-Bernoulli beam (Sadati et al., 2020a). In the case of
Absolute Nodal Coordinate Formulation, such transformations
can be based on a basis function such as a polynomial
(Huang et al., 2021) or deformationmap of an Euler-Bernoulli beam
(Sadati et al., 2020a). Furthermore, fitting solutions are proposed
for approximating the kinematics of a soft robot cross section
geometry deformation, showing 1%–3% increase in the accuracy
of a pneumatic soft appendage known as STIFF-FLOP (Sadati et al.,
2017b).

Variable Curvature (also referred to as Continuum
representation (Armanini et al., 2023) provides a geometrically
exact kinematic representation at the cost of a system with infinite
number of states not suitable for controller design. Basis function-
based methods present a low-dimensional continuous formulation
suited for controller design with high modeling accuracy, however,
are prone to simulation errors. The Pseudo Rigid Body method
enables the usage of rigid-body robotic modeling and control
techniques for flexible and continuum robots but is usually
applicable for a small system (with small number, less than five,
number of discretized segments) and usually suffers from singularity
issues. This is due to the exponential growth of the derivations
for the distal segments in a series rigid link mechanism. The
Piecewise Constant Curvature techniques improve the modeling
accuracy of a Pseudo Rigid Body representation by considering the
structure deformation as a circular arc with limited applicability
to large systems (with large number of discretized segments) and
with external or body loadings. The Piecewise Variable Curvature

technique provides a better estimate of the beam deformation with
a polynomial curvature representation but is still not applicable to
large systems due to the complex derivations for distal segments,
similar to the case of the Pseudo Rigid Body method. Absolute
Nodal Coordinate Formulation is the most accurate method for
modeling a large system, via optimal sparse matrix formulation
of the system dynamic equations, and for incorporating different
material mechanics models and actuation forces (Shabana, 2018),
at the cost of a large state space dimension and complex models for
internal forces and actuation inputs. Figure 1 presents the different
kinematic representations for a continuum manipulator in the Soft
Robotics literature.

2.2 System mechanics (governing
equations) derivation

The system mechanics can be derived for:

1. Euler-Bernoulli Beam Theory (static), i.e., based on Euler-
Bernoulli beam formulation (Wegiriya et al., 2019; Yu et al.,
2021),

2. Cosserat rod method (static and dynamic) (Trivedi et al.,
2008; Rucker and Webster, 2011; Burgner-Kahrs et al., 2015;
Sadati et al., 2017a; Sadati et al., 2017b; Gazzola et al., 2018;
Till et al., 2019; Rao et al., 2020),

3. Principle of VirtualWork (PVW, static anddynamic) (Sadati et al.,
2017a; Sadati et al., 2017b),

4. Lagrangian Formulation (dynamic) based on shape function-
based kinematics (Godage et al., 2016; Mustaza et al., 2019;
Della Santina et al., 2020a; Della Santina and Rus, 2020), or
discretized kinematics (Godage et al., 2015b; Sadati et al., 2020a;
Della Santina et al., 2020b; Habibi et al., 2020; Schultz et al.,
2022),

5. TMT Dynamics (dynamic) (Sadati et al., 2018; Sadati et al.,
2019a; Sadati et al., 2020a; Sadati et al., 2022), which is the vector
format for the Principle of Virtual Work that derives the system
dynamics using a vector formalism with fewer derivation steps
compared to the Lagrangian approach, and

6. Recursive Computation Scheme (dynamic) (Godage et al.,
2016) (also called Reduced Order Integration scheme
(Caasenbrood et al., 1089) or Inverse Dynamic Model
(Boyer et al., 2020), for forming the equation of motion in
a vector formalism by recursively evaluating the nonlinear
equations of motion based on Lagrangian or Cosserat rod
dynamics.
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FIGURE 1
Different kinematics representations for a continuum manipulator in Soft Robotics literature. Here R and p denote the local frame rotation matrix and
position vector, m and I are the mass and inertia, v and u are the local translational (shear and elongation) and rotational (bending and torsion) strains, ϵ
and α are the translation and Euler angular rotation of an element in the local frame, s is the unit length along the backbone, C and S are the coefficient
and basis function for the basis function-based kinematics, i is a free index, δ and ′ are operators denoting infinitesimal change and partial
differentiation along and w.r.t. s.

Euler-Bernoulli Beam theory provides the simplest mechanics
formulation for a continuum robot but is only applicable to small
deformation cases. Cosserat rod mechanics provides an exact
solution in the form of a boundary value problem, known to
be computationally expensive to solve via numerical methods.
The Principle of Virtual Work is a powerful method of deriving
governing equations to incorporate a robot structural complexity
and inhomogeneities but challenging to derive for dynamic cases.
Lagrangian dynamics (i.e., derivation of the equations of motion
using Lagrangian methods) is the commonly utilized method for
dynamic cases but results in complex nonlinear relations that
are hard to rearrange in a vector formalism, i.e., linear w.r.t. the
acceleration terms, when using a standard symbolic mathematical
software, e.g., Matlab. Identifying repetitive structures in the
Lagrangian formulation can simplify this problem (35).

TMT and Recursive Computation Scheme are proposed to
derive such a form. TMT method, which is named after the
formulation of the generalized mass matrix in a dynamic system
(Sadati et al., 2020a), is an easy-to-interpret analytical derivation
for the system dynamic equation of motion via direct evaluation
of the terms in a vector format. However, it can be analytically
challenging to derive the vector format of the virtual work associated
with some of the terms in a continuum system dynamics. It is worth
noting that the Principle of Virtual Work, Lagrangian, and TMT
Dynamic formulations result in the same set of final derivations, but
with different derivation steps. The Recursive Computation Scheme
simplifies the vector-format formulation of a complex dynamic
model based on the numerical evaluation of the equation of motion
terms by selectively setting the inertial, damping, gravitational, and

elastic terms to zero. As a result, it ismore computationally expensive
due to multiple recursive numerical evaluations of the governing
equations.

2.3 Material mechanics (constitutional law)

Thematerial mechanics for a continuum robot is usually derived
based on:

1. Hooke’s law (Trivedi et al., 2008; Rucker and Webster, 2011;
Godage et al., 2016; Sadati et al., 2017a; Sadati et al., 2017b;
Till et al., 2019) (i.e., linear elasticity, infinitesimal strain theory)
for elastic materials (e.g., Nitinol),

2. Finite strain theory, for hyper-elastic materials (e.g., rubber and
silicon), based on methods such as:
a. Neo-Hookean (Trivedi et al., 2008; Sadati et al., 2017a;

Sadati et al., 2017b; Shiva et al., 2019),
b. Mooney-Rivlin (Gopesh and Friend, 2020),
c. Gent (Shiva et al., 2019), or

3. Hyper-Viscoelastic models, when viscosity matters (e.g., real
tissue), based on methods such as:
a. Non-Newtonian fluid via viscosity power law (Sadati et al.,

2018; Mustaza et al., 2019; Sadati et al., 2020a) and
b. Kelvin-Voigt method (Mustaza et al., 2019).

