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A high degree of freedom (DOF) benefits manipulators by presenting various
postures when reaching a target. Using a tendon-driven system with an
underactuated structure can provide flexibility and weight reduction to such
manipulators. The design and control of such a composite system are
challenging owing to its complicated architecture and modeling difficulties. In
our previous study, we developed a tendon-driven, high-DOF underactuated
manipulator inspired from an ostrich neck referred to as the Robostrich
arm. This study particularly focused on the control problems and simulation
development of such a tendon-driven high-DOF underactuated manipulator.
We proposed a curriculum-based reinforcement-learning approach. Inspired
by human learning, progressing from simple to complex tasks, the Robostrich
arm can obtain manipulation abilities by step-by-step reinforcement learning
ranging from simple position control tasks to practical application tasks. In
addition, an approach was developed to simulate tendon-driven manipulation
with a complicated structure. The results show that the Robostrich arm can
continuously reach various targets and simultaneously maintain its tip at the
desired orientation while mounted on a mobile platform in the presence
of perturbation. These results show that our system can achieve flexible
manipulation ability even if vibrations are presented by locomotion.

KEYWORDS

reinforcement learning, curriculum learning, simulation, tendon-driven system,
underactuated manipulator, soft robotics, bio-inspired robot

1 Introduction

Manipulators with redundant degrees of freedom (DOFs) are beneficial for representing
various postures as the end-effectors reach a specific position and orientation (Chirikjian and
Burdick, 1994; Tatlicioglu et al., 2009; Baur et al., 2012). This feature is characterized by the
contribution of additional joints toward higher dexterity in the interior of their workspace,
which is often considered a solution for obstacle scenarios (Gong et al., 2016; Xu et al., 2019).
However, an increase in the number of actuators for such redundant joints leads to an
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increase in the weight along the arm. This increases energy
consumption, safety, and tip-over problems when the manipulator
is mounted on a mobile platform. The use of under-actuated
joints with a tendon-driven system is considered a solution to
these problems (Chung et al., 1998), with benefits such as (1)
providing flexibility in manipulation, (2) reducing the weight of
the arm, and (3) placing the center of mass of the manipulator
close to the mobile platform. In our previous work, we proposed
a tendon-driven high-DOF underactuated manipulator inspired by
the vertebral column of an ostrich, referred to as the Robostrich
arm (Mochiyama et al., 2022). However, the inverse kinematics of
such a complicated system are too complex to be fully known.
This leads to difficulty in controlling the Robostrich arm using
traditional model-based control methods, even for simple reach
tasks.

Recently, researchers have applied reinforcement learning to
manipulator tasks. Reinforcement learning is a trial-and-error-
based approach that allows an agent to automatically acquire skills
as it interacts with its environment, and is therefore often effective
for manipulation tasks. Among these tasks, reaching has been the
main subject of studies on the combination of redundant arms
and reinforcement learning. Morimoto et al. added a payload to
the arm to reach a stick (Morimoto et al., 2021), Satheeshankar
et al. studied redundant manipulators that could reach multiple
target points (Satheeshbabu et al., 2020). However, the motion of
a tendon-driven manipulator is often a complex and nonlinear
time-varying system, which is difficult to achieve simply using
reinforcement learning methods. In such complex scenarios, it is
challenging to design advanced reinforcement-learning techniques
for complicated manipulation tasks. In this study, we aimed to
address the aforementioned problems regarding design and control
issues.

Inspired by the fact that the learning process for humans
and animals generally follows an order from easy to difficult,
we focus on the concept of curriculum learning (Bengio et al.,
2009). Compared with the general paradigm of indiscriminate
machine learning, curriculum learning imitates the process of
human learning, advocating that the model should start learning
from easy samples and gradually progress to complex samples
and knowledge, further showing the two advantages for learning.
The first is that it can accelerate the training of machine learning
models; under the condition that it achieves the same model
performance, curriculum learning can speed up training and reduce
the number of training iteration steps. The second advantage
is that the model can obtain better generalization performance,
that is, the model can be trained to a better local optimum
state.

On the other hand, constructing simulations often benefits
researcherswhodesign robots, helping to confirm the robot’smotion
and train it. Software such as Gazebo, CoppeliaSim (previously V-
Rep), Multi-Joint dynamics with Contact (MuJoCo), and Matlab
have been used to simulate a robot in many studies (Xiao et al.,
2017; Huang et al., 2020; Shahid et al., 2021; Rooban et al., 2022).
However, in contrast to conventional manipulators with direct
motor-driven joints, the relationship between tendons and joints
change must be closely considered.

