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We present Affordance Recognition with One-Shot Human Stances (AROS), a
one-shot learning approach that uses an explicit representation of interactions
between highly articulated human poses and 3D scenes. The approach is one-
shot since it does not require iterative training or retraining to add new affordance
instances. Furthermore, only one or a small handful of examples of the target
pose are needed to describe the interactions. Given a 3D mesh of a previously
unseen scene, we can predict affordance locations that support the interactions
and generate corresponding articulated 3D human bodies around them. We
evaluate the performance of our approach on three public datasets of scanned
real environments with varied degrees of noise. Through rigorous statistical
analysis of crowdsourced evaluations, our results show that our one-shot
approach is preferred up to 80% of the time over data-intensive baselines.
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affordance detection, scene understanding, human interactions, visual perception,
affordances

1 Introduction

Vision evolved to make inferences in a 3D world, and one of the most important
assessments we can make is what can be done where. Detecting such environmental
affordances allows the identification of locations that support actions, such as stand-able,
walk-able, place-able, and sit-able. Human affordance detection is not only important in
scene analysis and scene understanding but also potentially beneficial in object detection
and labeling (via how objects can be used) and can eventually be useful for scene generation
as well.

Recent approaches have worked toward providing such key competency to artificial
systems via iterative methods, such as deep learning (Zhang et al., 2020a; Bochkovskiy et al.,
2020; Carion et al., 2020; Du et al., 2020; Nekrasov et al., 2021). The effectiveness of these
data-driven efforts is highly dependent on the number of classes, the number of examples
per class, and their diversity. Usually, a dataset consists of thousands of examples, and the
training process requires a significant amount of hand tuning and computing of resources.
When a new category needs to be added, further sufficient samples need to be provided and
training remade. The appeal for one-shot training methods is clear.

Often, human pose-in-scene detection is conflated with object detection or other
semantic scene recognition, for example, training to detect sit-able locations through chair
recognition, while this is a flawed approach for general action-scene understanding, first,
since people can recognize numerous non-chair locationswhere they can sit, e.g., on tables or
cabinets (Figure 1). Second, an object-driven approach may fail to consider that affordance
detection depends on the object pose and its surroundings—it should not detect a chair as sit-
able if it is upside-down or if an object is over it. Finally, object detectors alone may struggle
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FIGURE 1
AROS is capable of detecting human–scene interactions with one-shot learning. Given a scene, our approach can detect locations that support
interactions and generate the interacting human body in a natural and plausible way. Images show examples of detected sit-able, reach-able, lie-able,
and stand-able locations.

to perceive a potentially sit-able place if a particular object example
was not covered during training.

To address these limitations, Affordance Recognition with
One-shot Human Stances (AROS) uses a direct representation of
human-scene affordances. It extracts an explainable geometrical
description by analyzing proximity zones and clearance space
between interacting entities. The approach allows training from one
or very few data samples per affordance and is capable of handling
noisy scene data as provided by real visual sensors, such as RGBD
and stereo cameras.

In summary, our contributions are as follows: 1) we propose
a one-shot learning geometric-driven affordance descriptor that
captures both proximity zones and clearance space around
human–pose interactions. 2) We set a statistical framework that
relies on both central tendency statistics and a statistical inference
to evaluate the performance of the compared approaches. The
tests show that our approach generates natural and physically
plausible human–scene interactions with better performance than
intensively trained state-of-the-art methods. 3) Our approach
demonstrates control on the kind of human–scene interaction
sought, which permits exploring scenes with a concatenation of
affordances.

2 Related work

Following Gibson’s suggestion that affordances are what we
perceive when looking at scenes or objects (Gibson, 1977), the
perception of human affordances with computational approaches
has been extensively explored over the years. Before the popularity

of data-intensive approaches, Gupta et al. (2011) employed an
environment geometric estimation and a voxelized discretization
of four human poses to measure the environment affordance
capabilities.This humanposemethodwas employed by Fouhey et al.
(2015) to automatically generate thousands of labeled RGB frames
from the NYUv2 dataset (Silberman et al., 2012) for training a
neural network and a set of local discriminative templates that
permits the detection of four human affordances. A related approach
was explored by Roy and Todorovic (2016), where detection was
performed for five different human affordances through a pipeline of
CNNs that includes the extraction of mid-level cues trained on the
NYUv2 dataset (Silberman et al., 2012). Luddecke and Worgotter
(2017) implemented a residual neural network for detecting 15
human affordances and trained using a look-up table that assigns
affordances to object parts on the ADE20K dataset (Zhou et al.,
2017).