Hooke’s law is the commonly used material model with
acceptable accuracy for slender systems with small strains. Finite
strain theory is used for cases experiencing large strains but
cannot capture the material hysteresis and creep effects. The
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neo-Hookean method is the standard technique for hyper-elastic
materials but with limited accuracy in practical cases. Mooney-
Rivlin method offers a more accurate model with a standard
identification procedure but is still limited to strains less than
100%. The Gent method is the standard technique for larger
strain cases and is commonly used for modeling rubber structures.
Modeling the material hysteresis is possible by considering a hyper-
viscoelastic model. The viscosity power law is a simple method
but is more suitable for fluid mediums. The Kelvin-Voigt method
can provide a good estimate of the material behavior with a
standard process to identify the material properties. The nonlinear
formulation of hyper-elastic and hyper-viscoelastic models makes
their implementation challenging in a continuum robot model. The
Principle of Virtual Work is the most powerful method of deriving
the system constitutional law to incorporate different material
mechanics representations in a continuum robot model.

2.4 Model formation and solution

A variety of combinations of the above choices for the system
kinematics, mechanics, and material mechanics are possible to
model a continuum robot. As a result, a system of Ordinary (ODE,
mostly for dynamic models with discretized or reduced order
kinematics) or Partial Differential Equations (PDE,mostly for quasi-
static models, most forms of FEM, and Cosserat rod dynamics)
is formed to be solved numerically considering the system’s initial
and/or boundary conditions. An ODE formulation is possible for
a model with variable curvature kinematics and Cosserat rod
mechanics with general loading if load Boundary Conditions (e.g.,
moment, shear, and tension) are known (Xu et al., 2013; Sadati et al.,
2020b) or for quasi-static models based on discretized kinematics
in the absence of distributed, body, or external loads (Shiva et al.,
2019).

The common solution strategies, as for any dynamic system, are:

1. Direct (forward) integration schemes (e.g., Runge-Kutta) for
ODEs, via:
a. Temporal (time-domain) discretization & integration of

a dynamic model (most common) (Godage et al., 2015b;
Godage et al., 2016; Sadati et al., 2020a), or

b. Spatial (spatial-domain, e.g., along the backbone curve)
discretization and integration of a dynamicmodel (Till, 2019;
Till et al., 2019; Till et al., 2019; Till et al., 2020) or a static
model (special cases as explained above) (Xu et al., 2013;
Shiva et al., 2019; Sadati et al., 2020b);

2. Indirect schemes, commonly used for BVPs, via:
a. Shooting (optimization-based) methods for static or

Cosserat rod dynamic models which relies on guessing the
solution vector and Jacobian-based numerical optimization
techniques (Godage et al., 2011a; Rucker and Webster, 2011;
Sadati et al., 2017a; Sadati et al., 2017b; Sadati et al., 2018;
Aloi and Rucker, 2019; Till et al., 2019; Sadati et al., 2020a),

b. Ritz-Galerkin (Tunay, 2013; Sadati et al., 2018) method for
basis function-based solutions where the system of equations
is weighted (i.e., multiplied) by the basis functions vector to
achieve higher estimation accuracy.

Direct methods are numerically more efficient because they do
not rely on an initial guess, but they are limited to system models
in the form of ODEs. Temporal domain integration is the standard
technique used in the community butmay suffer from time-stepping
issues for systems with highly oscillatory states. Spatial domain
integration techniques can better handle a system with highly
oscillatory states but are not as developed as the temporal domain
integration schemes. Indirect schemes are suitable for geometrically
exact models that are usually in the form of a BVP. Shooting
methods are the standard methods to solve such systems at the
cost of computational performance, resulting in slow simulations.
The Ritz-Galerkin method can turn a BVP into an ODE to lower
the simulation computational cost at the cost of a more complex
derivation, challenges with selecting suitable basis functions, and
convergence guarantee studies.

2.5 Data-driven and learning-based models

Although data-driven techniques do not necessarily fit in our
presented categories above, a short survey of their advantages and
limitations can help better justify the usage of Reduced Order
Modeling techniques for soft manipulators. Analytical models
for continuum robots present a robust solution in the presence
of unknown conditions. However, it is not easy to capture
commonly observed phenomena in soft robot real behavior such as
fabrication inconsistencies, visco-hyper-elastic material properties,
material creep, and hysteresis. Learnt solutions (when trained)
are on the other hand real-time, accurate (within the training
dataset domain), capable of handling complex structural geometries
and nonlinearities, and easy to implement by not requiring
significant knowledge of continuum robot theory (Thuruthel et al.,
2017; Thuruthel et al., 2018a; Jolaei et al., 2020; Truby et al., 2020;
Kim et al., 2021; Wang et al., 2021; Wang et al., 2022). However, the
validity of a deep learning-based solution without a conservational
law is limited to the richness and generality of the dataset used for
learning, hence lacking robustness in presence of new conditions,
contacts, and external loads which are not tested before (i.e.,
available in the dataset). Lack of generality and robustness guarantee
are the main drawbacks of data-driven methods.

The learning-based solution drawbacks limit the usability of
such methods to the case of improving a soft robot modeling
accuracy for repetitive tasks but challenging to apply in highly
varying and dynamic environments such as medical surgery.
Koopman operator techniques (Bruder et al., 2019; Bruder et al.,
2021a; Bruder et al., 2021b), learning the residual (unmodelled)
system dynamics, and a combination of learning-based forward
models with analytical controller designs can address some of
these issues (Della Santina et al., 2110). Alternatively, training such
models based on high-fidelity analytical or FEM-based models may
solve the robustness and lack of generality issues of data-driven
approaches by providing them with rich enough datasets that are
hard to gather with a real robot (Iyengar et al., 2020; Iyengar and
Stoyanov, 2021). A more detailed review of the topic is presented in
(Della Santina et al., 2110; Thuruthel et al., 2018b). The rest of this
paper provides a review of Reduced Order Modeling and Model
Order Reduction techniques for modeling soft manipulators.
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3 Reduced order modeling and model
order reduction

Any effort to approximate the differential evolution of states, i.e.,
differential kinematics of a Cosserat rod, in terms of a representation
with finite number of states, e.g., Pseudo Rigid Body kinematics, is
often called Model Order Reduction approach in classic continuum
mechanics. Although commonly employed for FEM (Tunay, 2013),
Computational FluidDynamics (Naghibi et al., 2019), and in control
theory (Moore, 1981; Antoulas, 2005; Van Dooren et al., 2008),
the application of lightweight slender rigid manipulators for space
explorations, undergoing infinitesimal deformations, has motivated
the usage ofModel Order Reduction techniques in robotics research
since 1980s (Book, 1990). More recently, Model Order Reduction
(also referred to as Reduction or, interchangeably, as Reduced
Order Modeling) techniques are utilized for Soft Robotics research
to capture the complex dynamics of active highly deformable
structures. In this section, we follow the naming conventions used by
(Thieffry et al., 2018a; Sadati et al., 2018) in which Reduced Order
Modeling refers to the methods that construct a reduced order
kinematics for a soft robot, while Model Order Reduction is used
when compression techniques are utilized the reduce the state space
dimension of a FEM model.