This study particularly focuses on control and simulation
problems of a tendon-driven high-DOFunderactuatedmanipulator.

A curriculum-reinforcement learning framework was proposed
for controlling a complicated manipulator to accomplish complex
manipulation tasks. In addition, an approach was addressed to
simulate the tendon-driven system for constricting the training
environment. We first confirmed the motion of the tendon-driven
manipulator using the developed simulator. Next, the workspace
of the Robostrich arm was investigated. Simultaneously controlling
position and orientation is a challenging task for such a high-DOF
underactuated manipulator, in particular when the manipulator is
composed of a tendon-driven system. We compared the proposed
learningmethodwith conventional SoftActor-Critic (SAC) learning
in a reaching task using the Robostrich arm. Consequently, two
application tasks were conducted to investigate the robustness of our
method in the presence of noise, which is caused by the locomotion
of the mobile base, providing interaction with the environment: (1)
stabilize the tip movement during walking; (2) track a set of sub-
target positions to pass through a narrow gap and reach the final
target position at the top.

The contributions of this study are as follows.

• A Curriculum-reinforcement learning approach is proposed
with the learning lesson definitions depending on the
complexities. These lessons enable a manipulator with
complicated structure to gradually process from simple tomore
complex tasks.
• Asimulator has been developed usingMuJoCo to study tendon-
driven underactuated manipulators, which can be used for
tendon-driven systems whose structures are too complicated to
be accurately modeled.
• We demonstrate through simulation that the complicated
manipulator can learn to accomplish complex tasks, even under
perturbations when the manipulator was mounted on a mobile
platform.

The remainder of this paper is organized as follows. In
Section 2, related works are addressed. Section 3 introduces the
proposed framework of curriculum-reinforcement learning and
corresponding lesson definitions. Section 4 describes the simulation
environment, experimental setups, and investigation of properties
of the Robostrich arm movement. Section 5 presents the simulation
results of the proposed learning method. Section 6 presents the
conclusions and future work.

2 Related works

2.1 Curriculum with reinforcement learning

Curriculum learning is widely used in machine learning
frameworks, especially in tasks dealing with images or natural
language processing, where researchers often start training with
simple samples progressing to complex ones. For instance,
(Mousavi et al., 2022), designed a deep curriculum learningmethod
for the classification of polarimetric synthetic aperture radar
image in the order of easy to hard, which is evaluated by the
patch complexity criterion, and achieved better accuracy than
methods which consider samples in a randomorder during training.
(Xu et al., 2020), proposed a method which is able to distinguish
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TABLE 1 Parameters of Robostrich arm. The links are numbered from C2 to C18 and counted from the cranial side to caudal side (see Figure 1B). C2 denotes the
link which is closest to the atlas (head). The length is defined as the distance between the adjacent rotational joint axes in the corresponding link.

Atlas (head) C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Dorsal angle limit (°) 1 12 18 20 28 31 33 35 28 29 30 27 24 22 19 18 18 18

Ventral angle limit (°) 1 12 16 18 25 30 32 30 26 25 18 15 12 8 6 6 6 6

Length (mm) 7.1 17.6 22.1 26.5 30.9 35.3 39.7 39.7 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 39.7

Mass (g) 83 5 7 8 10 11 12 13 13 14 14 14 14 14 14 14 14 13

FIGURE 1
The fabricated Robostrich arm and tendon configuration in simulation. (A) The fabricated Robostrich arm. (B) Tendon configuration of Roborstich arm
in simulation.

easy examples from difficult ones, and arrange a curriculum for
language models, by reviewing the training set in a crossed way.
In the application of robotics, researchers have focused more on
applying curriculum learning to the generation of subgoals for
traditional rigid manipulators. For instance, (Kilinc and Montana,
2020), trained a 7-DOF fetch robot for position to position tasks
with a curriculum of intermediary imagined goals resulting in
a high learning success rate. Zhou et al. (2021), also trained an
industrial robot to overcome obstacles by generally increasing the
size of obstacles. Mendoza investigated the curricula of a 6-DOF

manipulator with Q-learning, such as the number of moving joints,
joint velocities, or initial robot configurations (Diego Mendoza,
2017). The joints of these studied manipulators were directly
driven by the corresponding actuators without any underactuated
joints, and related research tends to be limited to simpler tasks
such as reaching without considering orientation. In comparison,
this study particularly focuses on more complicated manipulator
structures and complex tasks, with regard to the positional and
orientational control of a tendon-driven high-DOF underactuated
manipulator.
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FIGURE 2
Environment setup. (A) Robostrich arm on a stationary frame. (B)
Robostrich arm on a mobile platform.

