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µRT: A lightweight real-time
middleware with integrated
validation of timing constraints
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Ulrich Rückert

Cognitronics and Sensor Systems Group, Faculty of Technology, Bielefeld University, Bielefeld,
Germany

Middlewares are standard tools for modern software development in many
areas, especially in robotics. Although such have become common for high-
level applications, there is little support for real-time systems and low-level
control. Therefore, µRT provides a lightweight solution for resource-constrained
embedded systems, such as microcontrollers. It features publish–subscribe
communication and remote procedure calls (RPCs) and can validate timing
constraints at runtime. In contrast to other middlewares, µRT does not rely on
specific transports for communication but can be used with any technology.
Empirical results prove the small memory footprint, consistent temporal
behavior, and predominantly linear scaling. The usability of µRT was found to
be competitive with state-of-the-art solutions by means of a study.
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1 Introduction

For sophisticated software architectures, middlewares have become important tools to
facilitate modular systems, which—despite their complexity—are easy to maintain and can
be extended with minimal effort. Although numerous solutions have been developed in the
last decades, only a few consider real-time computing. Regarding robotic systems, which
interact with their environment on a physical level, this paradigm of computer science is
inevitable, though, as it is a vital requirement for safe operation. In contrast to other domains
that require real-time processing, modern robotic platforms need high modularity and
complete determinism regarding execution and reaction times to be adaptable and extensible
but also safe (Stankovic, 1988; Shin and Ramanathan, 1994; Oshana, 2006; Wörn, 2006;
Zurawski, 2006; Jahn, 2021).

The novel middleware presented in this work has its roots in just this challenge
to combine both worlds in a single system. When working with the AMiRo platform
(Herbrechtsmeier et al., 2016; Herbrechtsmeier, 2017), which features a heterogeneous,
distributed real-time architecture, the application development became disproportionally
difficult as complexity increased. The monolithic software design did not resemble the
modular hardware, nor could it satisfy fundamental use cases for the robot. AMiRo features
multiple microcontrollers (MCUs), which form a loosely coupled real-time system, but
each of which is responsible for multiple tasks, such as power management, motor control,
sensor fusion, wireless communication, and behavioral applications (Schöpping et al., 2015;
Schöpping et al., 2018; Korthals et al., 2019; Schöpping andKenneweg, 2022a; cf. Figure 12).
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By introducing a communication middleware to the real-time level
of the platform, these issues should be resolved, and several existing
solutions have been evaluated. Unfortunately, none could satisfy
all requirements, which eventually led to the decision to develop a
completely new system: µRT (pronounced like “Marty”: [má:rti]).

Before µRT is described in detail in section 2, several types
of existing middlewares and fundamental concepts are presented
in this section (cf. sections 1.1 and 1.2). In section 3, µRT is
evaluated thoroughly in three aspects: feature set (cf. section 3.1),
performance (cf. section 3.2), and usability for software developers
(cf. section 3.3). The findings are briefly discussed in section 4
before conclusions about µRT are drawn in section 4.1, and future
enhancements are proposed in section 4.2.

1.1 Related work

Today, it is very common to usemiddlewares for communication
in modular architectures. During the last decades, a great number
of middlewares have been developed, with CORBA (Yang and
Duddy, 1996), MQTT (Stanford-Clark and Hunkeler, 1999), and
ROS (Quigley et al., 2009; Macenski et al., 2022) being some of the
most popular ones. Using such tools has numerous advantages:

• Compatible applications can be executed on any system
that runs the according middleware, allowing for high code
portability.
• Existing software can be reused and integrated with minimal

effort.
• Realization of further applications is simplified due to uniform

interfaces and additional debugging and profiling tools
most solutions provide, leading to high-quality code while
minimizing development time.

One major issue with existing middlewares is that only very
few consider real-time computing. Thus, most cannot be used for
such use cases. There are exceptions to this rule, such as real-
time CORBA (Fay-Wolfe et al., 2000), Orocos (Bruyninckx, 2001),
R2P (Migliavacca, 2013; Matteucci et al., 2015; Migliavacca, 2016),
and ROS 2 (Macenski et al., 2022), although those have other
disadvantages. Notably, neither of the aforementioned solutions
features actual validation of timing constraints at runtime. However,
for large, potentially harmful, or even lethal platforms, the detection
of real-time violations is a crucial requirement for safe operation.
Even though static scheduling techniques exist to determine a
valid task execution sequence and prevent timing violations at
runtime, methods and solutions become much more complex
for distributed systems and require a high level of control over
individual components (Di Natale and Stankovic, 2000; Zurawski,
2006).

1.1.1 Real-time CORBA
Although CORBA is actually an open standard defined by the

Object Management Group (OMG, 2021), it contains several design
flaws, which are consequently inherited by all implementations,
such as TAO (Schmidt et al., 1998), TAOX11 (Remedy IT, 2019),
or omniORB (Grisby, 2022). Due to its design by committee,

it suffers from several issues regarding complexity, redundancy,
and missing features (Henning, 2006). Because real-time CORBA
is a modification of the original specification (OMG, 2005), it
incorporates the same issues, rendering it a suboptimal solution.
Especially when targeting resource-constrained platforms such as
MCUs, the high complexity of CORBA inevitably results in high
resource requirements, which such devices can rarely (and if so, just
barely) satisfy. As a result, all implementations of newer versions
of the CORBA specifications only support sophisticated operating
systems, such as Linux or Windows, but are not designed to be
deployed on MCUs.

1.1.2 Orocos
Originally developed by Bruyninckx (2001), the Orocos project

is a collection of libraries and tools for the efficient development
of robotics software, which is portable and has high runtime
performance, with real-time support being one of its core aspects.
Moreover, it can be combined with other middlewares if desired.
For certain communication schemes, Orocos employs CORBA (cf.
section 1.1.1; optional for local, non-distributed setups), and it
can also be integrated with ROS (Quigley et al., 2009) and ROS
2 (Macenski et al., 2022). However, Orocos is not designed to be
deployed on MCUs and does not feature validation of timing
constraints at runtime.

1.1.3 R2P
R2P has been developed by Migliavacca (2013) as an alternative

to ROS (Quigley et al., 2009), LCM (Huang et al., 2010), and
FAMOUSO (Schulze and Zug, 2008; Schulze, 2009) with improved
support for hard real-time systems. It is focused to be used on
MCUs, which communicate via a controller area network (CAN),
specifically the RTCAN protocol (Migliavacca et al., 2013). As such,
it seemed appropriate for the AMiRo platform at first glance, as it
is also based on ChibiOS (di Sirio, 2020, 2022), just like AMiRo-OS
(Schöpping et al., 2016), the real-time operating system (RTOS) of
AMiRo. Unfortunately, R2P relies on dynamic memory allocation
as it employs memory pools. Therefore, complete determinism
cannot be guaranteed. Because the development of the project
ceased in 2016, there was no support to implement the according
modifications, and there is little detailed documentation about the
project to be found.

1.1.4 ROS 2
The arguably most popular solution in robotics is ROS,

which introduced real-time support with ROS 2 (Quigley, 2015;
Macenski et al., 2022) and its extensions, micro-ROS (OSRF, 2022a)
and RT-ROS (Wei et al., 2016; Faust, 2022), respectively. However,
the overall performance of ROS 2 strongly depends on the utilized
data distribution service (DDS; OMG, 2015) implementation
(Maruyama et al., 2016). Regarding MCUs and micro-ROS, DDS
for eXtremely Resource Constrained Environments (DDS-XRCE;
OMG, 2019) must be employed, which specifies a centralized
communication topology with multiple clients interacting with a
single server—an undesired architecture for distributed systems
composed of equal participants. Because its popularity makes it the
de facto standard solution in robotics, ROS 2 has been evaluated to
a particular extent.
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FIGURE 1
ROS 2 “pendulum demo” benchmark results. While the system1 was only running the “pendulum demo” for the left histogram (A), additional stress was
put on the CPU for the right-hand results (B). Although the results presented by Kay and Tsouroukdissian (2015) are reproduced very well, logarithmic
scaling of the frequency axis reveals a significant number of samples with high latency.

Although the ROS ecosystem is generally very powerful, there
are indications that the real-time capabilities of ROS 2 are still not
optimal. First, Kay and Tsouroukdissian (2015) presented empirical
results of the official ROS 2 demo application for real-time use
cases “pendulum demo,” which were promising overall. However,
they showed occasional latency spikes, especially when the CPU
was put under load. Because these benchmarks are rather dated
and real-time capabilities might have been optimized since, another
set of benchmarks was conducted,1 which still confirms the limited
suitability of ROS 2 for hard real-time applications. The results of
these benchmarks are depicted in Figure 1 and reveal two important
findings.The histograms show the results of the same benchmarks as
presented byKay andTsouroukdissian (2015), and the original result
data is resembled verywell. However, no “outliers” were visible in the
presentation due to the linear scaling of the frequency axis.When the
CPU is put under load, these “outliers” become even more frequent
and resemble a Gaussian distribution. This is problematic regarding
real-time systems because latency is not limited by an upper bound.
The issue becomes even more evident when considering the goal
of a jitter of fewer than 30 µs (3% of 1 ms period), as defined by
Kay andTsouroukdissian (2015). For the benchmarkwith additional
CPU load, almost 25% of all data points violate that constraint.
Although the cause for the worse performance, despite process
priorities configured in favor of the “pendulum demo” (real-time vs.
nice),may be rooted in theOS rather thanROS 2, there are obviously
no mechanisms in place to limit execution times or at least notify
about high latencies.