Themain features, advantages, and shortcomings of the different
implementations of Reduced Order Modeling and Model Order
Reduction are presented and compared with each other in Table 2. A
brief review of these methods in Soft Robotics research is presented
in this section. Relevant coordinate formulations and solution
strategy are discussed at the end of this section and summarized in
Tables 3, 4, respectively.

3.1 Reduced Order Modeling (ROM) for
kinematic formulation

Cosserat rod formulation of continuum robots results in a
set of Partial Differential Equations (PDE) that form a Boundary
Value Problem (BVP) in continuous domain. Traditionally, the
Cosserat rod BVP formulation is turned into a discretized BVP with
finite number of states, e.g., via Pseudo Rigid Body or Reduced
Order kinematics, to be solved by an optimization-based (e.g.,
shooting) numerical method. Alternatively, weak-form solutions
can be sought for a BVP, a common practice in applied mathematics
and FEM analysis. To this end, the separation of variables method is
used to decouple the temporal (time-dependent, i.e., states evolution
over time) and spatial (space-dependent, i.e., states evolution along
the robot backbone arc length) characteristics. As a result, the
system of PDEs is replaced by two decoupled Ordinary Differential
Equations (ODE), each with respect to either the spatial (arc
length) or temporal (time) variables. Hence, a solution can be
provided using an ODE solver (either analytical or numerical). The
former method results in a kinematic formulation similar to rigid
body robots, while the former approach requires fewer modeling
states, hence is more computationally efficient. Seeking a solution
via forward integration and minimal state space dimension of a
Reduced Order Model weak solution are desirable for Soft Robotics
controller design (Della Santina et al., 2110). We have categorized

the different weak-form solutions to approximate a soft robot
kinematics in Table 2.

A basis function-based (modal and fitting) approach can simply
the complexity and high-dimensionality of the state space of a soft
robot model via:

1. Modal approaches where the system kinematics is approximated
by a weighted sum of the dominant deformation modes,
or

2. fitting where the system kinematics is interpolated based on a
basis function with control parameters.

As a result, the time-variant weights (modal contributions) in
themodal approach or the control parameters of the fitting approach
are the new system modeling states, and the mode shapes or fitting
basis function are the spatial (i.e., w.r.t. curve length) basis functions.
A basis function-based approach separates the variables of the
original PDE system and enables seeking an ODE solution. Similar
to the application of this method in flexible-arm robotics (Book,
1990), mode shapes (shape or basis functions) can be found based
on:

1. mode shape or basis function pre-selection/design in the form of
a. spectral (e.g., Fourier) (Chirikjian, 1992; Chirikjian and

Burdick, 1994) or power (e.g., Taylor, i.e., simple polynomials
or splines) (Sadati et al., 2018; Della Santina et al., 2020a;
Sadati et al., 2022) series expansions for a modal approach,
and

b. configuration fitting via Lagrange, Hermite Bezier,
Pythagorean Hodograph (PH), B-Spline, NURBS
polynomial) (Singh et al., 2018) for a fitting approach;

2. eigenfunctions based on an eigenvalue problem (via Singular
Value Decomposition) after linearizing the system;

3. experimental-based mode shape (via a modal test) or basis shape
function selection based on the actual system tests (Rao et al.,
2021; Rao et al., 2022).

Although investigated for flexible-arm robots in the 1980s
(Book, 1990), cases (2) and (3) are relatively unexplored for soft
robots. The case of the Eigenvector solution to a finite element
problem is discussed as a part ofModel Order Reduction techniques
in the following sections (Book, 1990).

Modal approach results in a truncated series solution (with a
finite number of terms that are adequate to achieve the desired
simulation accuracy) with a finite number of terms (time-variant
coefficient and space-variant basis functions). The fitting approach
does not necessarily result in a series solution format as it
employs a predefined basis function. In both cases, the solution
for the system kinematics should satisfy the system initial (i.e.,
initial stationary state) and boundary (e.g., right angle at the
robot base) conditions. As a result, the approximate solution
complies with the overall system kinematics (e.g., configuration
(Sadati et al., 2020a) or curvature (Della Santina and Rus, 2020)
along a continuum arm backbone), and overall system velocity
field. The basis function-based kinematics approximation improves
the simulation numerical performance and results in a system
of acceptable dimensions for controller design. This way, rather
than attacking the general modeling problem directly, a low-
dimensional approximate model is introduced and studied in detail
(Della Santina, 2020).
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TABLE 3 State Space Coordination in continuum and Soft Robot modeling.

State space Reported error Pros Cons

Absolute coordinates (states): Shape, Configuration,
Cartesian position & orientation, Rectilinear frame,
Material frame (Sadati et al., 2018; Singh, 2018;
Singh et al., 2018; Sadati et al., 2019a; Sadati et al., 2020a)
Finite Element Method (Coevoet et al., 2017;
Coevoet et al., 2017; Goury and Duriez, 2018;
Thieffry et al., 2018a; Thieffry et al., 2018b;
Chenevier et al., 2018; Thieffry et al., 2019; Thieffry et al.,
2020)

1%–19% static
5.5%–20% dynamic
0.3%–3% dynamic FEM

+ State space is task space (simpler
tracking & path planning control)
+ No spatial integration is required
+ Simpler derivation of inertial
terms for system dynamics
+ Simpler derivation of
external forces & contacts
+ Simpler derivation of constraints
for parallel mechanisms
+ Numerically more efficient & stable
+ Suitable for large systems
+ lower dimensional state space
+ Geometrically exact solution via
FEM

- Higher polynomial
order is required hence
more system states
- Complex formulation for
internal forces and elastic
energy

Relative coordinates (states): Curvature, Strain,
Curvilinear frame, Spatial frame (Chirikjian, 1993;
Chirikjian and Burdick, 1994; Chirikjian and Burdick,
1995; Chirikjian, 1997; Orekhov and Simaan, 2008;
Grazioso et al., 2019; Della Santina et al., 2020a;
Della Santina, 2020; Della Santina and Rus, 2020;
Mbakop et al., 2021; Rao et al., 2021; Rao et al., 2022)

0.7% dynamic (for a hyper-
redundant robot)

+ Lower polynomial order is
required hence less system states
+ better clarity in employing
rigid-body robotic techniques
+ Matches internal actuation
states resulting in a
simpler controller design
+ Elastic energy has linear
formulation

- Requires integration
& approximation
- Complex dynamics
- Numerically expensive &
less stable for large systems
- Not suitable for large systems

Hybrid states (Sadati et al., 2022) 2.1% stable dynamics
7.8% instable dynamics

+ Guaranteed conformation of
local frame to backbone tangent
+ Stable for simulation of instable
motions of a continuum backbone
+ Lower dimensional state space
versus polynomial shape kinematics

- Complex Coriolis
term derivation
- Numerically expensive

TABLE 4 Solution strategies for reduced order modeling of soft robots.