2.2 Simulation of tendon-driven
manipulator

To simulate a tendon-driven robotic system, the traditional
approaches simulation often focus on constructing a mathematical
model to map the tendon force/length to joint torque/angle,
and applying these models to generate the robot motions. For
instance, G. Borghesan et al. reported the development of a
tendon-driven robotic finger by simulation, in which a finger
model was constructed by mapping the joint torques to the
tendon forces (Borghesan et al., 2010); Okoli et al. developed

a cable-driven parallel robot simulation, in which the robot
was investigated by moving an object using the tendon. The
tendon length change and object twist was mapped using a
Jacobian matrix (Okoli et al., 2019). Ko reported a tendon-driven
gripper, constructing a hand model using relationships between
tendon tension and joint torques (Ko, 2020). These mathematical-
based approaches are often unsuitable for complex manipulator
architectures, as (1) when some DOFs are underactuated or
the relationship between joints and tendons is not a one-to-one
correspondence, it is often difficult to find such a mathematical
relationship; (2) the contacts between tendons and links are
often changing depending on various postures, these contacts
affect the manipulator actuation. Therefore, a mathematical model-
free approach is beneficial to simulate such a tendon-driven
underactuated manipulator.

2.3 Previous works of Robostrich arm

The Robostrich arm was designed with a focus on the
dorsoventral motion of an ostrich neck to represent neck movement
in the sagittal plane (Misu et al., 2022). The Robostrich arm
comprises 18 rigid links with passive rotational joints, which is
similar to the number of real ostrich vertebrae. The mean length
of the links was designed according to an earlier anatomical report
of a real ostrich and the sizes of the links were scaled to 75%
(Dzemski and Christian, 2007). Additionally, the movable range of
the joints was determined according to the flexibilitymeasured from
real ostriches in that earlier study. Table 1 lists the parameters of the
Robostrich arm, andFigure 1A shows theRobostrich armprototype.
The links of the Robostrich armwere numbered from the C2 to C18,
corresponding in order from the cranial to the caudal part of the
ostrich vertebra. C2 denotes the link which is closest to the atlas
(head). The length of the links in Table 1 is defined as the distance
between adjacent rotational joint axes in the corresponding links.
The masses in Table 1 are the masses of the bone parts, and the atlas
mass includes the masses of the beak parts.

In our previous study, two DCmotors were used to connect four
tendons to actuate the Robostrich arm, and a simple feed-forward
strategywas used to control themanipulator.The preliminary results
show that the head-up motion was successful only when the entire
arm was maintained in a bar shape during rotation. However, the
motion using this strategy limits the dexterity of the high-DOF
manipulator. We considered the above problems as caused by a
missing model to test its motion and control. However, constructing
amathematical model of such a complicated system is laborious and
its parameters are not flexibly changeable, such as inertia moments
and tendon attachment positions. Therefore, we aimed to solve the
aforementioned issue using a curriculum-reinforcement learning
approach.

3 Curriculum-SAC learning

We introduce a novel reinforcement learning-based approach
for a complicated manipulator that can learn manipulation tasks.
We adopted an architecture based on SAC reinforcement learning
(Haarnoja et al., 2018) and curriculum learning (Bengio et al.,
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TABLE 2 Action and observation space of the simulation environments.

Environments Action space (Dimension) Observation space (Dimension)

The Robostrich was mounted to a stationary frame Dorsal tendon (1D) Head position (2D)

Ventral tendons (8D) Head velocity (2D)

Joint angles (18D)

The Robostrich was mounted to a commercially available quadruped robot Dorsal tendon (1D) Head position (3D)

Ventral tendons (8D) Head velocity (3D)

Joint angles (18D)

Trunk position (3D)

Trunk velocity (3D)

FIGURE 3
Motor pattern of an ostrich. (A) Rolling pattern of an ostrich. (B) Lever
pattern of an ostrich.

2009). In our tasks, SAC achieved the best performance among
general reinforcement learning methods, as shown in the
Supplementary Material. The neural network policy was trained
using reinforcement learning to obtain higher rewards in the
simulation environment.