Further evidence of the limited real-time capabilities of ROS
2 can be found in the performance analyses by Maruyama et al.
(2016). The data reveal that ROS 2 scales worse than linear in many

1 CPU: Intel Core i7-7567U (2 cores) locked at 3.5 GHz and hyper-threading
disabled; OS: Ubuntu 22.04 with real-time kernel (Linux 5.15.0–1016-realtime
x86_64); ROS: “Humble Hawksbill”

situations. Hence, strict timing constraints become exponentially
more difficult to meet when system complexity increases. The data
also show strong latency variations, even exceeding 10% of the
median for data sizes of 1 MB and more. Overall, the real-time
capabilities of ROS 2 remain insufficient for scenarios where timing
constraints are critical and must be respected and its high resource
requirements render it unsuitable for MCUs without sacrificing
decentralization.

1.2 Interaction concepts

When designing a new midleware, several alternate paradigms
can be followed. Eugster et al. (2003) gave a comprehensive
overview, and the most important concepts are summarized as
follows.

1.2.1 Decoupling
One of the most important characteristics of any distributed

communication framework is decoupling. Participants can be
coupled in three domains, all of which should be omitted:

• space: If participants must know each other in order to
exchange information, they are coupled in space.
• time: In case producers and consumers both have to be active

and connected when data is transmitted, they are coupled in
time.
• synchronization: For systems coupled in this domain,

execution is blocked when sending or receiving data.

1.2.2 Interaction
Furthermore, Eugster et al. (2003) described six fundamental

concepts of interaction and how communication between
participants is realized. The publish–subscribe paradigm eventually
achieves decoupling in all three domains and thus is the most
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powerful technique in this regard. Another very popular concept
is remote procedure calls (RPCs), tightly coupled according to
Eugster et al. (2003), but allowing for “pulling” communication,
whereas information can only be “pushed” with publish–subscribe.
Fortunately, the coupling can be relaxed by an extension of
RPC, called “future” (Ananda et al., 1992) or “wait-by-necessity”
(Caromel, 1993; cf. Eugster et al., 2003).

1.2.3 Addressing
In order to establish communication between producers and

consumers in a decoupled manner, addressing information needs
to be abstracted. There are several approaches to how this can be
realized (Eugster et al., 2003).

• topic/service-based: Producers provide information via
a certain topic or service, usually identified by a name.
Consumers can declare interest in specific information by such
identifiers and will eventually receive all data provided via the
according topic/service.
• content-based: Consumers can define a set of rules (or filters)

on whether they will receive new data. Only if the content of a
message meets these rules, it (the message) is delivered to the
consumer.
• type-based: When a producer emits a message with a complex

data type as payload, a consumer might be interested but in a
subset of that data. Hence, only this part of the original message
is delivered to that specific consumer.

Hybrid techniques are also possible, such as the scope-based
approach of Robotics Service Bus (RSB) (Wienke and Wrede, 2011).
It employs a URI format for scope names, introducing a hierarchy
and filtering capabilities without defining any requirements on the
actual information payload.

1.2.4 Quality of Service
Quality of service (QoS) is typically used to track information

such as latencies and the number of delivered and discarded
messages. However, timing constraints are of major importance
to guarantee system stability and safety regarding real-time
systems. Therefore, the according mechanisms can prioritize
important communication and preempt others. Furthermore,
the system can be monitored to detect critical failures
(i.e., timing violations) as soon as possible and initiate an
appropriate reaction. Hence, when timing constraints are not
met, temporal behavior tracking and execution of defined
routines are also part of QoS in the nomenclature of this
work.

2 µRT

Although the original motivation for the development of a new
middleware was the modularization of the software running on the
MCUs of AMiRo (Herbrechtsmeier et al., 2016; Herbrechtsmeier,
2017), several additional goals were specified to make the resulting
system applicable for a wide range of other devices with very strict
real-time requirements:

1. Memory footprint small enough for mainstream and ultra-low-
power MCUs.

2. Throughout real-time capability per completely deterministic and
very consistent behavior at runtime.

3. At most linear scaling with increasing system complexity (e.g.,
number of participants).

4. Validation of timing constraints at runtime.
5. Support of periodic/time-based and event-based communication

schemes.
6. Easy-to-use interfaces that help developers create correct and

efficient code.
7. Interoperability with existing middleware.
8. High configurability to adapt the system to any specific use case.

The proposed solution to that challenge—µRT—is an entirely
event-based system, featuring a lowmemory footprint, full real-time
capabilities, and built-in validation of timing constraints at runtime.
It features a topic-based publish–subscribe architecture and future
RPCs (cf. section 1.2). It is implemented2 in C (Schöpping
and Kenneweg, 2022a) and declares all interface functions to
external components by its operating system abstraction layer
(OSAL), as described in section 2.4. The implementation is
highly configurable at compile time through a comprehensive set
of feature flags, which allow disabling entire subsystems (e.g.,
publish–subscribe or RPC) to reduce memory footprint and
improve performance. An overview of the µRT architecture is
depicted in Figure 2. Before the several components are described
in detail in sections 2.5–2.7, some basic concepts about its real-
time classes and constraints and the fundamental approach of µRT
are presented in sections 2.1–2.3. Finally, the interface-agnostic
approach to interacting with other components (e.g., foreign
middlewares) in sophisticated, complex systems is described in
section 2.8.

2.1 Types of constraints

µRT defines three types of timing constraints: latency,
synchronicity, and rate. If a constraint is met, its validation function
results to 1, whereas a value of 0 indicates a timing violation.

2.1.1 Latency
Often referred to as “deadline,” a maximum expected latency

τ for information propagation can be specified. It is defined as a
function l(τ,Δt) with Δt the duration of an operation so far:

l (τ,Δt) =
{{
{{
{

1, if Δt ≤ τ

0, otherwise
(1)

2.1.2 Synchronicity
For periodic tasks, it is often required that all iterations take

similarly long and execution time varies as little as possible. For real-
time systems, this “jitter” must be limited by an upper bound δ. By

2 https://gitlab.ub.uni-bielefeld.de/AMiRo/uRtWare; licensed under LGPL 3
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FIGURE 2
µRT architecture overview. While the thread type is defined by the underlying operating system via OSAL and payload are individual types for each topic
and request, all other components are specified by µRT.

tracking theminimum andmaximum iteration times (tmin and tmax)
during system operation, the validity of the synchronicity constraint
s(δ, tmin, tmax) can be calculated by

s(δ, tmin, tmax) =
{{
{{
{

1, if tmax − tmin ≤ δ

0, otherwise
(2)

2.1.3 Rate
Although this constraint is not considered at all bymost authors,

it is crucial to detect the complete failure of individual components
in an event-driven system at runtime. If a data source does not
provide any further information, no data processing pipeline will
be triggered, and neither latency nor synchronicity constraints
will ever be violated. A possible solution to this challenge is the
implementation of a dead man’s switch, which is monitored and
checked for regular activation by another component. Alternatively,
rate constraints can be validated without the need for a dedicated
monitor by introducing a maximum period ϵ between subsequent
data points and comparison of the current time t and the time of the
latest data point ti−1:

r(ϵ, ti−1, t) =
{{
{{
{

1, if t− ti−1 ≤ ϵ

0, otherwise
(3)

2.2 Real-time classes

µRT distinguishes four classes of real time: hard, firm, soft, and
non-real-time. Most authors consider only two classes—hard and
soft—because the other definitions are special cases of the latter
(Oshana, 2006; Wörn, 2006). However, from an implementation
point of view, it makes sense to consider all four cases. The common
ground for all classes is that usefulness u ∈ [0,1] is calculated so
that the major differences are further restrictions in the mapping
functions and interpretation of u.

2.2.1 Non-real-time (NRT)
This trivial class has no real-time constraints at all. As a result,

u = 1 always holds.

2.2.2 Soft real-time (SRT)
As the most general class, the mapping Δt↦ u can be of any

form for SRT. Each component may define an individual mapping
function to calculateu in order to assess the quality of eachdata point
during operation. While monotonic decreasing functions are most
common, partial functions can be used to model desired temporal
frames (i.e., to represent jitter constraints). Most notably, the NRT
and FRT classes are, in fact, special cases of SRT.

2.2.3 Firm real-time (FRT)
This class further restricts u to be either 1 or 0 (“valid” or

“invalid”). Such a distinction makes sense from an implementation
perspective for two reasons. Calculations and representations do not
require “sophisticated” data types, such as float. Because many
MCUs do not feature an FPU (floating-point unit), emulation of
such types is computationally expensive and may result in temporal
inconsistency. Furthermore, this allows for a general calculation of
u, depending on constraints for latency, synchronicity, and rate:

u = l (τ,Δt) ⋅ s(δ, tmin, tmax) ⋅ r(ϵ, ti−1, t) (4)

Note that each factor can be “deactivated” by setting its parameter
(τ, δ, or ϵ, respectively) to∞.

2.2.4 Hard real-time (HRT)
Similar to FRT, the usefulness u is interpreted more strictly

for this class. Violations of hard real-time constraints (u = 0)
are considered severe incidents. The system is assumed to be in
an undefined state. It may even be dangerous to itself and its
environment. Such events must be detected and handled as quickly
as possible to restore a stable situation and prevent any harm. This
detection of violations is a key feature of µRT and is implemented
using timers, which will trigger either a recovery attempt (can be
defined for each component individually) or a systempanic (system-
wide default) exactly when a violation occurs.