State space Reported error Pros Cons

Ritz (Chirikjian, 1992; Chirikjian, 1993; Chirikjian and
Burdick, 1994; Chirikjian, 1995; Chirikjian and Burdick,
1995; Chirikjian, 1997; Sadati et al., 2018; Singh, 2018;
Singh et al., 2018; Sadati et al., 2019a; Grazioso et al.,
2019; Della Santina et al., 2020a; Sadati et al., 2020a;
Della Santina, 2020; Della Santina and Rus, 2020)

1%–19% static
16%–20% dynamic

+ Simpler derivation
& implementation
+ Faster convergence

- Less accuracy
- No control over convergence
rate

Ritz-Galerkin (Tunay, 2013; Coevoet et al., 2017; Goury,
Duriez; Thieffry et al., 2018a; Thieffry et al., 2018b;
Chenevier et al., 2018; Sadati et al., 2018; Thieffry et al.,
2019; Thieffry et al., 2020)

0.3%–3% dynamic (FEM MOR)
6%–8% static (ROM fitting)

+ can be more accurate
+ Standard practice in FEM

- More sensitive to
numerical errors
- Possible divergence issues
due to numerical instability
- Not investigated for Soft
Robots

Reduced Order Modeling in the form of assumed continuous
modes is a common approach in computer graphics for reducing
the rendering computational cost of large scenes where modeling
accuracy is not a priority (Barbic et al., 2009; Badías et al., 2018). In
the robotic community, a similar approach has been taken since the
1980s for modeling and control of flexible-arm (Book and Majette,
1983; Tsujisawa and Book, 1989; Book, 1990;Moberg, 2010; De Luca
and Book, 2016) and hyper-redundant under-actuated (Chirikjian,
1992; Chirikjian, 1993; Chirikjian and Burdick, 1994; Chirikjian,
1995; Chirikjian and Burdick, 1995; Chirikjian, 1997) robots. All
the reported instances of Reduced Order Modeling in this survey
have utilized an elastic material mechanics based on Hooke’s law. In
the rest of this section, we summarized the main different Reduced
Order formulations presented for a soft robot kinematics.

3.1.1 Modal approach
Modal approach is equivalent to interpolating a precomputed

basis (the dominant deformations) to model the run-time pose of
an object (Xu and Barbič, 2016). In a FEM-based framework, the
complex deformation of a continuum object can be reduced to a
weighted summation over a finite-dimensional subset of all possible
deformations of an object, which is referred to as the dominant
deformation subset (Wang et al., 2015) or assumed modes. Such
a method achieves good computational performance but at the
cost of accuracy, which can be improved by carefully selecting
the dominant deformation subset and increasing the number of
terms in the summation series. Unlike mode shapes that are stand-
alone analytical solutions from the modal analysis of a system,
assumed modes (basis or shape functions), despite satisfying the
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system BCs, may not represent a modal solution for the system and
only provide a basis for approximating the system solution, to be
verified numerically. For example, although assuming a polynomial
solution for the deformation of a continuum manipulator can
provide adequate simulation accuracy and computational efficiency,
it is not a solution for themodal analysis of the same system.Amodal
representation of a soft robot kinematics simplifies the infinite-state-
space-dimension of the system variable curvature kinematics and
transform it to a finite dimensional representation, i.e., a fitting
problem with a few weighting coefficients as the system states, and
hence results in less theoretical complexity.

The modal approach is a common method for dynamic
modeling of flexible-link robots and structures (Book, 1990;
Sayahkarajy, 2018). For example, Wu et al. have investigated
nonlinear model order reduction based on the system modal
derivatives (Wu and Tiso, 2016) limited to simple geometries.
Alternatively, Weeger et al. utilized pre-defined shapes in the form
of 4D NURBS curves to express the configuration and quaternion
orientation of a Cosserat rod centerline in large deformation
(Weeger et al., 2017). Liu et al. utilized a polynomial collocation
spectral method (in which the series index is the basis function wave
numbers, i.e., frequency in the spatial domain) for a Kirchhoff ’s rod
discretized on a set of Chebyshev or LegendreGauss-Lobatto control
points (Liu et al., 2018). They showed the spectral method precision
exponentially increases as the number of the nodes increases.

Modal approaches have been preliminarily investigated for
Soft Robots in the form of run-time fitting techniques based
on a precomputed basis (i.e., assumed deformation modes)
as presented by Wang et al. (Wang et al., 2015) and Xu et al.
(Xu and Barbič, 2016). Della Santina et al. (1806) utilized a
robot with compliant joints stabilized via sub-manifolds on
the system state space (i.e., system nonlinear continuation of
linear eigenspaces, called nonlinear normal modes) on which the
system would naturally evolve for motion generation. Alternatively,
one could bypass the constitutional and conservational laws
(system and material mechanics) by matching the basis functions
from the experimental observations as the ground truth as
presented by Chirikjian et al. for modeling volume preserving
3D deformations of soft simple geometries (Chirikjian, 1995). A
similar method has been presented for characterization of worm
locomotion kinematics (Digumarti et al., 2019). SOFA (Software
Open Framework Architecture), as a computationally efficient
simulation tool for evaluating random deformations of soft objects,
can serve as an ideal platform in such method to identify an object’s
dominant deformation basis.

3.1.2 Polynomial shape (PS) fitting for
configuration space characterization

Amongst the early works on Reduced Order Modeling in Soft
Robotics, the shape fitting conceptwas utilized byGodage et al. since
2011 as a singularity free representation of a continuummanipulator
kinematics in which the backbone Cartesian configuration is
expressed in terms of a power series with basis functions based
on a manipulator actuation chambers length (Godage et al., 2011a;
Godage et al., 2016). However, their representation could not
capture the backbone twist and the choice of a hard-to-interpret
basis function resulted in a series solution with many coefficients
to identify (e.g., 165 (Godage et al., 2011a) and a complicated

system mechanics derivations (Godage et al., 2011a; Godage et al.,
2011b; Godage et al., 2016). Sadati et al. showed the advantageous
numerical performance and accuracy of using a simpler alternative
based on parametrization of the configuration space, i.e., the
robot backbone shape (Sadati et al., 2018). A truncated Lagrange
polynomial passing through a number of equally spaced control
points was used to describe a continuum manipulator shape
(configuration or kinematics) with the Cartesian position of the
control points as the system modeling states. This method was
referred to as Polynomial Shape fitting for soft robot kinematics.