3.1 Soft Actor-Critic

The learning objective of traditional reinforcement learning
algorithms is to learn a policy that maximizes the reward of the
trajectory.

π* = argmax∑
t
𝔼(st,at)∼ρπ [r(st,at)] (1)

where ρπ(st|at) denotes the state-action marginals of the trajectory
distribution induced by the policy π(at|st). In SAC, a maximum
entropy reinforcement learning algorithm aims to learn a policy
considering to maximize not only the reward of trajectory but also
the entropy of each state, namely:

π* = argmax∑
t
𝔼(st,at)∼ρπ [r(st,at) + αH (π(*|st))] (2)

where H denote the entropy term and α denote the temperature
parameter that determines the relative importance between the
rewards and entropy. Generally, the V function with entropy is
referred to as the soft V function.

Vπ (st) = 𝔼at∼ρπ [Q(st,at) − logπ(at|st)] (3)

and the Q function is defined by operator Tπ :

TπQ(st|at) = r(st,at) + γ𝔼st+1∼p [V(st+1)] (4)

Then, we use the soft policy evaluation, letQk+1 =TπQk,Q0 = S ×A→
R, |A| <∞, where k→∞,Qk converges to a softQ value. Because of
the convergence of Qk, policy π also converges to an optimal policy
π∗ when |A| <∞.

SAC approximates the above formula and uses three parameters
φ, and θ, ϕ to parameterize V, Q, and π, and update φ, θ, and ϕ in
each step, respectively. Following this trick, we define the following
objective:

JV (φ) = 𝔼st∼D [
1
2
(Vφ (st) −𝔼at∼πϕ [Qθ (st,at)

− logπϕ (at|st))])
2] (5)

The soft Q-function is used to minimize the soft Bellman residual as
follows:

JQ (θ) = 𝔼(st,at)∼D [
1
2
Qθ (st,at) − (r(st,at)

+ γ𝔼st+1∼p [Vφ̄(st+1)
2]] (6)

Where D denotes the replay buffer, and γ denotes the discount
factor. In practice, (Fujimoto et al., 2018) used the 2 Q functions
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FIGURE 4
Rolling pattern movement of Robostrich arm on an immobile frame. (A) Tendon input in rolling pattern. (B) Attitude angle in rolling pattern.

Qθ1 and Qθ2. The objective function of the policies to be updated
via minimization is as follows:

Jπ (ϕ) = 𝔼st∼D,εt∼N [α logπϕ (at|st) −Qθ (st|at)] (7)

Where ɛ denote the input noise sampled from the Gaussian
distribution N.

The temperature parameter α affects the exploration ability of
the policy. We aim to achieve a flexible exploration of the strategy

through dynamic automatic adjustment using the following optimal
function:

J (α) = 𝔼at∼πt [−α logπt (at|st) − αH] (8)

3.2 Curriculum learning

We designed a curriculum course by adjusting the reward
functions, initial states, and environmental setting of reinforcement
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FIGURE 5
Lever pattern movement of Robostrich arm on an immobile frame. (A) Tendon input in lever pattern. (B) Attitude angle in lever pattern. (C) Trajectory of
Robostrich arm in lever pattern.

learning, such that the agent can finally learnmanipulation tasks and
improve the performance from the traditional SAC approach.

In the first lesson, the reward function was defined as follows:

r1 = −(‖phead − pdesire‖ > d) (9)

Where, phead and pdesire denote the current and desired head
positions, respectively, and d denotes the error tolerance of the head
position. In this lesson, the agent is expected to learn a policy to
reach the desired position without considering the attitude angle of
the head.

In the following lessons, all reward functions are the same but
have different initial states or environment settings.

rm2 = −λ1 (‖phead − pdesire‖ > d) − λ2 (‖θhead − θdesire‖ > α)

ra2 = −λ3‖phead − pdesire| − λ4‖θhead − θdesire‖

r2 = rm2 + ra2

(10)

Where θhead and θdesire denote the current and desired attitude angles
of the head, respectively. Weight λi determines the importance of
the position and orientation of the head in the reward functions.
In this lesson, we intended the agent to learn a more difficult
policy so that it can reach the desired positions with a certain
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FIGURE 6
Workspace of Robostrich arm by sampling joint angles.

attitude angle of the head. In particular, in the second lesson,
the agent starts learning in each episode with a fixed initial
state and is expected to learn the more difficult policy with set
position and head orientation. In the third lesson, we make the
agent start learning using the final states of the last episode as
the initial states, such that the agent can move among states
continuously.