Another research line has been the creation of action maps.
Savva et al. (2014) generated affordance maps by learning relations
between human poses and geometries in recorded human actions.
Piyathilaka and Kodagoda (2015) used human skeleton models
positioned in different locations in an environment to measure
geometrical features and determine the support required. In
Rhinehart and Kitani (2016), egocentric videos as well as scenes,
objects, and actions classifiers were used to build up the action
maps.

There have been efforts to use functional reasoning for
describing the purpose of elements in the environment that helped
define them. Grabner et al. (2011) designed a geometric detector for
sit-able objects, such as chairs, while further explorations performed
by Zhu et al. (2016) andWu et al. (2020) included physics engines to
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ponder constrains, such as collision, inertia friction, and gravity.
An important line of research is focused on generating

human–environment interactions, representative of affordances
detected in the environment. Wang et al. (2017) proposed an
affordance predictor and a 2D human interaction generator trained
on more than 20K images extracted from sitcoms with and without
humans interacting with the environment. Li et al. (2019) extended
this work by developing a 3D human pose synthesizer that learns on
the same dataset of images but generates human interactions into
input scenes that are represented as RGB, RGBD, or depth images.
Jiang et al. (2016) exploited the spatial correlation between elements
and human interactions on RGBD images to generate human
interactions and improve object labeling.Thesemethods use human
skeletons for representing body–environment configurations, which
reduces their representativeness since contacts, collisions, and
naturalness of the interactions cannot be evaluated in a reliable
manner.

In further studies, Ruiz and Mayol-Cuevas (2020) developed a
geometric interaction descriptor for non-articulated, rigid object
shapes. Given a 3D environment, the method demonstrated good
generalization on detecting physically feasible object–environment
configurations. In the SMPL-X human body representation
(Pavlakos et al., 2019), Zhang et al. (2020c) presented a context-
aware human body generator that learned the distribution of 3D
human poses conditioned to the scene depth and semantics via
recordings from the PROX (Hassan et al., 2019) dataset. In a follow-
up effort, Zhang et al. (2020b) developed a purely geometrical
approach tomodel human–scene interactions by explicitly encoding
the proximity between the body and the environment, thus
only using a mesh as input. Training CNNs and related data-
driven methods require the use of most, if not all, of the labeled
dataset; e.g., in PROX (Hassan et al., 2019), there are 100K image
frames.

3 AROS

Detecting human affordances in an environment is to find
locations capable of supporting a given interaction between a human
body and the environment. For example, the study of finding
“suitable to sit” locations identifies all those places where a human
can sit, which can include a range of object “classes” (sofa, bed,
chair, table, etc.). Our method is motivated to develop a descriptor
that characterizes such general interactions without requiring object
classes by using two key components and that is lightweight in terms
of data requirements while outperforming alternative baselines.

These two components weigh the extraction of characteristics
from areas with high (contact) and low (clearance)
physical proximity between the entities in interaction
(Figure 2).

Importantly, the representation allows one-shot training per
affordance, which is desirable to improve training scalability.
Furthermore, our approach is capable of describing and detecting
interactions between noisy data representations as obtained
from visual depth sensors and highly articulated human
poses.

3.1 A spatial descriptor for spatial
interactions

We are inspired by recent methods that have revisited geometric
features, such as the bisector surface for scene–object indexing
(Zhao et al., 2014) and affordance detection (Ruiz and Mayol-
Cuevas, 2020). Initiating from a spatial representation makes sense
if it helps reduce data training needs and simplify explanations—as
long as it can outperform data-intensive approaches. Our affordance
descriptor expands on the Interaction Bisector Surface (IBS)
(Zhao et al., 2014), an approximation of the well-known Bisector
Surface (BS) (Peternell, 2000). Given two surfaces S1,S2 ∈ ℝ3, the
BS is the set of sphere centers that touch both surfaces at one point
each. Due to its stability and geometrical characteristics, the IBS
has been used in context retrieval, interaction classification, and
functionality analysis (Zhao et al., 2014; Hu et al., 2015; Hu et al.,
2016; Zhao et al., 2016; Zhao et al., 2017; Ruiz and Mayol-Cuevas,
2020). Our approach expands on these ideas and is geometrically
intuitive and straightforward. It explicitly captures areas that are
important to be in scene-contact and those that are not. Importantly,
we show how this approach can be generalized from just one or a
small number of samples to a large unseen number of scenes.

Our one-shot training process represents interactions by 3-
tuples (Mh, Me, and ptrain), where Mh is a posed human-body mesh,
Me is an environment mesh, and ptrain is the reference point on Me
that supports the interaction. Let Ph and Pe be the sets of samples on
Mh and Me, respectively, their IBS I is defined as

I = {p ∣ min
p′h∈Ph
‖p− p′‖ =min

p′e∈Pe
‖p− p′‖} (1)

We use the Voronoi diagram D generated with Ph and Pe to
produce I . By construction, every ridge in D is equidistant to the
couple of points that defined it. Then, I is composed of ridges in D
generated because of points from both Ph and Pe. An IBS can reach
infinity, but we limit I by clipping it with the bounding sphere ofMh
with tolerance ibsrf .