Although it could successfully handle hyper-elastic deformation
of the robot cross section, considerations for braided pneumatic
actuators, and general loading cases for planar motions, the use
of the Frenet-Serret tangent frame formulation invalidates the 3D
solutions in the case of a twisted backbone due to external loading.
The issue lies with a non-physical twist predicted based on the
mathematical definition of a Frenet–Serret curvilinear frame. The
same issue presents itself in the work by Singh et al. (Singh, 2018;
Singh et al., 2018) and utilized by Wiese et al. (Wiese et al., 2019).
Higher modeling and control accuracy could perhaps be achieved
by considering this effect, noting that neglecting to do so may result
in severe errors in the case of out-of-plane bending. Furthermore,
the convergence of a Lagrange polynomial series solution (i.e.,
solution accuracy increase by the addition of control points) is
not guaranteed with a set of equally-spaced points (Sadati et al.,
2018). This is due to Runge’s phenomenon (oscillation problem of
the fitted curve at the ends of an interval) that can be addressed
by using Chebyshev or Legendre Guass-Lobatto techniques (Liu 
et al., 2018).

To address these issues, a general 3D method is presented
in (Sadati et al., 2019a; Sadati et al., 2020a) in which a 7D series
solution (i.e., with seven independent series, three for the cartesian
coordinates vector and four for the orientation quaternion vector)
represents a continuum rod backbone’s 3D Cartesian position and
quaternion orientation. This approach is similar to that of (98) but
employs simple polynomials instead of NURBS curves. Instead of
using Cartesian locations as system states as in (12), the newmethod
uses the polynomial coefficients themselves, thereby improving
convergence otherwise affected by Runge’s phenomenon. This also
simplifies the derivation complexity caused by the nonlinear form
of Lagrange polynomials.

However, in the 7D solution, the conformity of the local
frame to the robot backbone tangent vector is governed by the
system conservational law (i.e., compliance potential field). These
constraints may not perfectly hold for a coarse spatial integration
step. The exact formulation of the deformed frame twist (or local
curvilinear frame in general) is needed for modeling instability-
induced rapid snapping motions that are observed in some
continuum robots such as Concentric Tube Robots (Mitros et al.,
2021). This is addressed based on a Bishop’s frame formulation for
the tangent frame in (55) by introducing a correction twist on an
arbitrary tangent frame to the robot backbone.As a result, the system
kinematics can be described by a 4D series solution (three for the
cartesian coordinates and one for the correction twist) at the cost
of slightly more complex derivation of the governing equations. A
spline may be used instead of a polynomial when certain degree of
continuity is required along the robot overall backbone, e.g., due to
the change in the robot structure as in a Concentric Tube Robot.
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The transition between the spline segments can be continuously
implemented based on logistic functions. This representation is
used to present the first dynamic model of an everting growing
(vine) robot in 3Dmotion (Berthet-Rayne et al., 2021).The dynamic
modeling and controller design of hybrid rigid-soft robots based on
the Polynomial Shape kinematic are implemented in an open-source
Matlab software package, called “TMTDyn” (Sadati et al., 2020a).

Although being the most common choice, polynomials aren’t
the only options to describe the shape of a soft robot. Singh et al.
comparedHermite, Bezier, PythagoreanHodograph (PH), BSplines,
NURBS curves for this purpose and showcased, in simulation and
experiments, the advantages of a PH curve representation for the
controller design of a continuum arm (Singh, 2018; Singh et al.,
2018). This representation is later adopted for potential field-based
obstacle avoidance of continuum arm on a mobile platform while
navigating an unconstructed environment (Mbakop et al., 2021).

3.1.3 Polynomial curvature (PC) fitting for
curvilinear space characterization

Amongst the early works, shape approximation techniques were
more common to model flexible arm robots (Book, 1990). On
the other hand, polynomial approximation of the strain (curvature
and torsion) along a continuum backbone (Polynomial Curvature
kinematics) was investigated to model planar motion of a hyper-
redundant robot and later a DNA strand by Chirikjian et al.
(Chirikjian, 1992; Chirikjian, 1993; Chirikjian and Burdick, 1994;
Chirikjian and Burdick, 1995; Chirikjian, 1997) who referred to it as
“Modal Approach.” It is introduced to constrain a hyper redundant
arm curvature to a representation with a few DOFs based on
trigonometric (sine and cosine) functions as the assumed mode
shapes for the curvature values, and time-variant coefficients as the
modal participation factors.

In soft robotics research, Polynomial Curvature kinematics
and Lagrange dynamics of a planar Kirchhoff rod (i.e., infinite
shear) were studied by Della Santina et al. (who, for the first time,
referred to it as Polynomial Curvature kinematics) highlighting their
advantages and challenges in controller design (Della Santina et al.,
2110; Della Santina and Rus, 2020; Della Santina et al., 2020a;
Della Santina, 2020). A 1D series solutionwas used for the curvature
of a planar beam backbone to overcome the robot vibration and
reduced performance associated with a Constant Curvature-based
controller. A similar method with Cosserat rod mechanics was
studied for quasi-static 3D modeling of continuum rod in (27)
focusing on the compatibility of the curvilinear constraints such
as those seen in a Concentric Tube Robots (Sears and Dupont,
2006; Webster et al., 2006; Mitros et al., 2021). More recently,
3D implementation of the Polynomial Curvature kinematics is
showcased and verified in standard simulation scenarios by Boyer
et al. (Boyer et al., 2020), who referred to their presented kinematics
as “PiecewiseVariable Curvature”.There, the problemof deriving the
complex governing equations for the system dynamics is addressed
based on a recursive computational scheme which they referred to
as “Inverse Dynamic Model.” Later, this method is showcased for
modeling closed-chain (parallel) soft robots (Armanini et al., 2021)
and made available in an open-source Matlab software package,
called “SoRoSim” (Teejo Mathew et al., 2021).

Alternatively, the right basis function candidate can be identified
based on the fitting performance of different shape functions to

capture the shape of a real soft robot. As an instant of Polynomial
Curvaturemethod, Rao et al. have demonstrated that an Euler curve
(a curve whose curvature varies linearly along the arc length) is a
viable candidate to capture the planar deformation of a continuum
appendage under external tip load (Rao et al., 2021; Rao et al., 2022).
Similarly, modal test results on the actual soft robots can be used
to construct the basis functions for the robot’s reduced order
kinematics, as practiced for flexible arm robotics in 1980s (Book,
1990).