In the first three lessons, we intended the agent to acquire basic
manipulation abilities to continuously track a set of target positions
with specific orientations. In practical usage scenarios, manipulators
are often combined with mobile platforms for broader applications
(Osman et al., 2020). In contrast to the stationary case, in such
scenarios, the influences of the environment should be learned,
such as perturbations. Therefore, we introduced a subsequent
lesson aimed at allowing the agent to acquire the advanced ability
to respond to the environment. In other words, the training
environment was modified by mounting a manipulator on a mobile
platform.

3.3 Curricula reinforcement learning
framework

The final algorithm is shown in Algorithm 1. The method
alternates between collecting experience from the environment
with the current policy and updating the function approximators
in the order of curriculum settings using stochastic gradients
from batches sampled from a replay pool. In our curriculum
settings, each task is a sub-optimal solution for the next
task; therefore, it is possible to help the agent to generate
the action that maximizes the performance for a final
task.

Where θ1,θ2,ϕ are parameters to be optimized, D denotes the
replay buffer, λ is a parameter in the stochastic gradientmethod, and
π, a, and s are introduced in Section 3.1.

Input: θ1,θ2,ϕ

1: θ1← θ1,θ2← θ2

2: D← ∅
3: for each lesson do

4: for each iteration do

5:  for each environment step do

6:   at ∼ πϕ (at |st)

7:   st+1 ∼ p (st+1 |st,at)

8:   D←D ∪ {(st,at,r (st,at) ,st+1)}
9:  end

10:  for each gradient step do

11:   θi← θi −λQ∇̂θiJQ (θi) for i ∈ {1,2}

12:   ϕ← ϕ−λπ∇̂ϕJπ(ϕ)

13:   α← α−λ∇̂αJ(α)

14:   θ̄i← τθi + (1−τ)θ̄i for i ∈ {1,2}

15:  end

16: end

17 end

Output: θ1,θ2,ϕ

Algorithm 1. Soft Actor-Critic with Curriculum.

4 Simulation platform

This section describes the simulation environment of the
Robostrich arm. Based on this, two setups were prepared for
training. In addition, the motion of the Robostrich arm is tested by
manually controlling the tendon input in the simulation. Afterward,
the workspace of the Robostrich arm is investigated.

4.1 Simulation environment of Robostrich
arm

We used MuJoCo (Todorov et al., 2012) with the OpenAI gym
toolkit (Brockman et al., 2016) to simulate the Robostrich arm. The
assembled model of the Robostrich arm was created using CAD
software and rendered inMuJoCo.The parameters of the Robostrich
arm, such as the joint limitations and masses of the links, were
manually edited according to Table 1. The tendons were defined
with the attachment sites and were assigned to pass through the
predefined wire run-through holes on the links (see Figure 1). We
defined the general actuator properties and assigned them to act
on the tendons. Therefore, the control of actuators can produce
contraction of the corresponding tendons, thereby leading to the
actuation of the manipulator. In this study, we refer to the ventral
muscles of ostriches (Cobley et al., 2013) and modified the tendon
arrangement from our previous work (illustrated in Figure 1B).

4.2 Experimental setups

To evaluate the performance of the Robostrich arm with
curriculum-reinforcement learning, two situations were considered:
(1) the Robostrich was mounted on an immobile frame; (2) the
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FIGURE 7
The results of reaching task with curriculum-SAC learning. (A) Head trajectory learned by Curriculum-SAC learning. (B) Learning curves. (C) Position
errors of the head. (D) Attitude angles of the head.

Robostrich was mounted on a commercially available quadruped
robot (A1; Unitree Robotics, China).

In the first situation, we focused on a stationary situation
in which the position of the Robostrich arm base was not
changed, and the properties of the Robostrich arm and curriculum-
reinforcement learning were investigated while not being affected by
the disturbance of the base. In the second situation, vibrations were
generated by the walk of the quadruped robot to serve as noise to the
manipulator and we investigated the affected performance. In both
situations, the timestep was set as 0.008 s. Figure 2 shows these two
setups, and Table 2 listed the corresponding action and observation
spaces. As summarized in Table 2, the total dimensions of the action
space in both environments were identical, however, their total
observation space dimensions differed. Additional dimensions were
set owing to the locomotion of the quadruped robot. In particular,
the walking pattern of the quadrupedal robot was determined by
a set of motor data obtained from the walking task of the real A1
robot.