The number and distribution of samples in Ph and Pe are crucial
for a well-constructed discrete IBS. A low rate of sampled points
degenerates on an IBS that pierces the boundaries of Mh or Me.
A higher density is critical in those zones where the proximity is
high. To populate Ph and Pe, we first use a Poisson-disc sampling
strategy (Yuksel, 2015) to generate ibsini evenly distributed samples
on each mesh surface. Then, we perform a counter-part sampling
that increases the number of samples in Pe by including the closest
points on Me to elements in Ph, and similarly, we incorporate in Ph
the closest point on Mh to samples in Pe. We perform the counter-
part sampling strategy ibscs times to generate a new I . However, we
observed that for intricate human–scene poses, convergence to an
IBS without mesh piercing is challenging. If the IBS is penetrating
the scene, we perform a collision-point sampling strategy. This adds
as sampling points, a sub-sample of points where collisions happen
and their counter-part points (body or environment). We then
simply recompute the IBS and repeat the counter-part sampling and
collision-point sampling strategies until we find a candidate I that
does not collide with Mh or Me. This is a straightforward process
that can be implemented efficiently.

To capture the regions of interaction proximity on our enhanced
IBS as mentioned above, we use the notion of provenance vectors
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FIGURE 2
2D and 3D illustrations of our one-shot training pipeline. (Left) Posed human body Mh interacting with an environment Me on a reference point ptrain.
(Center) Only during training, we calculate the Voronoi diagram with sample points from both the environment and body surfaces to generate an IBS.
(Right) We use the IBS to characterize the proximity zones and the surrounding space with provenance and clearance vectors. A weighted sample of
these provenance and clearance vectors, Vtrain and Ctrain, respectively, results in good generalization of the interaction.

(Ruiz and Mayol-Cuevas, 2020). The provenance vectors of an
interaction start from any point on I and finish on Me. Formally,

Vp = {(a, v⃗) ∣ a ∈ I , v⃗ = arg min
e∈Me

‖e− a‖− a} (2)

where a is the stating point of the delta vector v⃗ to the nearest point
on Me.

Provenance vectors inform about the direction and distance of
the interaction; the smaller the |v⃗|, the more important it is in the
description. Let V′p ⊂ Vp be the subset of provenance vectors that
finish on any point in Pe, and we perform a weighted randomized
selection sampling of elements from V′p with the allocation of
weights as follows:

wi = 1−
|v⃗i| − |v⃗min|
|v⃗max| − |v⃗min|

, i = 1, 2, …, |Pe| (3)

where |v⃗max| and |v⃗min| are the norms of the biggest and smallest
vectors in V′p, respectively. The selected provenance vectors Vtrain
integrate to our affordance descriptor with an adjustment to
normalize their positions, with the defined reference point ptrain as
follows:

Vtrain = {(a
′
i , v⃗i) ∣ a

′
i = ai − ptrain, i = 1, 2, …, numpv} (4)

where numpv is the number of samples from V′p to integrate.
The provenance vectors alone, however, are insufficient to work
successfully on highly articulated objects, such as human poses.
They are unable to capture the whole nature of the interaction. We
expand this concept by taking a more comprehensive description
that considers both areas of the IBS, those that are proximal to
surfaces and those that are not.

We include a set of vectors into our descriptor to define the
clearance space necessary for performing the given interaction.
Given Sh, an evenly sampled set of numcv points onMh, the clearance

vectors that integrate to our descriptor Ctrain on the interaction are
defined as follows:

Ctrain = {(s′j , ⃗cj) ∣ s
′
j = sj − ptrain, sj ∈ Sh, ⃗cj = ψ(sj, n̂j, I)} (5)

ψ(s′j , n̂j,I) =
{{{{
{{{{
{

dmax ⋅ n̂j if φ(sj, n̂j, I) > dmax

φ(sj, n̂j,I) ⋅ n̂j otherwise
(6)

where ptrain is the defined reference point, n̂i is the unit surface
normal vector on sample sj, dmax is the maximum norm of any ⃗cj,
and φ(sj, n̂j, I) is the distance traveled by a ray with origin sj and
direction n̂i until collision with I .

Formally, our affordance descriptor, AROS, is defined as

f:(Mh,Me,ptrain) → (Vtrain,Ctrain, n̂train) (7)

where n̂train is the unit normal vector on Me at ptrain. We calculate
n̂train for speeding up the detection process.

3.2 Human affordance detection

Let A = (Vtrain,Ctrain, n̂train) be an affordance descriptor; we
define its rigid transformation with τ ∈ ℝ3 being a translation vector
and ϕ being the rotation around z defined by Rϕ.