The curvilinear space, i.e., strains (shear, elongation, curvature,
and torsion) requires one fewer state compared to the rectilinear
space (i.e., absolute Cartesian position and orientation) to describe
continuum backbone kinematics, since the curvilinear space
is derived through spatial differentiation from the rectilinear
parameters. However, deriving the rectilinear parameters is still
required for calculating the local effect of external loading and the
system inertial dynamics. This requires spatial integration of a set
of non-integrable trigonometric functions. These integrations are
handled via analytical approximation (e.g., Taylor series expansion
(Della Santina, 2020; Della Santina andRus, 2020)) of the integrands
(Della Santina et al., 2020a; Della Santina, 2020; Della Santina and
Rus, 2020) or numerical integrationmethods (Orekhov and Simaan,
2008). The former method is complex and inaccurate for large
deformations (outside the Taylor series convergence radius) but
necessary for integration in Lagrangian dynamics.The lattermethod
is only compatible with optimization-based solutions (e.g., shooting
method). More accurate solutions for these integrals are proposed
based on the formulation of the closed-form integrals with 0th-
order Bessel functions for the 2D case (Chirikjian, 1992) or, more
generally, the use of integrable basis functions such as helical
functions (Grazioso et al., 2019). The Polynomial Shap approach
overcomes these limitations (i.e., integration complexity, inaccuracy,
and lack of generality) by relying on a differentiation step to obtain
the curvilinear space parameters (required to calculate the strain
actions) instead of the integration step required by the polynomial
Curvature method to obtain the rectilinear space parameters.

However, unlike the Polynomial Shape method, the definition
of curvilinear frame is not problematic in the case of Polynomial
Curvature method due to the direct parametrization of curvature
and torsion. The only exception is the method presented by
Grazioso et al. (Grazioso et al., 2019) in which the deformation
map derivation relies on a curve in the Frenet-Serret frame that is
constructed by analytical integration of helical basis functions for the
curvilinear (curvature) space. There. similar to the works by Singh
et al. (Singh, 2018; Singh et al., 2018), the problemwith an deformed
local frame twist isn’t addressed.

Most of the recent Polynomial Curvature related studies are
limited to theoretical investigations (Orekhov and Simaan, 2008;
Grazioso et al., 2019;Della Santina et al., 2020a;Della Santina, 2020;
Della Santina and Rus, 2020). Future experimental studies on soft
robot hardware and a comparison with Polynomial Shape methods
can help to achieve a fair comparison and conclusion on the most
appropriate method for a given Soft Robotics application.
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3.2 Model Order Reduction (MOR) for finite
element models

In this paper, we used the Reduced Order Modeling term for
the techniques that provide an approximate solution (usually in a
basis function-based from) for the system kinematics. The system
kinematics and material mechanics are then fed into the system
mechanics to derive the system’s equation of motions. Alternatively,
we employed the term Model Order Reduction (MOR) to refer to
the techniques that reduce the state space dimension of an already
developedmodel (usually based onFEM) for a soft system.Although
ReducedOrderModeling andModelOrder Reduction are employed
interchangeably in some literature, the reason for the use of different
terms in this paper is that Model Order Reduction, unlike Reduced
OrderModels for a robot kinematics, is not a fundamental block (i.e.,
the system kinematics, system mechanics, and material mechanics)
of a continuum robotmodel.ModelOrder Reduction is also referred
to as System Compression.

The Model Order Reduction utilizes Principal Orthogonal
Decomposition or Principal Component Analysis techniques which
are widely used in computational mechanics. There, Singular Value
Decomposition is performed on the state variables of several sample
deformations of a soft robot (minimum 2 within each actuation
range). The results are truncated up to a tolerance to define the
system reduced basis and to neglect insignificant system states.
The insignificant states are hard to reach (require large excitation
energy) or hard to observe (produce small observable energy)
(Antoulas, 2005). Such basis need not necessarily have any physical
meaning.Measures are considered to achieve desired tolerancewhile
preserving the system properties such as stability, passivity, and
contractility. The compressed (reduced) system can be used for
nonlinear controller and observer design with stability guarantee
(Chenevier et al., 2018).

Principle Orthogonal Decomposition, although being the only
technique suitable for a nonlinear system (Thieffry et al., 2018a),
is computationally expensive and therefore not real-time. To
achieve real-time performance, Thriftey et al. (Thieffry et al., 2018a;
Thieffry et al., 2018b; Thieffry et al., 2019; Thieffry et al., 2020)
performed the same analysis on a linearized FEM model around an
equilibrium point, and utilized their reduced system to formulate
a stable observer and controller. As a result, their reduced model
was 3–100 times faster in simulations than the original FEM
model. Alternatively, Goury et al. (Goury, Duriez) computed a
reduced integration domain (and weights associated with it) by
computing the reduced basis on the sample deformation space
and simultaneously storing the elements contributions based on an
assumed tolerance. The Galerkin method was then used to solve the
resulted system. Elastic material mechanics based on co-rotational
linear model (Chenevier et al., 2018) and hype-elastic material
mechanics based on neo-Hookean (Goury, Duriez; Chenevier et al.,
2018) and Mooney-Rivlin (Goury, Duriez) models have been
utilized in different Model Order Reduction implementations in the
literature.

Model Order Reduction method is implemented in the “Soft
Robotics Toolkit,” an open-source simulation package based on
SOFA-framework. This implementation benefits from the real-
time performance, open-source (hence expandable), accurate, and
configurable numerical methods of SOFA and is experimentally

verified for nonlinear controller design of soft robots of general
shape (Goury, Duriez; Thieffry et al., 2018a; Bieze et al., 2018;
Thieffry et al., 2018b; Thieffry et al., 2019; Thieffry et al., 2020;
Katzschmann et al., 2019). However, the underlying FEM model
results in high computational cost, lack of theoretical clarity
(i.e., non-interpretability of the modes and complex nonlinear
formulation), and complexity in implementing new assumptions
(e.g., constraint) and elements (e.g., braided pneumatic actuators).
Furthermore, the current implementation of SOFA-framework
cannot handle Coriolis terms in dynamics of rigid bodies and
hence poses difficulty in modeling hybrid rigid-continuum body
structures. The plugin enables implementing a variety of material
laws that are already available in SOFA.

3.3 State space coordination and
dimensionality

A continuum system can be modeled based on states defined in
relative (i.e., the continuum manipulator local tangent frame) and
absolute (i.e., ground fixed reference/inertial frame) coordinates,
which are called “relative states” and “absolute states,” respectively, in
the rest of this paper. Relative states are usually referred to local strain
or free parameters of a fittingmethod that describes a single segment
w.r.t. the previous segment (local frame) in a series chain (e.g., in
the case of Constant Curvature case). An absolute state refers to the
robot shape itself (e.g., node position and quaternion orientation),
participation coefficients of the robot shape modal representation,
or free parameters of an fitting method that describes a robot
segment w.r.t. the global frame (e.g., Hermite, Bezier, PH, or NURBS
fitting of a robot backbone shape). Recently, a hybrid-state model
is presented that combines the absolute (e.g., position) and relative
(e.g., local correction twist angle to represent a Bishop’s frame)
states (e.g., in the case of Concentric Tube Robots) (Sadati et al.,
2022).