In the training stage, the target positions were randomly
sampled from the workspace of the Robotstrich arm. The agent
was thereafter trained by following the described curriculum

learning process. In these policies, the positional and orientational
error tolerances were set as ±0.05 m and ±5°, respectively. After
training, all experiments were evaluated using the learned policies.
The testing targets were selected based on the requirements of
the manipulation tasks, and the desired attitude angle of the
Robostrich head was set as 90° with respect to the global coordinate
system. This implies that the orientation of the Robostrich head
was maintained parallel to the ground during the experiments
(see Figure 2B).

4.3 Movement test of Robostrich arm
simulation

The rolling and lever patterns are two representative motor
patterns in the avian neck system that can be found during feeding
or pecking. The rolling pattern can be roughly characterized as the
transition of the rostral loop of vertebrae, leading to a change in
the length of the cranial region of the neck, which can be partly
maintained as a “bar” shape (van der Leeuw et al., 2001). This leads
to the fact that the orientation of the head can be maintained
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FIGURE 8
Sequence of “Head stabilization task”.

during its positional movement. Instead of successive rotations,
the lever pattern is characterized by simultaneous rotations in
the rostral loop, and the angle between the bars of the caudal
loop changes during neck movement, causing the caudal loop
to widen during head protraction (the concept was illustrated in
Figure 3). Referring to (Nakano et al., 2022) in which rolling and
lever patterns were used to test the motions of a tendon-driven
manipulator; therefore, we selected these two movements to test
our simulation environment. We used the control method proposed
by (Nakano et al., 2023) to manually control the contraction of the
ventral tendons when maintaining the dorsal tendon length. The
experiment was conducted using the immobile Robostrich arm
environment. Figures 4, 5 show the tendon inputs, head orientations,
and corresponding trajectory samples. It can be observed that
the movement of both patterns are reasonably represented in the
simulation.

4.4 Workspace of Robostrich arm

After confirming the motion, we determined the feasible area
of the Robostrich arm to ensure that the target positions were
selected in the workspace of the Robostrich arm. We randomly
sampled the joint angles from the joint limitations of the Robostrich
arm and plotted the corresponding head positions. Figure 6 shows
the theoretical workspace of the Robostrich arm. The black point
indicates the joint location between the C18 link and the frame, and
the red range shows the area that the Robostrich head can achieve
without considering the head orientation. The blue range shows
the positions at which the head can achieve a head attitude angle
of 90° ±5°. This implies that if the target position is selected from
the blue range, the head of the Robostrich arm can be maintained
approximately parallel to the ground during head movement.

5 Experiments with curriculum-SAC
learning

In the last section, simple motions were tested by manually
controlling the tendons. To achieve more complicated manipulation
tasks, the Robostrich arm was trained using the Curriculum-SAC
learning approach. In the first experiment of this section, we
evaluated the performance of learning methods in a stationary
situation. In addition, we further studied the learning approach in
the presence of noise with application scenarios (see Supplementary
Material).

5.1 Experiment in immobile frame

In this experiment, we targeted a task in which the Robostrich
head tracks a set of desired positions in order while keeping
level with the ground. The Robostrich arm was trained using
curriculum reinforcement learning as mentioned in the previous
section, and the target positions were arbitrarily selected from
the blue range in Figure 6; thus, the manipulator is theoretically
capable of achieving the desired position and orientation (the
attitude angle of the head was defined in Figure 2B). We compared
the proposed learning method with a prior SAC reinforcement
learning approach (Haarnoja et al., 2018), and the performance
of the algorithms was evaluated at 140e6 steps because they
approached asymptotic performance in our environment. The task
of the experiment was to sequentially reach three target positions
with the desired head orientation. Figure 7A shows the head
trajectory of Robostrich arm using the learned Curriculum-SAC
model. Figures 7B–D show the comparisons of the two algorithms
regarding the learning curve, position error of the head, and head
orientation, respectively.
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FIGURE 9
Simulation result of head stabilization task. (A) Head and trunk positions in z direction. (B) Head and trunk velocities in z direction. (C) Distance between
the trunk and the head on walk direction. (D) Attitude angle of the head.