Furthermore, µRT forbids HRT transmissions to be
“overwritten,” which might result in the loss of a vital data point.
As a result, further communication may be blocked as long as one
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or more HRT consumers have not processed previous messages yet
(cf. section 2.6).

2.3 Design concepts

Now that the fundamental definitions of constraints and
real-time classes have been presented, several particularities
remain about how µRT achieves its real-time characteristics.
Most importantly, µRT uses a sophisticated approach to track
communication timestamps to detect violations of real-time
constraints, which is detailed in section 2.3.2.

2.3.1 Event-driven system design
µRT fully embraces the paradigm of event-driven architectures

and avoids any periodic polling. This ensures that all events
are handled as soon as possible with minimal latency and task
prioritization and preemption are left to the scheduler of the
underlying RTOS. Due to the absence of periodic “synchronization
points,” jitter may increase, though, if the runtime complexity of
some components varies greatly during operation. However, real-
time software, in general, should be designed to exhibit consistent
processing time in the first place. As a result, systems using µRT
are more sensitive to bad implementations (concerning real-time
characteristics), so developers will be encouraged to optimize such
a code. Nevertheless, periodic execution of tasks with a given
frequency remains desired in many situations, such as reading
sensor data. With µRT, such behavior can be realized by means of
periodic timers, which regularly fire with a specified frequency and
emit events that eventually trigger task execution. This method is
more elaborate as it involves an additional component (the timer)
to achieve the time-triggered operation of the event-driven system,
but that is actually intended. Because event-triggered task execution
should be preferred in most situations, µRT deliberately encourages
developers to follow this software design paradigm.

2.3.2 Validation of timing constraints
Another important aspect of µRT is its approach to tracking

latencies and validation of timing constraints at runtime, which are
not defined per data point (e.g., sensor data have to be processed
within a certain time frame), but by individual participants in the
system (e.g., information must be received before it is older than
τ). This approach effectively results in usability values per data
point and consumer, so each participant can define and validate its
individual timing constraints independently. Especially if additional
stages are added to a data processing pipeline, making it more
expensive regarding computation time, constraints of later stages
remain valid and require no adjustment.

A crucial detail for this approach to work is correct tracking
of the origin times of information, which is not the same as when
the data are being transmitted within a system. While that data
contains information, the latter emerges as soon as an event or state
is observed and not only when it is encoded into some form of data
structure, such that

tinfo ≤ tdata (5)

holds. This definition is particularly important with regard to data
processing pipelines, in which multiple components are arranged

in a chain. After each stage in that pipeline, data is transmitted to
the following component, and tdata,i increases continuously, whereas
tinfo,i remains unchanged.3 The benefits of this approach become
obvious when analyzing the opposite case. If each component k ∈
{2,…,n} in a data processing pipeline of length n would define its
own relative deadline τk > 0 regarding its preceding stage, the overall
deadline of the entire pipeline τ′ would be defined by

τ′ ≤
n

∑
k=2

τk (6)

The edge case of an equilibrium would only occur if all
components fully exhaust their time budget: Δtk = τk∀k. As soon as
any component requires less time (Δtk < τk), the overall time budget
τ′ is also reduced by that difference: τ′ ← τ′ − (τk −Δtk). As a result,
pipelines might miss τ′ because individual components are too fast,
or all τk need to be increased to compensate for this effect, resulting
in an overly optimistic initial value of τ′, which is no longer related
to the actual use case. By referencing all timing constraints to the
absolute origin time of information tinfo, the constraints of the entire
pipeline are defined exactly by the last component, and each previous
component defines the timing constraints of the pipeline up to that
stage.

µRT specifies an information time tinfo,i per data point i and
validation of all timing constraints always refer to this value. For
latency constraints, the point in time tl,i at which the deadline τ is
missed is hence defined by

tl,i = tinfo,i + τ (7)

and µRT can thus arm a timer to trigger as soon as tl,i has elapsed,
indicating a timing violation.The two critical times for synchronicity
constraints, tsmin,i and tsmax,i, are likewise defined by

tsmin,i = tmax − δ and (8)

tsmax,i = tmin + δ (9)

While tsmax,i is validated by means of a timer as well (actually only a
single timer is required for latency and synchronicity validation; cf.
Equation 12; sections 2.6 and 2.7), tsmin,i is checked whenever data
is retrieved by the consumer. If it was fetched too early, a timing
violation has occurred. Regarding the rate, only the most critical
constraint ϵ′ among all n consumers of a data source needs to be
considered for the definition of the critical time tr,i+1:

tr,i+1 = tinfo,i + ϵ′ with (10)

ϵ′ =min({ϵ1,…, ϵn}) (11)

Hence, validation of ϵ′ is not performed every time data is
fetched by a consumer, but only when it is provided by the producer.
Therefore, rate validation does not require another timer for each
consumer but only one per producer (at most; cf. section 2.6).

Due to these mechanics, some possible side effects should be
kept in mind when working with µRT. When data is provided by
a producer, the contained information might already violate the
latency or synchronicity constraints of consumers:

tdata,i >min(tl,i, tsmax,i) (12)

3 Modification of tinfo,i is possible if desired
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A similar effect occurs whenever the difference between tinfo,i and
tdata,i exceeds a rate constraint:

tdata,i − tinfo,i > ϵ′

⇔tdata,i > tinfo,i + ϵ′

⇔tdata,i > tr,i+1 (13)

As a result, a timing violation is detected as soon as the data is
committed. Strictly speaking, this is already too late because, in
both cases, the critical point in time has already elapsed. For µRT’s
validation mechanisms, there is obviously no way of knowing about
such data before it exists. Although detection of timing violations
might be delayed in such situations, µRT still acts as quickly as
possible.

There is yet another possible edge case that should be considered
when specifying the rate constraints of consumers. Because of
Equation 5, µRT might detect a rate violation, although future data
would provide valid information:

tinfo,i+1 < tr,i+1 < tdata,i+1 (14)

Therefore, rate checks in µRT are rather conservative, and
constraints ϵ should be specified with this in mind.

Finally, a last particularity of µRT’s timing validation mechanics
is worth pointing out. As already mentioned, all constraints are
defined by consumers, so in a sequential data processing pipeline,
there are two steps for which no constraints can be defined: the
observation, which initiates the pipeline, and the ultimate action at
its end. In the former case, latency and jitter do not apply, and the
rate can be validated by the subsequent component. However, for the
latter case, the timing of the final action can only be validated by yet
another consumer. The component that executes the action needs to
provide information to confirm that the action has been conducted,
and the additional component—also calledmonitor—consumes this
information and validates its real-time behavior. While the use of
such monitors seems complicated and inefficient at first glance, a
single component can monitor all pipelines in a system, resulting
in only minimal overhead.

2.3.3 Concurrency and mutual exclusion
For control of concurrent access to shared data structures,

µRT relies on mutex locks and condition variables. Although lock-
free methods are generally to be preferred for real-time systems
(Anderson et al., 1997), they are difficult to realize for many aspects
of µRT, in particular without the C concurrency support library
(stdatomic.h), which was only introduced with C11 (ISO, 2011) and
would make µRT unusable for projects that do not support this
version of the C standard. Especially in the context of MCUs, more
conservative standards are often preferred (even Linux was only
recently lifted to C11 from C89; Torvalds et al., 2022). Conversely,
most MCUs feature only a single core anyway, such that the benefits
of a lock-free implementation are rather limited.

2.3.4 Configurability
In order to adapt µRT to the specific requirements of individual

use cases, multiple feature flags and settings are provided to
configure the implementation at compile time. First and foremost,
the three subsystems—synchronization, publish–subscribe, and

RPC (cf. Figure 2)—can each be enabled or disabled as required, and
another global flag selects between debug and release builds. These
settings are particularly useful if code size needs to be reduced to
reduce ROM utilization. Selecting a release build also disables many
sanity checks and improves performance tremendously.

There are several more settings regarding the two
communication subsystems. On the one hand, tracking of
profiling information can be enabled or disabled for each of the
two subsystems. While such information can help track down
bottlenecks, the logic obviously requires additional resources in
ROM, RAM, and CPU time. On the other hand, the validation
of timing constraints can be enabled or disabled as required via
a total of five flags; for publish–subscribe validation of latency,
synchronicity and rate constraints can be selected individually,
and the same applies for latency and synchronicity constraints
for RPC interaction. Even with all validation logic disabled, µRT
still distinguishes the four real-time classes (cf. section 2.2), which
is a perfectly legitimate use case. Once again, disabling these
components saves resources in all three domains.

Further settings allow fine-tuning µRT even further by setting
the sizes (i.e., number of bits) for several frequently used data types,
such as temporal delays4 and identifiers for topics and services
(cf. sections 2.6 and 2.7). There are also flags to select alternative
algorithms for selected components of µRT, although these are not
recommended for most scenarios and therefore are not discussed in
this work. Finally, more settings allow configuring and interfacing
OSAL, the abstraction layer for interaction with the operating
system (cf. section 2.4).

2.4 Operating system abstraction layer

µRT defines its own abstraction layer to interface the underlying
OS and event system. For applications using this middleware, it is
recommended to stick to this API as well to ensure portability. The
following features must be made available to µRT by mapping the
according functions to OSAL.