Except for FEM research, relative state representations are
dominant for modeling continuum robots due to simplicity
in dealing with system elastic energy, internal forces, and
actuation inputs. Modal representations with relative states require
lower order basis functions too, e.g., a polynomial curvatures
representation relies on 2nd-order polynomials while polynomial
shape representations require a 3rd-order polynomial to capture the
backbone basic motion and satisfy the boundary conditions (e.g.,
backbone right angle at the robot base). However, implementation
of external force fields, contacts, and constraints are challenging.
Furthermore, the system dynamic derivation involves an integration
stage to account for the inertial effects that is usually dealt with based
on approximate numerical solutions that may reduce the overall
accuracy and increase the numerical cost of the system simulation.
The complexity of the equations of motion increases as the number
of elements, states, and segments in a system increases, making
them unsuitable for large-scale systems. The similarity of such
representations with the models for a rigid-link serial mechanism
makes it easier to utilize well-developed techniques from rigid-body
robotics. As a result, relative states are favorable for control system
design in continuum robotics research.

On the other hand, absolute states result in an easier derivation
of inertial terms, external forces, contact, and constraint (e.g., for
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parallel mechanisms). The system dynamic derivation involves a
differentiation stage that can be accurately handled analytically,
and the equation of motion derivation complexity does not
significantly increase as the number of elements in the system
increases, making it suitable for large-scale systems. As a result,
absolute states are favored for FEM modeling in the Soft Robotics
community. Furthermore, considering the robot shape in task space
(configuration in global frame), as the system absolute states, makes
suchmethodsmore suitable for trajectory tracking, shape and/or tip
motion control.

Absolute representation of position and orientation does not
kinematically constrain the local frame to the backbone curve
tangent and this should be enforced by the governing equations,
i.e., due to balance of shear and bending virtual energies. A
hybrid state space method is recently proposed that benefits from
absolute states for the robot position while defines a relative
correction twist angle to define a local Bishop’s frame based on
an arbitrary tangent frame to the resultant curve. As a result, for
the first time, a seamless framework is derived that can handle
instability instances in the dynamics of a continuum system, in
this case a Concentric Tube Robot (Sadati et al., 2022). Such a
hybrid presentation results in a more complex derivation of the
Coriolis terms due to the need for derivation of the backbone curve
tangent frame. However, it benefits from a smaller state space since
the orientation is defined based on a single correction twist angle
instead of three states for Euler angles or for states for a quaternion
representation.

In the case of geometrically exact modeling, variable Curvature
kinematics result in an infinite-dimensional states space based on
strains (relative states) along the robot backbone. Alternatively,
FEM and Absolute Nodal Coordinate Formulations, which result
in a large-dimensional state space based on only position (FEA
(Coevoet et al., 2017) or both position and orientation (Absolute
Nodal Coordinate Formulations (Shabana, 2018; Huang et al., 2021;
Shabana and Eldeeb, 2021) of a finite number of nodes along the
robot backbone, are instances of cases with absolute states. On the
reduced order modeling front, Constant Curvature assumptions,
modal, and fitting-based representation of a continuum backbone
strain domain deal with relative states. On the other hand, modal,
and fitting-base approximation of the robot shape present a reduced
order representation of a system with absolute states. Recent
formulation of a Concentric Tube Robot kinematics based on
polynomial shape approximation in reference coordinates for the
backbone position and Bishop’s frame representation for orientation
in relative coordinates is an example of hybrid state formulation.The
main features, advantages, and shortcomings of different state space
coordination employed in continuum and SoftRobotics research are
summarized in Table 3.

3.4 Solution strategies

The resulted approximate solution for the system kinematic
or mechanics based on reduced order modeling or model order
reduction is called a weak solution in continuum mechanics and
applied mathematics. Such solution is then substituted in the system
governing equations. Afterwards, the Ritz or Ritz-Galerkin method
can be used to solve the resulting system (Hesthaven et al., 2007).

Substituting an approximate (e.g., basis function-based) solution
for the system deformation map. i.e., kinematics, in the system
governing equations is called the Ritz approach to solve a system of
complex PDEs. Although it is not referenced in most Soft Robotics
research works, most of the proposed models for soft robots based
on a basis function based approximation utilize the Ritz method.
Later, the spatial domain of the resulted decoupled system can
be numerically integrated while the time-varying coefficients are
optimized to minimize the governing equation residual error.

Alternatively, the coefficients can be considered as the system’s
EOM states for which the time series can be found from the
numerical integration in time (Sadati et al., 2018). The Galerkin
method of weighted residuals, known as Ritz-Galerkin method,
may provide a better approximation where the weighted residual
of the system is minimized instead of the residual function itself
(Tunay, 2013). In simple words, both sides of the governing
equations resulted from the Ritz method is multiplied by a vector,
called weighting vector, which usually consists of the shape (basis)
functions. Tunay et al. (Tunay, 2013), Sadati et al. (Sadati et al.,
2018), and Goury et al. (Goury, Duriez) have investigated Ritz and
Ritz-Galerkin solutions for continuum robots in the soft robotics
community. Table 4 summarizes the main features of these solution
strategies.

3.5 Controller design implications

Standard control architectures (e.g., Jacobian-based inverse
dynamics (Coevoet et al., 2017; Goury,Duriez;Thieffry et al., 2018a;
Thieffry et al., 2018b; Katzschmann et al., 2019; Thieffry et al., 2019;
Thieffry et al., 2020), feedback linearization (Della Santina et al.,
2020a; Sadati et al., 2020a; Della Santina and Rus, 2020), potential
field planning (Mbakop et al., 2021) for finite-state space systems,
such as rigid body robots, have been integrated with Reduced Order
models of soft manipulators (see Table 2). From the formulation
perspective, the use of absolute states with simplermapping between
the control system states and the robot workspace (e.g., shape
position and orientation) may simplify the controller design for
tracking and planning scenarios in the robot task space. On the
other hand, the use of relative states, with a simpler mapping
between the system states and the actuation inputs, may simplify
the configuration space controller design. This is useful for tasks
involving vibration attenuation or under-actuated system control
design. A detailed discussion on model-based control of soft robots
is presented in (9). A detailed comparative study of different control
strategies for Reduced Order Model of soft manipulators is needed
to better highlight the performance of different combinations of the
Reduced Order modeling and control technique.

3.6 Comparative studies and software
packages

To reach a fair comparison between the different methods
in the literature, it is important to minimize the effect of
experimental hardware and procedures on the results between
different studies. To this end, comparative studies of different
methods based on experimental results with a unique setup can be
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TABLE 5 Summary of the findings from comparative studies of different modelingmethods as presented in (Sadati et al., 2017a; Sadati et al., 2018; Sadati et al.,
2019a; Sadati et al., 2020a; Rao et al., 2020).