Given a point ptest on an environment mesh Mtest and its unit
surface normal vector n̂test, we determine that such a location
supports a trained interaction A if we can find that (1) has a small
angle difference between n̂test and n̂train, (2) once translated to ptest
and oriented with ϕtest , there is a correct alignment of VA

ϕτ, and (3) a
gated number of the CA

ϕτ is in collision with Mtest .
A significant angle difference between n̂test and n̂train permits to

short-cut the test and reject ptest with reference to A. We establish
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FIGURE 3
Approach for detecting human affordances. To mitigate 3D scan noise, the scene is augmented with spherical fillers for detecting collisions and SDF
values. Our method detects if a test point in the environment can support an interaction by translating the descriptor to the test position over different
orientations and measuring its alignment and collision rate. Then, the best-scored configuration is optimized to generate a more natural and physically
plausible interaction with the environment.

ρn⃗ as the decision threshold for the angle difference. ρn⃗ is adjustable
based on the level of mesh noise.

If we observe a normal match between p̂train and ptest vectors,
we perform transformations over the interaction descriptor A with
τ = ptest and nϕ different ϕ = ϕtest values within [0,2π]. Hence, per
each 3-tuple (VA

ϕτ, C
A
ϕτ, n̂train) calculated, we generated a set of rays

Rpv defined as follows:

Rpv = {(a
′′
i , ν̂i) | ν̂i =

v⃗i
‖v⃗i‖
, (a′′i , v⃗i) ∈ V

A
ϕτ} (8)

where a′′i is the starting point and ν̂i ∈ ℝ3 is the direction of each ray.
We extend each ray in Rpv by ϵpvi until collision with Mtest as

(a′′ + ϵpvi ⋅ ν̂i) ∈Mtest, i = 1,2,…,numpv (9)

and compare with themagnitude of each correspondent provenance
vector in VA

ϕτ. When any element in Rpv extends further than a
predetermined limit maxlong , the collision with the environment is
classified as non-colliding. We calculate the alignment score κ as a
sum difference between extended rays and provenance vectors with

κ = ∑
∀i|ϵpvi ≤maxlong

|ϵpvi − v⃗i| (10)

The bigger the κ value, the less the support for the interaction on
the ptest . We experimentally determine interaction-wise thresholds
for the sum of differences maxκ and the number of missing
ray collisions maxmissings that permits us to score the affordance
capabilities on ptest .

Clearance vectors are meant to fast-detect collision
configurations by ray–mesh intersection calculation. Similar to
provenance vectors, we generate a set of rays Rcv, whose origins
and directions are determined by CA

ϕτ. We extend rays in Rcv until
collision with the environment and calculate its extension ϵcvj .
Extended rays with ϵcvj ≤ ‖ ⃗cj‖ are considered as possible collisions.
In practice, we also track an interaction-wise threshold to refuse
affordance due to collisions maxcollisions.

A sparse distribution of clearance vectors on bi-dimensional
noisy meshes in a 3D space results in collisions that are not detected
by clearance vectors. To improve, we enhance scenes with a set of
spherical fillers that pad the scene (see Figure 3). More details are
provided in Supplementary Material.

3.2.1 Pose optimization
After a positive detection, we generate the body mesh

representation used in training at the testing location. This generally
has low levels of contact with the unseen environment. These gaps
are because our descriptor based its construction on the bisector
surface between the interacting entities.We can eliminate the gap by
translating the body until it touches the environment. However, this
naïvemethod generates configurations that visually lack naturalness,
Figure 3 (Pose with best score).

Every human–environment configuration trained has an
associated 3D human SMPL-X characterization that we keep and
use to optimize the human pose as in the work of Zhang S. et al.
(2020b) with the AdvOptim loss function, using the SDF values that
have been pre-calculated in each scene with a grid of 256 × 256 ×
256 positions.

Overall, we train a human interaction by generating its AROS
descriptor from a single example, keeping the associated SMPL-
X parameters of the body pose and defining the contact regions
that the body has with the environment. After a positive detection
with AROS, we use the associated SMPL-X body parameters
and its contact regions to close the environment–body gap and
generate a more natural body pose, as shown in Figure 3 (ouput).
Our approach generalizes well on the description of interaction
and generates natural and physically plausible body–environment
configurations over novel environments with just one example for
training (see Figure 4).

4 Experiments

We conduct experiments in various environment configurations
to examine the effectiveness and usefulness of the affordance
recognition performed by AROS. Our experiments include several
perceptual studies, as well as a physical plausibility evaluation of the
body–environment configurations generated.