• unique timestamps: Hardware timers in many MCUs feature
only limited ranges (i.e., 16 or 32 bits) and tend to overflow
frequently when setting the frequency to high values (e.g.,
1 MHz). By definition, µRT uses timestamps at 1 µs resolution
and requires the RTOS to provide an according accumulated
system time or map a lower resolution time to µs equivalents.
• mutex locks and condition variables: Concurrent access

to several components of µRT is prevented via mutex locks.
Condition variables are used to inform nodes asynchronously
about released locks.
• timers: µRT makes extensive use of timers to detect timing

violations. Preferably the RTOS uses actual hardware timers so
that violations result in the execution of an interrupt service
routine (ISR) and according reactions are triggered as soon as
possible.

4 While timestamps are defined by µRT to be 64-bit wide, delays may be
represented by a smaller type
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• threads: OSAL defines a set of functions to control thread
execution. Although thread handling may differ significantly
between individual RTOSes, only very common functions are
required by µRT.
• event system: µRT does not implement its own event system

but relies on an externally provided implementation. Such can
be part of the RTOS (as is the case for ChibiOS; di Sirio, 2020,
2022), or another system can bemapped toOSAL. µRT requires
events to be emitted via broadcasts, and threads can be signaled
individually.
• output: In order to printmessages to output and error streams,

the according functions must be provided. While in most cases,
these will be aliases to the standard C function fprintf(),
there are exceptions where this is not available (as is the case
with AMiRo-OS).
• assert: When built with debug flags enabled, µRT performs

many sanity checks in the form of assertions. As with the output
functions, the OSAL assertion can be mapped directly to the
standard C assert(). When further code (e.g., to stop a
motor) shall be executed, such can be easily induced at this
point.

2.5 Core components

As shown in Figure 2, the fundamental components of µRT
comprise the core and nodes as well as an optional mechanism
to synchronize nodes. As a central entity, the core is a static
data structure, which exists exactly once and is globally available
within a µRT context. It holds lists of all nodes, topics, and
services and offers methods to control execution flow on a top
level.

Nodes define the interface for the actual participants in the
system. Each node is executed in its individual thread but may
control further threads. The main() function for each node thread
is part of the µRT implementation and subdivides the lifespan of
each node into three phases, each of which can be interfaced via a
custom callback function.

1. startup: This initialization phase is individual to each node.
Before execution proceeds to the next stage, all nodes are
synchronized by the core.

2. operation: Since µRT follows a strictly event-based approach,
actions will only be performed if the node thread is triggered
by some event source. Such triggers can be anything (e.g.,
communication, timers, or hardware interrupts) and are
fully customizable. The only mandatory event belongs
to the core in case of a shutdown request or a system
panic.

3. shutdown: As soon as a node is requested to stop, it
enters this final phase. The reason for the shutdown is
propagated to all nodes, so appropriate actions can be
executed.

In many situations, it is useful to synchronize multiple threads.
This behavior is not trivial to realize by events only as each involved
thread would require information about the others, resulting in a
violation of the decoupling requirements (cf. section 1.2.1). To this
end, µRT features syncgroups that can hold an arbitrary number

of syncnodes5 to be synchronized. Each thread that has joined a
syncgroup can call a non-blocking synchronize() method at
some point in time. If the result of that function call indicates that
some syncnodes of the syncgroup have not synchronized yet, the
calling thread has to wait for a synchronization event. As soon as
the final syncnode executes that method, this event is emitted to the
entire syncgroup, except for the calling thread, which receives an
according return value. For use caseswhere the µRT synchronization
mechanism is not desired, it can be disabled entirely via a feature
flag. If a system comprises multiple µRT contexts (cf. section 2.8),
these mechanics can also be employed to synchronize all nodes in
the entire system.This is done once by default tomake all nodes enter
the operation phase simultaneously.

2.6 Publish–subscribe

For unidirectional communication, publishers provide
information anonymously through topics, which act as mediators
and inform all registered subscribers (cf. Figure 3). In order to
retrieve a topic by its identifier (µRT uses no strings but numerical
values to identify topics), the core provides the according methods
to search among all available topics.6 While publishers are registered
to a topic at initialization, subscribers can subscribe and unsubscribe
dynamically during operation. Every topic holds one or more
messages in a ring buffer, each of which holds a custom payload
structure to carry data. This buffer is implemented as a distributed
list instead of a contiguous array. Therefore, further elements can be
added by any component at any point in time.

The timestamp of each message is of major importance. As
described in section 2.3.2, it does not describe the point in time
when the message was published (tdata), but the origin time of the
contained information (tinfo). Due to this differentiation, themessage
buffer of each topic is not ordered by tdata but by tinfo, so that the
latest element in the buffer will always be themessage with the latest
information. Conversely, when a new message that carries older
information is published, it is not appended but rather enqueued
according to its tinfo value.

Whenever information is published, several steps are executed
by µRT:

1. The publisher requests a message from the topic. If no message
is available due to pending HRT subscribers (cf. section 2.2) or
if the oldest element in the buffer already holds more recent
information, the publish attempt fails. Otherwise, the metadata of
the message, such as information time, is updated, and payload
data is copied to its buffer. After that, the message is enqueued
again in the topic’s buffer, according to its tinfo.

2. Metadata at the topic is updated. If the published message is the
latest one in the buffer, the topic’s rate timer is re-armed according
to the timestamp of the new message and the most critical rate
constraint among all registeredHRT subscribers ϵ′. Each topic also
holds a list of all registered HRT subscribers, so their timers to

5 Although it is recommended to synchronize nodes, the implementation
actually works on a thread level

6 Retrieval of a topic by its identifier has linear runtime complexity: O(#topics)
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FIGURE 3
Visualization of a publish–subscribe interaction in µRT. Information is provided by an arbitrary number of publishers and passed via a topic to an
arbitrary number of subscribers ( ). represent aggregations (i.e., pointers in C). Data are buffered by the topic in a ring buffer of messages of
arbitrary size ≥1. Each message holds a counter of remaining HRT subscribers, so the topic will only reuse a message if its counter is 0. While each
subscriber class holds different members, all track the last message consumed. HRT subscribers are also arranged in a list, starting at the topic and
ordered by their rate constraints. In the depicted situation, only one more message can be published before the upper HRT subscriber has to fetch the
lowermost message.

detect latency or jitter violations are updated as well. Finally, an
event is emitted to inform all registered subscribers about the new
message.

3. A registered subscriber can fetch the next message from the
buffer and copy its payload. In case multiple messages have been
published since the last iteration of this subscriber, those can
either be fetched subsequently, or the subscriber can fetch the
latest message directly. For HRT subscribers, the timer is updated
or deactivated if there are no further pending messages. SRT

subscribers and FRT subscribers can calculate the usefulness u of
the fetched message (cf. section 2.2).

Each HRT subscriber only needs to validate latency and
synchronicity constraints individually, whereas rate constraints are
validated by the topic for all registered HRT subscribers.

The described approach completely omits dynamic memory
allocation, as all buffers are static. While this is beneficial
for temporal consistency, each information transfer requires the
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FIGURE 4
Visualization of an RPC interaction in µRT. Information is passed from request to service on submission and vice versa on response ( ).

represent aggregations (i.e., pointers in C). An arbitrary number of requests may be submitted to a service, which buffers those in a queue, ordered
by real-time class and constraints. The servicing thread dispatches one request at a time from the front of that queue, processes it, and returns a
response (by reusing the original request instance). In the depicted situation, four requests are already enqueued at the service, whereas another HRT
request is available but currently not in use.

data to be copied two times. First, the publisher writes to the
message payload. Second, each subscriber has to copy that buffer
when fetching the message. Although this will have a significant
performance impact for increasing amounts of data, this approach
optimizes µRT for determinism and predictability. Computational
complexity scales linearly with the number ofmessages in the buffer
m, the payload p, and the number ofHRT subscribers sHRT registered
to the topic:

O (α ⋅m+ β ⋅ 2p+ γ ⋅ sHRT) (15)

The weight factors α, β, and γ are unknown but will be relevant
for performance evaluation in section 3.2.2. Finally, producers and
consumers are decoupled in space, time, and synchronization.

2.7 Remote procedure calls

The basic idea of RPCs is to trigger an action similar to a
local function call but remotely at another component in the
system architecture. Although this behavior can be achieved
via publish–subscribe using a “request topic” and another
“response topic,” this approach is inefficient because two m-to-n
communication channels are used to emulate a single 1-to-1
interaction, and services would have no priority information

about requests. Therefore, the RPC subsystem of µRT implements
request queues at the service, which are ordered by real-time
class and timing constraints (cf. Figure 4). Like topics, services
are identified by numerical values and can be retrieved via the
core.7 µRT employs a combination of locking and ownership
mechanics to acquire requests and pass thembetween requesting and
servicing threads. Each interaction is again subdivided into several
steps:

1. A request must be acquired to be used for only one RPC
interaction at a time. After a successful acquisition, the request
is “locked” and “owned” by the requesting thread. Similar to
publish–subscribe, metadata is updated and argument data is
copied to the payload buffer.

2. The request is submitted to the service, and an event is specified
to inform the requesting thread of completion. As part of the
submission procedure, ownership is handed over to the service,
and the request is enqueued at the service according to its real-time
class and constraints. Eventually, the thread providing the service
is informed via an event.

7 Retrieval of a service by its identifier has linear runtime complexity:
O(#services)
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3. The servicing thread dispatches one request at a time from the
service’s queue, thereby copying argument data and releasing its
locked state.