Kinematics Mechanics (conserv. Law) Advantages Disadvantages

Pseudo Rigid Body Lagrangian
Dynamics

+ Good accuracy and numerical performance
+ Suitable for dynamic analysis and traditional
control design

- Numerically expensive for complex systems
- Sensitive to incorporating
nonlinear material laws
- Suitable for simple systems with
a small number of states (less
than five discretized segments)
- Suitable for cases without external loading

Constant Curvature Any model + Suitable for incorporating
structural complexity
+ Suitable for formulating a design parameter
study

- Not accurate for hyper-elastic structures
- Not accurate in the presence of body and
external loads

Piecewise Constant
Curvature

Lagrangian
Dynamics

+ Suitable for dynamic analysis
and traditional control design
+ Favorable for stiff continuum systems

- Numerically expensive for complex systems
- Sensitive to incorporating
nonlinear material laws
- Favorable only for a fine-tuned number
of segments ( QUOTE ) but loses accuracy for
smaller and numerical efficiency for a larger
number of segments

Variable Curvature Cosserat Rod + Advantageous for accuracy in general
loading cases with a large number of nodes

- Slow numerically expensive simulations for
general boundary condition cases

FEM & Absolute Nodal
Coordinate Formulation

Lagrangian
Dynamics

+ Most computationally
efficient for complex systems
+ Suitable for incorporating complex material
mechanics models

- A large number of modeling states resulting
in computationally expensive simulations
- Complex controller design due to a large
number of states

Data-driven (robot shape as
a function of the actuator
inputs)

NA + Suitable for real-time performance
+ High accuracy for the learned dataset

- No stability guarantees
- Lack of accuracy in the case of extrapolation
(i.e., cases out of the learned dataset)

Reduced Order (modal &
shape fitting via 2nd-order
polynomial & Euler curves)

Principle of Virtual
Work

+ Combines most of the above advantages, i.e.,
accuracy, simple controller design, near real-
time performance, incorporation of structural
complexity, and general loading cases
+ Numerically robust performance

- Complex implementation for general
boundary conditions

helpful. We have conducted a series of such comparative studies
based on experiments with a soft appendage with pneumatic
braided actuators, known as STIFF-FLOP (STIFFness controllable
Flexible and Learn-able Manipulator for surgical OPerations)
in (Sadati et al., 2017a; Sadati et al., 2018; Sadati et al., 2019a;
Sadati et al., 2020a). A more recent study by Rao et al. (2020)
compared the accuracy of different modeling techniques (Constant
Curvature, Pseudo Rigid Body, Piecewise Constant Curvature, and
Variable Curvature) for a tendon-driven continuum robot. To help
with choosing the right elements for modeling a soft manipulator,
Table 5 provides a summary of findings based on these comparative
studies.

There has been an increasing interest in the application and
contribution of reduced order basis function-based methods
handling singularity issues (Godage et al., 2011a; Godage et al.,
2011b; Godage et al., 2015a; Godage et al., 2016), general loading
cases (Sadati et al., 2018; Sadati et al., 2019a; Sadati et al., 2020a;
Rao et al., 2021; Rao et al., 2022; Sadati et al., 2022), kinematic
constraints (Orekhov and Simaan, 2008), force observation
(Aloi and Rucker, 2019; Aloi et al., 2022), controller design
(Singh et al., 2018; Della Santina et al., 2020a; Della Santina, 2020;
Della Santina and Rus, 2020), and path planning (Mbakop et al.,

2021) emphasizing the ever-increasing importance of Reduced
Order Modeling methods in the Soft Robotics community.

Tailored software packages are developed mostly for FEM-
based (Naughton et al., 2009; Coevoet et al., 2017; Gazzola et al.,
2018; Sadati et al., 2019b; Grazioso et al., 2019; Hu et al., 2019;
Mathew, Hmida, Renda; Huang et al., 2020; Li et al., 2020;
Munawar et al., 2020; Bern and Rus, 2021; Graule et al., 2021)
implementations targeting fast simulation of complex scenarios
for realistic graphical representations and learning-based research.
The exceptions are TMTDyn (based on the TMT method)
(Sadati et al., 2019b; Sadati et al., 2020a) and SoRoSim (based on
a Recursive Computational Scheme) (Mathew, Hmida, Renda),
which are Matlab packages for the theoretical derivation of a
continuum robot Lagrangian dynamics suited for theoretical
dynamical system analysis and nonlinear controller design.
Although, similar functionalities have been or can be achieved
by further developments around FEM-based packages such as
SOFA (Coevoet et al., 2017), PyElastica (Naughton et al., 2009), and
DiffPD (Ma et al., 2021). Ease of use, integration with existing tools,
and suitability to research objectives alongside excellent accuracy,
robustness, and real-time computational performance are key to
ensuring wide acceptability.
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4 Conclusion and future directions

Reduced Order Modeling and Model Order Reduction
techniques have been extensively investigated to obtain models
of acceptable dimension for Soft Robotics control. In this paper, we
reviewed and compared the techniques identified in the literature,
summarizing our findings in Tables 2, Table 3, Table 4, Table 5.
Although, Reduced Order Modeling and Model Order Reduction
techniques are promising paths towards Soft Robotics control, they
require further theoretical development, experimental validation,
and comparative study.

The quest for finding a better shape fitting technique for soft
manipulators is still ongoing with recent studies on Euler curves and
Magnus expansion technique. Modeling complex soft manipulators
with parallel structure, braided, growing, and concentric elements
are the most recent trends in relevant modeling research. On the
control research front, application of shape fitting techniques for
shape control, path planning, and obstacle avoidance have been
among the most recent studies.

Amongst the Reduced Order Modeling techniques, the
Polynomial Shape method has been primarily investigated for
modeling complex continuum systems, such as Concentric Tube
and Eversion Growing Robots. On the other hand, the Polynomial
Curvature method has been mostly studied for the control problem
of simple continuum manipulators. Both the Polynomial Shape
and Polynomial Curvature methods for soft manipulators are now
supported by open-source software, dynamical implementation of
general deformation and loading cases, experimental studies, and
controller designs, but require further theoretical developments.
Such developments need to focus on integrating nonlinear material
mechanics laws, simulation stability analysis for modeling hyper-
elastic material models, and further experimental investigations.
On the other hand, Model Order Reduction implementations for
soft robots, which relies on a preliminary FEM model, will benefit
from more collaborative work, dissemination, and support for
implementation by experimentalists.

Immediate next research steps are simulation numerical stability
analysis for high bandwidth and unstable rapid motions of soft
manipulators, high-bandwidth motion and vibration attenuation
control, force and stiffness regulation, external force and impact
observation, multi-arm coordination, robot planning for self-
collision and obstacle avoidance, and path following based on
techniques such as follow-the-leader. The Polynomial Shape and
Curvature methods are yet to be explored for parallel structure
and path planning problems respectively. Finally, the potential of
run-time fitting techniques based on modal test results on the
actual system, or a precomputed basis (normal nonlinearmodes) are
untapped.

In the long run, it is interesting to investigate the ReducedOrder
Modeling techniques for the emerging research directions in the
Soft Robotics such asmulti-physics simulations (e.g., soft swimming
or flying robots), machine learning and data-driven techniques,
and task automation. Finally, developing software toolkits and
experimental comparative studies are essential to broaden the reach

and impact of the Reduced order Modeling techniques and to help
identify each method’s potential from an application-oriented and
control perspective.
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