Datasets: The PROX dataset (Hassan et al., 2019) includes data
from 20 recordings of subjects interacting within 12 scanned indoor
environments. An SMPL-X body model (Pavlakos et al., 2019) is
used to characterize the shape andpose of humanswithin each frame

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1076780
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Pacheco-Ortega and Mayol-Cuevas 10.3389/frobt.2023.1076780

FIGURE 4
Our one-shot learning approach generalizes well on affordance detection. Only one example of an interaction is used to generate an AROS descriptor
that generalizes well for the detection of affordances over previously unseen environments.

in recordings. Following the setup in the work of Zhang S. et al.
(2020b), we use the rooms MPH16, MPH1Library, N0SittingBooth,
and N3OpenArea for testing purposes and training on data from
other PROX scenes. We also perform evaluations on seven scanned
scenes from the MP3D dataset (Chang et al., 2017) and five scenes
from the Replica dataset (Straub et al., 2019). We calculate the
spherical fillers and SDF values of all 3D scanned environments.

Training: We manually select 23 frames in which subjects
interact in one of the following ways: sitting, standing, lying
down, walking, or reaching. From these selected human–scene
interactions, we generate the AROS descriptors and retain the
SMPL-X parameters associated with human poses.

To generate the IBS associated with each trained interaction,
we use an initial sampling set of ibsini = 400 on each surface,
execute the counter-part sampling strategy ibscs = 4 times, and crop
the generated IBS I with ibsrf = 1.2. The AROS descriptors are
a compound of numpv = 512 provenance vectors and numcv = 256
clearance vectors that extend up to dmax = 5 [cm] each.

The interaction-wise thresholds maxκ, maxmissings, and
maxcollisions are established experimentally, and maxlong is 1.2 times
the radius of the sphere used to crop I . We use a moderate angle
difference threshold of ρn⃗ = π/3, in nϕ = 8 different directions.

With 512 provenance vectors Vtrain and 256 clearance vectors
Ctrain, the AROS descriptor characterizes an interaction with less
than 40 KB, including the SMPL-X parameters.

Baselines: We compare our approach with the state-of-
the-art PLACE (Zhang et al., 2020b) and POSA (contact only)
(Hassan et al., 2021). PLACE is a pure scene-centric method
that only requires a reference point on a scanned environment
to generate a human body performing around it. However,
PLACE does not have control over the type of interaction
detected/generated. We used naive and optimized versions of this
approach in experiments (PLACE, PLACE SimOptim, and PLACE
AdvOptim). POSA is a human-centric approach that, given a posed
human body mesh, calculates the zones on the body where contact
with the scene may occur and uses this feature map to place the
body in the environment. We encourage a fair comparison by
evaluating the naive and optimized POSA versions that consider
only contact information and excludes semantic information (POSA

and POSA optimized). In our studies, POSA was executed with the
same human shapes and poses used to train AROS.

4.1 Physical plausibility

Weevaluate the physical plausibility of the compared approaches
mainly by following the work of Zhang et al. (2020b) and
Zhang et al. (2020c). Given the SDF values of a scene and a
body mesh generated, 1) the contact score is assigned to 1 if
any mesh vertex has a negative SDF value and is evaluated as
0, otherwise, 2) the non-collision score is the ratio of vertices
with a positive SDF value, and 3) in order to measure the
severity of the body–environment collision on positive contact,
we include the collision-depth score, which averages the depth
of the collisions between the scene and the generated body
mesh.

4.1.1 Ablation study
We evaluate the influence of clearance vectors, spherical fillers,

and different optimizers on the PROX dataset. Three different
optimization procedures are evaluated. The downward optimizer
translates the generated body downward (-Z direction) until it
comes in contact with the environment. The ICP optimizer uses the
well-known Interactive Closest Point algorithm to align the body
vertices with the environment mesh. The AdvOptim optimizer is
described in Section 3.2.1.

Table 1 shows that models without clearance vectors have the
highest collision-depth scores on models with the same optimizer.
AROS models present a reduction in contact and collision-depth
scores in all cases that consider clearance vectors in their descriptors
to avoid collision with the environment. Spherical fillers have a
significant influence on avoiding collisions, producing the best
scores in all metrics per optimizer. The ICP optimizer closes the
body–environment gaps but drastically reduces the performance on
both collision scores, while theAdvOptim and downward optimizers
keep a trade-off between collision and contact.Thebest performance
is achieved with affordance descriptors composed of provenance
and clearance vectors, tested in scanned environments enhanced
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TABLE 1 Ablation study evaluation scores (↑: benefit; ↓: cost). The best trade-off between scores per optimizer are in boldface.