4. As soon as the service is done, it tries to re-acquire the dispatched
request.On success, it is locked again, any return values are copied
to its payload buffer, and the requesting thread is informed via the
previously specified event.

5. The requesting thread can retrieve the request and take over
ownership again. For SRT requests and FRT requests, the
usefulness u can be calculated at this point (cf. section 2.2).

6. As soon as all return data has been processed or copied, the request
has to be released to finalize the interaction. Afterward, the request
is unlocked and not owned by anyone anymore and hence is
available again for further interactions.

The interplay of locking and ownership mechanisms plays a
key role in this procedure. In contrast to messages, requests are
not associated with a service for the lifetime of the latter but only
during an ongoing interaction. This allows using a single request for
interaction with multiple services. The downside of this approach
is that a request could “get stuck” in the queue of a service, not
being served for a long time and thus not being available for other,
potentially more important interactions, which might compromise
the responsiveness of a system and hence its real-time capability. In
order to solve this issue, the twomechanics have been employed, and
the following rules apply for handling requests.

• A request is available if it has no owner and is not locked.
• A service may only act on a request if it is locked and owned by

the service.
• The requesting thread may retrieve a previously submitted
request at any time, as long as it is not locked (by the service).

As a result, a submitted request can be aborted anytime and
reused if needed. Although the servicing thread is not notified about
this termination and will keep processing an already dispatched
request, re-acquisition to return a response will fail. Because the
canceled request might be used for the same service again and
services cannot distinguish whether a request has already been
dispatched or was just submitted but not dispatched yet, just
checking ownership and lock state does not suffice. Therefore,
the request’s submission time is saved on dispatch and used for
comparison during re-acquisition before returning a response. If the
timestamps do not match, re-acquisition fails, results are discarded,
and no response event is emitted. However, it is often the case that
neither return data nor a notification on completion is desired by
the requesting thread in the first place. To this end, requests can be
flagged as “fire-and-forget” by not specifying a response event on
submission.

In contrast to the publish–subscribe interaction, there are
no rate constraints for RPCs, so each HRT request validates its
individual latency and synchronicity constraints by itself. Moreover,
the timestamp each request holds describes the time when it was
submitted to the service and is not related to the content of the
payload as was the case for messages, so tinfo = tdata always holds.
The rationale behind these design choices is that RPCs should
not be used for periodic communication within data processing
pipelines but rather for sporadic or regular events to interact with

such pipelines (cf. Figure 12). As mentioned previously, the request
queue of each service is ordered and therefore subdivided into three
parts.HRT requests are always inserted in the front part of the queue,
ordered by their timing constraints, such that the most critical HRT
request is served first. FRT and SRT requests are placed in themiddle
part of the queue, following the “first come, first serve” principle.The
same applies toNRT requests, which are always appended at the very
end of the queue.

Once again, all involved data structures are static, and no
dynamic memory allocation is required. As with publish–subscribe,
the downside is multiple copy operations. However, this approach
allows all involved threads to be responsive to other events at
all times and thus prevents stalling (i.e., deadlocks) by design.
Computational complexity scales linearly with the queue length q,
the payload p, and the number of enqueued HRT requests rHRT:

O (α ⋅ q+ β ⋅ 4p+ γ ⋅ (rHRT − 1)) (16)

As with publish–subscribe, the weight factors α, β, and γ are
unknown. rHRT is reduced by 1 because the case to “enqueue” a
singleHRT request is trivial, so this term is only relevant for rHRT > 1.
Requesting and servicing threads are decoupled in space, time, and
synchronization.

2.8 Platform-level interaction

All concepts of µRT so far only apply locally within a single
process. On the one hand, this approach allows for fast information
transfer via shared memory and simplifies several aspects, as details
such as endianness and (de)serialization of data are of no concern.
Especially in the context of MCUs, this is sufficient because many
RTOSes do not feature strictly separated processes, and most MCUs
do not even host an MPU (memory protection unit), which is
fundamentally required to (efficiently) facilitate separated regions in
memory.On the other hand, network communication is essential for
modular systems and thus has to be considered.Themajor challenge
in this regard is the vast variety of transports (e.g., Ethernet,
SPI, UART, CAN, or FlexRay); protocols (e.g., TCP for Ethernet
or TTCAN for CAN); and higher-level data distribution services
(DDS). Hence, many solutions, such as ROS, ROS 2, MQTT, and
RSB, only support selected interfaces (Stanford-Clark andHunkeler,
1999; Quigley et al., 2009; Wienke and Wrede, 2011; OSRF, 2020;
OSRF, 2022b) and may have even further restrictions (e.g., DDSes
supported by ROS 2).

µRT approaches this challenge by not supporting any transport
out-of-the-box but commits these tasks to bridge nodes. Such nodes
can implement any transport and protocol and even filter messages
if bandwidth is too limited to communicate all information. This
method allows for integrating µRT in existing platforms, which
already employ othermiddlewares, as depicted inFigure 5, and even
further transports can also be supported.

There are two reasons for this design choice. First, several
established solutions are available, and there is no need to develop
yet another one. Instead, µRT aims to be used alongside traditional
middlewares to enable the modularization of the real-time software
of a system. Second, while TCP and UDP have been established
as the de facto standard protocols for most communication in
modern applications, there is no common standard for embedded
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FIGURE 5
Example setup in a complex system with multiple hardware modules and various middlewares (only the most relevant interactions are depicted).
Publish–subscribe interaction is indicated by , represent RPC interactions, and depict network and inter-process communication. µRT’s
transport agnostic communication is realized by bridge nodes, such as “network bridge” and “ROS 2 adapter” in the figure. While the former has to
(de)serialize messages and requests from/to a common format as defined for that network channel, the latter needs to translate them according to the
employed DDS. The bridge nodes can provide an arbitrary subset of the remote/foreign topics and services they connect with to the local µRT instance
and vice versa. If the network supports real-time communication (e.g., CAN), all modules running µRT form a distributed, real-time capable union in
which network communication is completely transparent to all nodes (except bridge nodes, of course).

designs and MCUs. Such devices are typically not powerful enough
for these protocols, so less demanding technologies are employed,
which are numerous and have differing properties. A limitation to
a subset of these interfaces and protocols would therewith render
µRT unsuitable for many use cases. As every module in a system
may host different hardware with different capabilities and real-time
requirements also vary significantly between use cases, µRT opts for
this more general method.

The benefits of this approach are its flexibility and technology
independence. Therefore, µRT can interface any communication
channel. Moreover, as long as such an interface supports real-time
communication, multiple µRT instances can form a distributed
union in which all topics and services are accessible by all nodes,
making the entire network effectively a single virtual µRT instance.
This method has some drawbacks, as the additional work required
to develop bridge nodes is less convenient and presents an initial
hurdle. However, the intention is as follows: once a bridge node for an
interface has been developed, it can be provided to the community
and other developers can henceforth utilize it with minimal effort
and enhance it as required.

Another potential pitfall when combining µRT with other
middlewares is the absence of any discovery and advertising
mechanisms. Such interaction schemes are commonly employed by
other solutions to inform the system about newly created topics
and services. Due to the strict real-time requirements of µRT, all
such objects must be available as soon as system initialization is
completed and may not be removed until shutdown. This may result
in situations where a remote topic or service is available on the µRT
side, although it has not been initialized yet (or has been removed
again) within the foreign middleware, thus violating assumptions

about the state of the communication network. Bridge nodes can
solve this issue to some degree by providing a topic or service only
after the advertising message has been received. The opposite case,
which is removing a topic or service, is not possible, though.

3 Evaluation

µRT has been evaluated in three ways to compare it to existing
middlewares. First, a qualitative comparison of features is given with
respect to R2P and ROS 2 (cf. section 3.1), and performance data
are presented thereafter in section 3.2. Because middlewares are
fundamentally only ameans to an end to ease software development,
usability for developers is an essential aspect. Therefore, a study has
been conducted and described in detail, and results are presented in
section 3.3.

3.1 Features

For a qualitative comparison of features, the twomost important
competitors among the plethora of existing middlewares have been
selected: ROS 2 due to its popularity in robotics and its ambitions to
support real-time computing andR2Pbecause it had beendeveloped
with similar goals in mind as for µRT. Table 1 lists ten important
middleware aspects concerning the target application of µRT.

First, while R2P supports publish–subscribe interaction only,
ROS 2 not only offers RPCs like µRT but also provides an additional
“actions” interaction scheme. Actions are similar to RPCs but
intended for long-running tasks. In short, an action is initiated by
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TABLE 1 Feature comparison of µRT, R2P (Migliavacca, 2013), and ROS 2 (Macenski et al., 2022).

Feature ROS 2 R2P µRT

Interaction schemes Publish–subscribe Publish–subscribe Publish–subscribe
RPC RPC

actions

Decoupling Space Space Space
Time Time Time

Synchronization Synchronization Synchronization

Real-time capability Up to soft Hard Hard
(depends on DDS) (system-wide) (system-wide)

Real-time classes NA Hard, soft, and non Hard, firm, soft, and non
(by RTCAN)

Validation of × × Latency
timing constraints Synchronicity

rate

All static memory × × ✓

Zero-copy communication ✓ ✓ ×

QoS ✓ × ✓
(If profiling enabled)

Suitable for MCUs × ✓ ✓

Programming languages C++ C++ C
Python

…

TABLE 2 Memory footprints of themost important components of µRT and R2P (Migliavacca, 2013). For thesemeasurements, µRT has been configured to
reasonable settings, e.g., identifier sizes for topics and serviceswere set to 16bits. All values are given in bytes.