Descriptor integrated by Spherical filler Optimizer Non-collision↑ Contact↑ Collision-depth↓

Vtrain No w/o 0.9348 0.7998 1.4132

Vtrain,Ctrain No 0.9504 0.6901 0.6757

Vtrain,Ctrain Yes 0.9623 0.5448 0.1573

Vtrain No ICPa 0.5820 1.0000 7.3770

Vtrain,Ctrain No 0.5775 1.0000 7.2180

Vtrain,Ctrain Yes 0.6299 1.0000 6.2665

Vtrain No Downward 0.9271 0.9377 1.4380

Vtrain,Ctrain No 0.9496 0.9036 0.7089

Vtrain,Ctrain Yes 0.9641 0.8603 0.1807

Vtrain No AdvOptim 0.9552 0.9638 2.0249

Vtrain,Ctrain No 0.9717 0.9508 1.2325

Vtrain,Ctrain Yes 0.9818 0.9403 0.6341

aICP stands for the Iterative Closest Point.

TABLE 2 Physical plausibility: Non-collision, contact, and collision-depth scores (↑: benefit; ↓: cost) before and after optimization. The best results are in boldface.

Non-collision↑ Contact↑ Collision-depth↓

Model Optimizer PROX MP3D Replica PROX MP3D Replica PROX MP3D Replica

PLACE w/o 0.9207 0.9625 0.9554 0.9125 0.5116 0.8115 1.6285 0.8958 1.2031

PLACE SimOptim 0.9253 0.9628 0.9562 0.9263 0.5910 0.8571 1.8169 1.0960 1.5485

PLACE AdvOptim 0.9665 0.9798 0.9659 0.9725 0.5810 0.9931 1.6327 1.1346 1.6145

POSA w/o 0.9820 0.9792 0.9814 0.9396 0.9526 0.9888 1.1252 1.5416 2.0620

POSA Optimized 0.9753 0.9725 0.9765 0.9927 0.9988 0.9963 1.5343 2.0063 2.4518

AROS w/o 0.9615 0.9853 0.9931 0.5654 0.3287 0.4860 0.1648 0.1326 0.2096

AROS AdvOptim 0.9816 0.9853 0.9883 0.9363 0.6213 0.8682 0.6330 0.8716 0.8615

with spherical fillers, and where interactions are optimized with the
AdvOptim optimizer.

4.1.2 Comparison with the state of the art
We generated 1300 interacting bodies per model in each of the

16 scenes and reported the averages of calculated non-collision,
contact, and collision-depth scores.The results are shown inTable 2.
In all datasets, interacting bodies generated using our approach
provided a good trade-off with high non-collision but low contact
and collision-depth scores.

4.2 Perception of naturalness

We use Amazon Mechanical Turk to compare and evaluate
the naturalness of body–environment configurations generated by
our approach and baselines. We used only the best version of
the compared methods (with optimizer). Each scene in our test
set was used equally to select 162 locations around which the

compared approaches generate human interactions. MTurk judges
observed all human–environment pairs generated through dynamic
views, allowing us to showcase them from different perspectives.
Each judge performed 11 randomly selected assessments, without
repetition, that included two control questions to detect and exclude
untrustworthy evaluators. Three different judges accomplished each
of the evaluations. Our perceptual experiments include individual
and comparison studies for each comparison carried out.

In our side-by-side comparison studies, interactions
detected/generated from two approaches are exposed
simultaneously. Then, MTurkers were asked to respond to the
question “Which example is more natural?” by direct selection.

We used the same set of interactions for individual evaluation
studies, where judges rated every individual human–scene
interaction by responding to “The human is interacting very
naturally with the scene. What is your opinion?” with a 5-point
Likert scale according to its agreement level: 1) strongly disagree,
2) disagree, 3) neither disagree nor agree, 4) agree, and 5) strongly
agree.
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TABLE 3 Cross-tabulation data of individual evaluation studies on randomly selected locations. The best are in boldface.

Individual evaluation study Model 1. Strongly
disagree

2. Disagree 3. Neither 4. Agree 5. Strongly
agree

PLACE vs. AROS

PLACE
Observed frequency 68 98 70 153 97

% within model 14.0 20.2 14.4 31.5 19.9

AROS
Observed frequency 43 98 64 187 94

% within model 8.8 20.2 13.2 38.5 19.3

POSA vs. AROS

POSA
Observed frequency 64 173 89 123 37

% within model 13.2 35.6 18.3 25.3 7.6

AROS
Observed frequency 29 136 85 179 57

% within model 6.0 28.0 17.5 36.8 11.7

FIGURE 5
Selected by a golden annotator, green spots correspond to examples of meaningful, challenging locations for affordance detection.

TABLE 4 MTurk side-by-side studies results in random and challenging locations. The best are in boldface.

% preferences in random locations % preferences in challenging locations

Side-by-side comparison study Model MP3D PROX Replica MP3D PROX Replica

PLACE vs. AROS
PLACE 39.5 32.7 45.7 38.9 30.9 36.4

AROS 60.5 67.3 54.3 61.1 69.1 63.6

POSA vs. AROS
POSA 24.7 29.6 27.8 19.8 21.6 30.2

AROS 75.3 70.4 72.2 80.2 78.4 69.8

4.2.1 Randomly selected test locations
Thefirst group of studies compares human–scene configurations

generated at randomly selected locations. On the side-by-side
comparison study that contrasts AROS with PLACE, our approach
was selected as more natural in 60.7% of all assessments. Compared
to POSA, ours is selected in 72.6% of all tests performed. The
results per dataset are shown in Table 4 (% preferences in random
locations).

Individual evaluation studies also suggest that AROS produced
more natural interactions (see Table 3). The mean and standard
deviations of these scores obtained by the judges to PLACE are
3.23 ± 1.35 in comparison with AROS, 3.39 ± 1.25, while in the
second study, these statistics obtained by POSA were 2.79 ± 1.18
in contrast with AROS, 3.20 ± 1.18. Evaluation scores of AROS
have a larger mean and a narrower standard deviation compared to
baselines. However, these descriptive statistics must be cautiously

used as evidence to determine a performance difference because
it assumes that the distribution of scores approximately resembles
a normal distribution and that the ordinal variable was perceived
as numerically equidistant by judges. Regrettably, Shapiro–Wilk
tests (Shapiro and Wilk, 1965) performed on data show that the
score distributions depart fromnormality in both evaluation studies,
PLACE/AROS and POSA/AROS with p < 0.01.

Based on this, we performed a chi-square test of homogeneity
(Franke et al., 2012) with a significance level α = 0.05, to determine
if the distributions of evaluation scores are statistically similar. If we
observe significance, the level of association between the approach
and the distribution of the scores was determined by calculating
Cramer’s V value (V) (Cramer, 1946).

In this first set of randomly selected locations, data from the
PLACE/AROS evaluation suggest that there is no statistically
significant difference between score distributions (χ2(4) = 9.34,
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TABLE 5 Cross-tabulation data of individual evaluation studies on challenging locations. A chi-square test of homogeneity on data provides evidence of
difference in the distribution of scores with α = 0.05. An analysis of residual indicates the source of such differences, an asterisk (*) indicates conservative
statistical significance at α = 0.05, and a double asterisk (**) denotes statistical significance with αadj = 0.005. The best are in boldface.

Individual evaluation study Model 1. Strongly
disagree

2. Disagree 3. Neither 4. Agree 5. Strongly
agree

PLACE vs. AROS

PLACE

Observed frequency 81 131 54 161 59

% within model 16.7% 27.0% 11.1% 33.1% 12.1%

Standardized residual 4.44** 2.98** −1.08 −3.04** −2.43*

AROS

Observed frequency 36 92 65 207 86

% within model 7.4% 18.9% 13.4% 42.6% 17.7%

Standardized residual −4.44** −2.98** 1.08 3.04** 2.43*

POSA vs. AROS

POSA

Observed frequency 86 141 93 122 44

% within model 17.7% 29.0% 19.1% 25.1% 9.1%

Standardized residual 4.95** 3.52** 1.70 −2.88 −6.57

AROS

Observed frequency 35 94 73 163 121

% within model 7.2% 19.3% 15.0% 33.5% 24.9%

Standardized residual −4.95** −3.52** −1.70 2.88** 6.57**

FIGURE 6
AROS shows good performance on a variety of novel scenes.

p = 0.053). A larger sample size may be necessary to observe
statistical significance; however, this will be of negligible size
effect. Nevertheless, data from the POSA/AROS evaluation
study showed that our approach performs better than POSA
(χ2(4) = 32.33, p < 0.001) with a medium level of association
(V = 0.1823).

4.2.2 Challenging test locations
A random sampling strategy is insufficient to fully evaluate

the performance of pose affordances, since what matters for such

methods is how they perform under realistic albeit challenging
specific scene locations. For example, a test can be oversimplified and
inadequate for evaluations if the sampled scene has relatively large
empty spaces where only the floor or a big plane surface surrounds
the test locations. Therefore, we crowdsource the evaluations in a
new set of more realistic locations provided by a golden annotator
(none of the authors) tasked with identifying areas of interest
for human interactions (Figure 5). These locations are available
for comparison as part of our dataset (https://abelpaor.github.io/
AROS/).
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FIGURE 7
Qualitative challenging locations. PLACE (yellow), POSA (pink), and AROS (silver).