Subsystem Component µRT µRT (no QoS) R2P

Core Core 37 37 –

Node 56 56 36

Synchronization Syncgroup 28 28 –

Syncnode 32 32 –

Publish–subscribe Publisher 4 4 16

Topic 144+messages 88+messages 56

Subscriber ≤136 ≤44 48+messages

Message 32+ payload 32+ payload Payload

RPC Request ≤144+ payload ≤56+ payload –

Service 48 48 –

a client and the action server provides periodic feedback until the
goal has been reached. Because such use cases should not require
real-time capabilities in itself (underlying processes might, though),
supporting actions was no goal for µRT. If such behavior is desired,
it can still be realized using a service to initiate execution and a topic
to provide periodic feedback or another service to provide feedback
on demand.8 Concerning decoupling, all three middlewares are
decoupled in all three domains.

8 In fact, actions in ROS 2 are composed of multiple topics and services as
well

However, when it comes to real-time capabilities, it is obvious
that complete real-time support is not the primary focus of ROS 2. It
cannot provide stricter than soft real-time and does not differentiate
real-time levels at all. Conversely, R2P and µRT allow for system-
wide hard real-time constraints and definemultiple real-time classes
with µRT even specifying an additional fourth class. Probably, the
most distinguishing feature of µRT is its capability to validate real-
time constraints at runtime. To the best of our knowledge, ROS 2 and
R2P do not offer this functionality, nor does any other middleware.

An important aspect of real-time capabilities is memory
management, more precisely, the absence of dynamic allocation.
R2P still relies on memory pools, which are an optimized form of
dynamic memory management but still include dynamic allocation.
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TABLE 3 Memory footprint of µRT in a compiled image. Results have been obtained on a STM32-F405RG (32-bit Arm Cortex-M4), for which the values were
the largest among all evaluatedMCUs.10 Code has been compiled using GCC 11.3.1 (Arm GNUToolchain) with optimizations such as garbage collection (GC)
and link time optimization (LTO) disabled. Further settings of µRT have been configured to reasonable values; for e.g., identifier sizes for topics and services
were set to 16bits and profiling was enabled. All values are given in bytes.

Debug build Release build

QoS enabled QoS disabled QoS enabled QoS disabled

Core 3,384 2,264

Synchronization 1,024 640

Publish–subscribe 7,952 6,224 4,800 3,200

RPC 6,296 5,592 3,952 3,184

Complete 18,648 16,216 11,520 9,216

Therefore, only µRT manages to completely omit dynamic memory.
The downside of this approach is that interaction in µRT involves
payload data being copied multiple times. Conversely, ROS 2 and
R2P allow for zero-copy communication.

Finally, ROS 2 and µRT provide QoS statistics, whereas R2P
does not. Although ROS 2 can be used on MCUs, doing so comes
with several limitations (cf. section 1.1.4). Hence, only R2P and µRT
are considered suitable for such restricted platforms. The different
focus on target platforms also shows in the (primarily) supported
programming languages. µRT is completely written in C and only
supports this language so far.9 For R2P, it is the same, but with C++
instead of C. ROS 2, however, provides APIs for multiple languages
(first and foremost C++ and Python but also C) and thus offers the
highest flexibility for developers.

Overall, this comparison shows the different focus areas of the
three middlewares. Although ROS 2 primarily focuses on high-level
software and offers many conveniences for developers of such but
supports real-time computing andMCUs only subordinate, R2P and
µRT aim at exactly these use cases. Again, µRT surpasses R2P in
almost every aspect, except for zero-copy communication, in which
µRT trades for uncompromising real-time capability.

3.2 Performance

Theperformance of µRT has been evaluated in terms ofmemory
requirements and runtime performance scaling. Results regarding
the former are presented in section 3.2.1, and scaling benchmarks
are presented in section 3.2.2.

3.2.1 Memory utilization
The memory footprint of µRT is of major importance as the

middleware is targeted to be used on (32-bit) MCUs, for which
available resources are very limited. The sizes of the integrated flash
memory of such devices typically range from 16 to 1,024 kB, so
compiled images need to be rather compact. System memory is
even more scarce, with entry-level products featuring no more than

9 Due to the wide support of C by most programming languages, additional
interface layers can be added to ease development (cf. section 4.2)

10 STM32F1 (Cortex-M3), STM32F4 (Cortex-M4), STM32F7 (Cortex-M7), STM32-
G0 (Cortex-M0+), and STM32-L4 (Cortex-M4)

8 kB of RAM and only the most powerful devices exceeding 256 kB.
Therefore, it is a crucial requirement for µRT to exhibit a small
footprint in both regards. Therefore, it can be deployed on a wide
range of MCUs.

Table 2 shows the sizes of all major components of µRT in
system memory and compares them to R2P, as presented by
Migliavacca (2013). Most noticeably, many rows in the table contain
no values for R2P at all due to the lack of such components because
R2P does feature neither synchronization mechanisms nor RPC
interaction. Compared to µRT, it also omits a core component.
Because there is only a single core per instance, these 37 bytes should
be negligible in most scenarios. Other than that, nodes are about
50% larger for µRT, which is a significant increase, but with an
absolute value of 56 B, the footprint is still considered reasonable.
Both components of the synchronization subsystem are acceptably
small, with no more than 32 B. Publishers are much smaller for µRT
and require only 4 B (25% compared to R2P), as they essentially hold
just a pointer to the topic. Topics are also larger for µRT than they
are with R2P. Especially when QoS is enabled, the memory footprint
is 157% larger, but even without QoS, the increase is still 57%. It
should be noted that each topic in µRT already holds a message, so
those 32 B need to be subtracted for an apples-to-apples comparison,
resulting in a somewhat smaller increase of 100% with QoS enabled
and even the same 56 B as for R2P with QoS disabled. The size of
subscribers in µRT depends on their real-time class (cf. section 2.2)
but is estimated in Table 2 with the upper bounds. While they are
slightly smaller when QoS is disabled (92%), size increases by a
factor of 2 when enabled. Finally, the footprints of RPC components
are similar to those of the publish–subscribe subsystem. Requests
are again much larger when QoS is enabled, with an even starker
difference of 88 B (157%). Conversely, services are of constant size,
with 48 B acceptably small. Overall, the memory footprints of µRT’s
components are about 50%–150% larger than their pendants in R2P,
but absolute values remain small enough to be reasonable even for
entry-level MCUs.

When considering the required amount of flash memory,
µRT can scale from a modest 2.2 kB to 18.2 kB due to its
high configurability (cf. section 2.3.4). Unfortunately, a direct
comparison with R2P is difficult to achieve because Migliavacca
(2013) only stated values, including the RTOS; hence, such was not
conducted for this work. Absolute footprint sizes of µRT’s core, the
three subsystems, and a complete configuration are given in Table 3
and represent the worst-case scenario among all evaluated MCUs.10
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When comparing memory footprints in the binary image, the
publish–subscribe subsystem is themost expensive component, with
RPC close behind. Conversely, synchronization functionality has a
minor impact of no more than 1 kB, even for debug builds. When
comparing release and debug scenarios, footprints increase between
49% and 95% for the latter (67% on average). Enabling QoS is less
expensive, with only 13%–50% larger footprints (29%on average). In
both cases, impacts are most pronounced for the publish–subscribe
subsystem. Considering the required flashmemory exceeding 16 kB
with everything enabled and considering that a sophisticated RTOS
is required, µRT is hardly a viable option for MCUs with 32 kB of
flash or even less. Based on our experience, a minimum of 128 kB
is recommended for development (debug builds) and 64 kB for
deployment (release builds), even with optimizations (i.e., garbage
collection and link time optimization) enabled.

3.2.2 Runtime performance and scaling
In order to evaluate the runtime performance of µRT,

an extensive set of benchmarks has been conducted.11 These
benchmarks have been designed in a way that scaling effects
for each middleware component can be assessed, as well as
differences between real-time classes. Therefore, scenarios have
been implemented carefully to represent worst-case situations.
Thread priorities were set in a way that nodes would constantly
block each other, and the MCUs were continuously stressed by
an additional low-priority thread. Moreover, each benchmark
was repeated 1,000 times, so meaningful minimum and
maximum values could be obtained to assess synchronicity
performance.

The graphs in this section depict only the results of the worst-
performing component (e.g., the node with the highest latency).
Note that each graph consists of a line and a shaded area “hanging”
below. Although the former represents the largest measured values,
the latter depicts the range between the lowest and highest values
in the result data. However, for most graphs, the shaded area
is barely visible. Except for the data shown in Figure 6A, all
results were obtained using an STM32L476RG (Cortex-M4 @
80 MHz).

First, performance scales linearly with the number of nodes
in a system, as shown in Figure 6A. For this benchmark, a
single timer triggered all nodes, which just measured the latency
until the event was eventually processed. As expected, absolute
performance varies significantly between different MCUs. Although
most MCUs demonstrate consistent performance, the STM32G0
exhibits significant temporal variance, which is most probably
caused by its Cortex-M0+ core.