FIGURE 8
AROS can be used to create maps for action planning. Top: Many locations in an environment are evaluated for three different affordances (sit-able,
walk-able, and reach-able). Bottom: AROS scores used to plan concatenated action milestones.
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The results of the side-by-side comparison studies confirm that
in 60.6% of the comparisons with PLACE, AROS was considered
more natural overall. Compared to POSA, AROS was marked with
better performance in 76.1% of all evaluations with a notorious
difference in MP3D locations, where AROS was evaluated to be
more natural in 80.2% of the assessments. The results per dataset
are shown in Table 4 (% preferences in challenging locations).

As in the randomly selected test locations, a descriptive analysis
of the data from individual evaluation studies on these new locations
suggests that AROS performs better than other approaches with
largermean values and narrower standard deviations.Themean and
standard deviation of the scores obtained by the judges to PLACE
are 2.97 ± 1.33 in comparison with AROS, 3.44 ± 1.19, while in
the second study, these statistics obtained by POSA were 2.79 ±
1.25 in contrast with AROS, 3.5 ± 1.25. However, a Shapiro–Wilk
test performed on these data shows that the score distributions also
depart from normality with p < 0.01 in both studies, PLACE/AROS
and POSA/AROS.

A chi-square test of homogeneity, with α = 0.05, was used to
determine whether both score distributions were statistically similar
on the data from the PLACE/AROS evaluation study, providing
evidence that there is a difference in score distributions (χ2(4) = 35.92,
p < 0.001) with a medium level of association (V = 0.192).

However, an omnibus χ2 statistic does not provide information
about the source of the difference between the score distributions. To
this end,we performed a post hoc analysis following the standardized
residuals method described in the work of Agresti (2018). As
suggested by Beasley and Schumacker (1995), we corrected our
significance level (α = 0.05) with the Sidak method (Šidák, 1967)
to its adjusted version αadj = 0.005, with critical value z = 2.81.
The study revealed a significant difference in the qualification of
the interactions generated by PLACE and AROS, with ours being
qualified as natural more frequently.

The residuals associated with AROS indicate, with significant
difference, that the interactions generated by our approach were
marked as “not natural” less frequently than expected: strongly
disagree (z = −4.4,p < 0.001) and disagree (z = −2.98,p = 0.002).
Data also show a significant difference in favorable evaluations,
where PLACEhas less frequently positive evaluations than predicted
by the hypothesis of independence in agree (z = −3.04,p < 0.001).
We also observed a marginal significance, still in favor of AROS, in
the frequency of strongly agree evaluations (z = −2.3,p = 0.015).

Not surprisingly, the chi-square test of homogeneity (α = 0.05)
on the data from the POSA/AROS evaluation study revealed that
there is strong evidence of a difference in score distributions (χ2(4) =
75.13, p < 0.001) with a larger level of association (V = 0.278).
The post hoc analysis with standardized residuals concludes
that the naturalness of human–scene interactions generated by
AROS is, in the long term, better than that from POSA.
Table 5 shows the cross-tabulated data of the scores observed by
MTurkers and their standardized residual (critical value z = 2.81 for
αadj = 0.005).

4.3 Qualitative results

Experiments verify that our approaches can realistically generate
human bodies that interact within a given environment in a natural

and physically plausible manner. AROS allows us to not only
determine the location on the environment in which we want the
interaction to happen (the where) but also select the specific type of
interaction to be performed (the what).

The number and variety of interactions detected by AROS can
easily be increased as a result of its one-shot training capacity.
The more trained the interactions, the more the human–scene
configuration can detect/generate. Figure 6 shows examples of
different affordance detections around single locations.

AROS showedbetter performance inmore realistic environment
configurations where elements, such as chairs, sofas, tables, and
walls, are presented and must be considered during the generation
of body interactions. Figure 7 shows some examples of interaction
generated by AROS and baselines over challenging locations.

Alternatively, AROS can be used to concatenate affordances
over several positions to generate useful affordance maps for action
planners (see Figure 8). This can be used as a way to generate
visualizations of action scripts or to plan the ergonomics and
usability of spaces beyond individual objects.

5 Conclusion

In this work, we present AROS, a one-shot geometric-driven
affordance descriptor that is built on the bisector surface and
combines proximity zones and clearance space to improve the
affordance characterization of human poses. We introduced a
generative framework that poses 3D human bodies interacting
within a 3D environment in a natural and physically plausible
manner. AROS shows a good generalization in unseen novel scenes.
Furthermore, adding a new interaction to AROS is straightforward,
since it requires only one example. Via rigorous statistical analysis,
results show that our one-shot approach outperforms data-intensive
baselines, with human judges preferring AROS proposals 80% of
the time over the baselines. AROS can be used to concatenate
affordances over several positions. This can be used as a way to
generate visualizations of action scripts in 3D scenes or to plan
the ergonomics and usability of spaces beyond individual object
affordances. We believe that explicit and interpretable description
is valuable for complementing data-driven methods and opens
avenues for further work, including combining the strengths of both
approaches.
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