Figure 6B depicts performance scaling for publish–subscribe
and RPC interaction with increasing payload sizes. Again,
performance scales linearly, as expected. More interestingly, the first
communication of an RPC interaction (until the service dispatched
the request) is significantly faster than publish–subscribe, although
the return communication (until the answered request is retrieved

11 Software environment: AMiRo-OS version 2.3 (Schöpping et al., 2016), which
incorporates ChibiOS version 21.11 (di Sirio, 2022); cf. Schöpping and
Kenneweg, 2022b, commit e8ddcd253bb5996509cb82adde700b0fec7798f1

again) takes longer overall. This finding indicates that fire-and-
forget requests should be used whenever possible. The graphs also
show the potential performance gains if zero-copy communication
was possible with µRT. Especially when comparing the time scales
with Figures 7, 8, copy operations have only a minor impact on the
overall performance.

For benchmark results of the publish–subscribe subsystem, as
depicted in Figure 7, two striking features catch the eye. First, for
an increasing number of communication hops, topics and (HRT)
subscribers, synchronicity characteristics deteriorate. A closer look
at the data reveals that only the very first interaction is significantly
faster (by 13.2% for topics), and excluding this data point results
in a jitter of 1.2% instead of 12.2% regarding topics. Second,
performance graphs of communication hops and topics do not
scale linearly but slightly exponentially. Again, this is only the case
for HRT interaction, whereas performance scales linearly for all
other real-time classes. When recalling the estimated complexity
of publish–subscribe interaction from Equation 15, the reason
becomes obvious. Neither the number of hops nor the number of
topics can be increasedwithout increasing the number of subscribers
sHRT. Doing so effectively results in a complexity multiplied by sHRT
and, therefore, a quadratic increase in latency because validation
timers of all HRT subscribers need to be updated with every
interaction:

sHRT ⋅O (α ⋅m+ β ⋅ 2p+ γ ⋅ sHRT)

=O (sHRT ⋅ (α ⋅m+ β ⋅ 2p+ γ ⋅ sHRT))

=O (α ⋅m ⋅ sHRT + β ⋅ 2p ⋅ sHRT + γ ⋅ s2HRT) (17)

Nonlinear performance scaling for HRT communication is an
accepted trade-off made by µRT, though, in order to validate timing
constraints for such critical components. Moreover, the rather low
expression of exponential scaling in the data suggests that the
corresponding weight γ is rather small compared to α and β.
Figure 7A shows constant performance for an increasing number
of messages. This benchmark does not represent the worst-case
scenario, as tinfo increased with every interaction, so messages
did not have to be enqueued (general case; linear complexity)
but could just be appended (constant complexity). With this
in mind, the presented graph must be interpreted as typical
performance rather than worst-case performance, which scales
linearly.

A similar picture emerges for the RPC subsystem. Performance
evaluation, as presented in Figure 8, apparently shows the same
effects as the publish–subscribe, but more pronounced. Again,
recalling the complexity estimation from Equation 16 reveals the
cause. As with HRT subscribers for publish–subscribe interaction,
increasing the number of HRT requests rHRT effectively results in
quadratic scaling regarding this factor:

rHRT ⋅O (α ⋅ q+ β ⋅ 4p+ γ ⋅ (rHRT − 1))

=O (rHRT ⋅ (α ⋅ q+ β ⋅ 4p+ γ ⋅ (rHRT − 1)))

=O (α ⋅ q ⋅ rHRT + β ⋅ 4p ⋅ rHRT + γ ⋅ (r2HRT − rHRT)) (18)

Notably, performance does not scale exponentially when increasing
number of communication hops this time because there is
only a single request per hop (rHRT = 1), so the hindmost
term has no effect in this case. Although exponential effects
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FIGURE 6
General performance measurements of µRT. On the left-hand side (A), performance scaling when increasing the total number of nodes in a system is
depicted, thereby comparing different MCUs. On the right-hand side (B), the performance impact of payload sizes is shown for both communication
schemes supported by µRT.

FIGURE 7
In-depth performance analysis of the publish–subscribe subsystem. On the left-hand side (A), performance scaling when increasing the number of
components in a system is depicted. On the right-hand side (B), the performance of the four real-time classes is compared for increasing number of
topics.

are much more pronounced for RPC than was the case for
publish–subscribe, the weighting factor γ remains relatively
small.

Overall, performance figures confirm the overall linear scaling of
µRT, although some scenarios exhibit exponential latency increase.
However, this is only the case for HRT communication, and
even then, nonlinearity is little pronounced for scales reasonable
for MCUs. Especially when considering the findings concerning
RPC interaction, request queues with lots of HRT requests should
be avoided in the first place for the sake of a responsive
system.

3.3 Usability

In order to assess the usability of µRT for software developers,
a study has been conducted. The goal of this study was not
just to evaluate the ease of use of µRT by itself because this
information alone would not be meaningful, but how it fares
compared to ROS. It was conducted as part of the exercises
for the lecture “Autonomous Systems Engineering” at Bielefeld
University and carried out in multiple weekly sessions. This way, a
comprehensive set of introductory information, programming tasks,
and questionnaires could be used in the study. In section 3.3.1, the
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FIGURE 8
In-depth performance analysis of the RPC subsystem. On the left-hand side (A), performance scaling when increasing the number of components in a
system is depicted. On the right-hand side (B), the performance of the four real-time classes is compared for an increasing number of requests.

FIGURE 9
Statistical evaluation of the three additional questions of the questionnaires: self-estimated level of completion (A), required time (B), and number of
requests for assistance (C). Each pair of box plots depicts results for ROS (left) and µRT (right), respectively. Each axis shows results for the entire cohort
(group A) and only those participants who filled in the questionnaires about ROS and µRT (group B). Vertical axes are labeled by the options participants
had to choose from, as they were available in the questionnaires.

study design and applied methods are described in detail before the
results are presented afterward in section 3.3.2.

3.3.1 Study design
First, a within-person designwas chosen for the study, and it was

subdivided into four parts, conducted in weekly sessions of 2 h each.

1. ex ante: Participants were asked to fill in a questionnaire about
demographic information and prior experience in various areas of
computer science. For the latter, six-level Likert scales were used
with the available options “none,” “novice,” “advanced beginner,”
“competent,” “proficient,” and “expert.”

2. ROS line following: In the first session, an introductory lecture
was given, explaining fundamental concepts of middlewares in
general and specifically ROS. In the second session, participants

were given the task of making AMiRo follow a line in a
simulation environment using ROS (C++ only), for which
they were allowed two sessions to complete. Afterward,
participants were asked to complete a questionnaire to assess their
experience.

3. µRT tutorial: This time, no introductory lecture was provided,
but participants were instructed to work through a tutorial
on µRT instead and to fill in another questionnaire afterward.
Participants were allowed to spend two sessions with this
part.

4. µRT line following: Another task was given to make AMiRo
follow a line, but this time using µRT on a real robot, and
again participants were asked to rate their experience thereafter
by means of another questionnaire. As with the other tasks,
participants could spend two sessions on this one.
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FIGURE 10
Statistical evaluation of the USE questionnaires. Each pair of box plots depicts results for ROS (left) and µRT (right), respectively. In the axis on the
left-hand side (A), all participants are considered, although only six participants filled in the questionnaire for µRT while 12 participants did so for ROS.
On the right-hand side (B), only five participants who filled in both questionnaires are considered.

FIGURE 11
Correlation matrices showing the correlation between previous experience in three topics of computer science and the four aspects of the USE
questionnaires. The left-hand side (A) depicts the correlation matrix regarding the USE questionnaire of the ROS line-following task (based on 12 data
points), whereas the right-hand side (B) relates to µRT (based on six data points).

Questionnaires for the three tasks were identical, each consisting
primarily of a USE questionnaire as defined by Lund (2001),
but supplemented by three further questions—level of completion
(self-estimation), required time, and the number of requests for
assistance—as well as corresponding free-text fields to account for
qualitative responses. Obviously, the results of those questionnaires
are the dependent variables in this study.

The independent variable of interest was the employed
middleware—ROS versus µRT—so the two most important parts

of the study are the line-following tasks. The decision was made
against a between-person design because the scenarios could not
match each other exactly. As ROS cannot be run on the MCUs of
AMiRo, that task had to be conducted in a simulation environment
rather than an actual robot. Conversely, no simulator integration
for µRT exists so far, so these scenario differences were inevitable.
Furthermore, the acquisition of participants for a study of this
scale is difficult, especially during the COVID-19 pandemic,
making those a very scarce “resource.” The information gained
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FIGURE 12
Example architecture as implemented on the AMiRo platform. Rectangles depict nodes, whereas topics are visualized as diamond shapes.
Publish–subscribe interaction is indicated by . and represent complete and “fire-and-forget” RPC interaction, respectively. Various
shadings of nodes indicate that those are executed on different MCUs. Communication is hence tunneled over CAN by bridge nodes as required (not
depicted).

per participant hence needed to be maximized. Moreover, the in-
person design with this order—ROS first and µRT thereafter—does
not compromise the validity of this study’s results because many
software developers in robotics are already experienced with ROS
and would use µRT as supplemental middleware on the real-time
level of a system. Hence, the study design represents real use case
scenarios very well.

Each task of this study was designed so it could be completed in
about 90 min, but participants were permitted up to 4 h. For optimal
comparability, both line-following tasks were designed identically:
participants had to create a new node, add a subscriber to receive
sensor information from a prepared topic, write a simple logic to
calculate a two-dimensional motion vector, and interface an existing
service to make AMiRo move. The quality of the implemented line-
following algorithm was of no concern for this study, as the focus
was on understanding middleware concepts and the ability to apply
these to actual implementation.

3.3.2 Questionnaire results
In total, 21 students in computer science participated in the

study. Ages ranged 21–28 (median 23.5) years. Of the 21 students,
thirteen were male and six were female participants, and two were
not specified. All students had a bachelor’s degree except one
who had no academic degree yet. Thirteen (62%) participants had
already worked with ROS before, and seven (33%) had experience
in robotics, although self-assessed skill levels ranged no higher than
“competent.” The same applies to experience in the two relevant

programming languages, C++ and C, whereby the mean expertise
for the former was about 1/2 skill level higher. Notably, experience
in Python was much higher, with the median at “competent.”
This result confirms the decision to restrict the ROS task to
C++ because the strongly differing programming skills might have
influenced the study results. Finally, although 11 (52%) participants
had worked with MCUs before, none stated any expertise with
RTOSes, indicating that the previous experiencesweremade in bare-
metal programming of MCUs instead of using sophisticated RTOS
software environments.

Unfortunately, although all students did work on all tasks,
not all questionnaires were completed. Of the 21 participants,
only 12 (57%) assessed the ROS line-following task, 10 (48%)
submitted valid questionnaires for the µRT tutorial, and 6 (29%)
rated the µRT line-following task. Moreover, complete data about
all three tasks are available for just five students (24%). For
this reason, results will be distinguished hereafter by whether
they were obtained from the entire cohort or only from the
five participants who provided complete information. Those two
subsets of the cohort will be referred to as group A and
group B.

Before examining the results of the USE questionnaires, the
evaluation of the three additional questions provides insights
into the correlation between participants who only filled in the
questionnaires about ROS (group A) and who also provided
information about their experience with µRT (group B). Figure 9
shows that the ROS task completion level varies much more for
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group A, whereas group B performed consistently well. In fact,
the level of completion of the ROS task and whether or not a
participant filled in the questionnaire about the µRT task are highly
correlated: ρ = 0.678. This finding suggests that many students
had issues understanding the concepts of publish–subscribe and
RPC interaction in general and could not apply those with either
middleware. Although discrepancies between the two groups are
not as pronounced for the time required and the number of
requests for assistance, where average andmedian values are similar,
variances of the answers to these questions are also much higher for
group A.

Participants, on average, required 1/2 to one more hour
to complete the line-following task with µRT than using ROS.
Participants also asked for assistance five times more often when
working on the µRT task. These two findings are again correlated
with ρ = 0.746 for ROS and ρ = 0.809 for µRT. This indicates that
participants could have completed the tasks in less time if they had
been able to solve them completely on their own. While the overall
higher number of requests for assistance for µRT shows that tutorial
and documentation need to be improved, a participant stated for the
µRT tutorial task that two of five requests for assistance were due to
hardware issues with the robot rather than about µRT.This comment
indicates that difficulties of understanding are not five times higher
for µRT. However, as such differentiation was not considered in the
study design, no definitive statement can be made based on the
obtained data.

Results of the USE questionnaires are depicted in Figure 10 and
show strong differences between groups A and B. Although µRT
seems to outperformROS in all four aspectswhen considering group
A, results are more heterogeneous for group B. Due to the small
size of the latter, the exact values depicted in Figure 10B cannot
be considered significant. However, the overall positive trend for all
aspects of USE and both middlewares is evident.

When investigating the correlations between previous
experience in various areas of computer science and the information
given in the USE questionnaires depicted in Figure 11, several
further observations were made. First, the results of the USE
questionnaire regarding the ROS task are correlated to prior
experience in robotics but are uncorrelated to MCUs, both of
whichmeet expectations.When investigating the correlationmatrix
regarding µRT, the first thing that stands out is the consistently
inverse correlations. In particular, the strong (inverse) correlations
with prior experience with MCUs and ROS are noteworthy but
difficult to interpret. Either developers without previous knowledge
in these topics rate µRT positively, or those who already have such
experience rate µRT negatively, or both. Again, no clear conclusion
can be drawn due to the small sample sizes (12 and 6 participants,
respectively), so these findings should be considered and further
investigated in future studies.

Finally, the USE questionnaires also contain qualitative
questions, and some answers given by participants are worth
mentioning. When asked about the most negative aspects of ROS
and µRT, respectively, many complaints were made about the high
complexity of ROS and the insufficient documentation of µRT.
There were also some comments about µRT not supporting object-
oriented programming languages such as C++ and Python. On the
contrary, many praised ROS that it supports exactly those languages
and that it is an open-source project with a large community

supporting it. However, positive mentions about µRT were its
simplicity and that it is “not overloaded with features.”

4 Discussion

As mentioned at the very beginning of this work (cf. section 1),
µRT was developed as part of the software ecosystem of the AMiRo
platform (Schöpping et al., 2015; Herbrechtsmeier et al., 2016). In
addition to the evaluation results presented in section 3, practical
experience was already gained by restructuring the entire real-time
software of AMiRo to take advantage of the novel middleware
and split the monolithic software into multiple applications
(Schöpping and Kenneweg, 2022b). The new architecture allows
arranging such applications among the several MCUs of AMiRo
(cf. Herbrechtsmeier et al., 2016; Herbrechtsmeier, 2017) by means
of configurations. Because all MCUs communicate via a common
CAN interface (ISO, 1993), an according bridge node has been
implemented and used to combine the individual µRT instances
of all MCUs into a single virtual environment. An example
configuration is depicted in Figure 12, which allows a user
to select from four modes: idle (no action executed at all),
sensor visualization (sensor readings are visualized via LEDs),
line following (AMiRo follows a line on the ground), and
obstacle avoidance (AMiRo moves forward. However, it avoids any
encountered obstacles). Although the motor control loop is entirely
processed on the same MCU (cf. right part of Figure 12), control
logic, sensor input, and visualization are distributed among the
entire robot. In order to change the behavior of AMiRo, many nodes
can be reused, whereas others are modified or replaced, or even
further nodes are added to the system.12 All in all, µRT already
proved its benefits and effectiveness as it is employed as a standard
tool for the productive use of AMiRo in educational and scientific
contexts.

4.1 Conclusion

In this work, a novel, real-time, capablemiddleware—µRT—was
presented. In contrast to existing solutions, it is used in resource-
constrained platforms, such as microcontrollers (MCUs), and
features validation of timing constraints at runtime. µRT provides
two communication schemes, publish–subscribe and future RPCs,
and overall offers a similar feature set to popular middlewares
such as ROS 2. This work also presented a thorough evaluation
of µRT, including a feature comparison with existing solutions,
an in-depth performance analysis, and a usability study, which
assessed the experience software developers hadwith µRT. Although
the middleware showed excellent results overall, some issues and
potential areas for improvement were identified. Findings of all
analyses regarding µRT are summarized by recalling the initial goals
as defined at the very beginning of section 2.

12 Actually, several more applications are already implemented for AMiRo (e.g.,
for power management), which are not depicted in Figure 12.
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1. While thememory footprint of µRT is slightly higher than that for
existing solutions targeting MCUs, it is still reasonably small.

2. Real-time capabilities were suitable for even hard real-time use
cases with strict timing constraints.

3. Performance of µRT scales linearly in most regards, but some
aspects concerning hard real-time interaction exhibit slightly
exponential scaling.

4. µRT allows validating real-time constraints at runtime, a unique
feature among all middlewares to our knowledge.

5. Topic-based publish–subscribe interaction is provided for
periodic/time-based communication, and RPCs allow for
event-based interaction.

6. While the usability study proved the effectiveness of µRT for
developers, current API documentation is lacking.

7. µRT can interact with other middlewares by means of dedicated
bridge nodes.

8. Depending on the requirements of individual use cases, the
feature set and performance characteristics of µRT can be
optimized by its fine-grained configurability.

4.2 Future prospect

The most pressing drawback of µRT is its lacking
documentation. Although a tutorial exists and HTML-based
documentation of the entire API is provided, the usability study
revealed that both are insufficient in their current state (cf.
section 3.3.2). Another complaint of participants in the study
was the missing support of popular object-oriented programming
languages, such as C++ and Python. This demand was already
considered with the design of µRT, so that the according wrappers of
its API and integration in further tools, such asGenoM (Mallet et al.,
2010) or BRICS (Bruyninckx et al., 2013), can be realized with
relative ease. This study also revealed several aspects which should
be investigated further, as no clear conclusions could be drawn from
the data obtained so far because of the study design and sample size.
Another lacking feature of µRT, or more precisely the ecosystem
on top, is bridge nodes interfacing other popular middlewares
such as ROS 2 or MQTT (cf. section 2.8). Although those are not
part of µRT itself, the availability of such interface nodes would
most probably benefit its adoption for other platforms. Due to its
focus on real-time capability and validation of timing constraints
at runtime, some compromises were made with the design of µRT.
First, its current implementation makes extensive use of mutex
locks but does not feature preferable lock-free methods. Whether
such are actually possible and what benefits this would bring for
µRT need further investigation. Moreover, performance analyses
showed nonlinear scaling in some situations (cf. section 3.2.2).
As this can become an issue for large, highly complex systems,
performance in this regard needs to be further improved. Finally,
some proposed enhancements include providing a fallback event
system if no external implementation is mapped to its operating
system abstraction layer (OSAL; cf. section 2.4).

As µRT has already matured to the point that it has become a
core component of the AMiRo software habitat, many of these issues
and requested features will be addressed in the future. By the regular
employment of the platform for teaching, user feedback on changes

made to the system can be obtained quickly, and µRT will be refined
in the upcoming years. Assuming that µRT will be accepted by the
robotics community and adopted to further platforms, development
could be accelerated thanks to its open-source approach.
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