According to the reward function of reinforcement learning, the
agent optimizes both the angular and positional accuracies during
motion. The results show that in the no-curriculum SAC, the agent
exhibits better angular accuracy, but worse position accuracy. The
Curriculum SAC allows the agent to learn the policy of optimizing
the position accuracy through the pre-course, and based on this, the
next course is learned, such that the position and angle accuracies
are both within a reasonable range.

5.2 Experiments in mobile frame

5.2.1 Head stabilization task
Vibration is often generated by the locomotion of a mobile

platform, leading to a certain degree of noise in the control of the
mobile manipulator. In this experiment, a quadruped robot was
used to generate such vibration by controlling it while walking
forward; hence the Robostrich arm vibrated depending on the gait
of the quadruped robot. Curriculum-SAC learning performancewas
evaluated using a head-stabilizing task during walking. In addition,

various trunk heights were set during walking to investigate
the robustness of the controller in this task. In this scenario,
walking gait and various trunk heights collaboratively contributed to
vibrations in the Robostrich arm. In such a situation, the Robostrich
arm must simultaneously control the position and orientation of
its head. Therefore, controlling such a high-DOF tendon-driven
underactuated manipulator is challenging. In the head stabilizing
task, the agent was assigned to simultaneously: (1) maintain its head
at a constant height to the ground; (2) maintain the attitude angle
of its head near the desired orientation; and (3) maintain constant
distance between the A1 trunk and the head of the Robostrich in the
walking direction (Pd in Figure 2B). In the training stage, the agent
was pre-trained using the first three lessons with the same training
step as in the previous experiment when the quadruped platform
was standing. Subsequently, an additional 400e6 training steps were
performed with the walking of the quadruped platform.

Figure 8 shows the movement of the agent during the
experiment, and the corresponding results are shown in Figure 9.
Comparing the position of the Robostrich head to the A1 trunk, it
is apparent that the A1 trunk vibrated during walking, but a stable
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FIGURE 10
Experimental setup of “Reaching task in narrow space”.

FIGURE 11
Sequence of “Reaching task in narrow space”.

position can be found in the Robostrich head even though the height
of the A1 trunk change (the timestep between the 500th and 750th,
and the timestep between the 1000th and 1250th, in Figure 9A).
In addition, the velocity of the Robostrich head is reduced. This
implies that the proposed approach is robust against noise from
mobile base vibrations. Although Figure 9C shows a certain degree
of oscillation in the distance between the Robostrich head and A1
trunk in the walking direction, the mean values of the crests and
troughs were approximated to the desired distance. In addition,
the result in Figure 9D verified that the Robostrich arm learned to
control its head orientation to approach the desired attitude angle,
despite the change in A1 trunk height during locomotion.

5.2.2 Reaching task in narrow space
Avoiding obstacles while reaching a target position is a useful

feature of redundant manipulators. An experiment was conducted

in a scenario where the mobile Robostrich arm passed through a
narrow gap and reached a target position at the top of the gap.This is
a difficult task for a traditional manipulator, but the additional DOF
helps the Robostrich arm accomplish such a challenging task.

The setup for this scenario is illustrated in Figure 10. In this
reaching task, the quadruped platform was assigned to walk toward
the narrow gap, and the head was assigned to reach target 6 (defined
in Figure 10). Because the gap obstructs the Robostrich arm from
directly reaching the target point, the arm must to move its head
to the bottom of the gap in advance. Subsequently, the arm must
lift its head vertically to pass through the gap. This action can be
realized by continuously controlling the manipulator to track a set
of predefined subtargets. As in the previous experiment, the agent
was trained using the first three lessons and the fourth lesson with
140e6 + 400e6 training steps, which corresponded to the standing
and walking situations.
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FIGURE 12
Simulation result of reaching task in narrow space. (A) Trajectory of
Robostrich head. (B) Position error of the head. (C) Attitude angle of
the head.

Figure 11 shows the movement of the robot during the
experiment, and the corresponding head trajectory is shown in
Figure 12A. The results indicate that the Robostrich head can
approximately track the targets in the desired order (from targets
1–6), and the Robostrich arm can vertically raise its head to pass

through the narrow gap, and finally reach target 6 at the top of the
gap. The position error and attitude angle in the experiment are
shown in Figures 12B,C, respectively. We found that the position
error increased when the target position changed because the
positional difference between the targets increased. We also found
that such an error could be recovered immediately. Although we
obtained high orientation errors in a few moments, the system
rapidly recovered, and the head orientation was maintained within
90° ±5°, which fulfills our error tolerance setup in reinforcement
learning policies. These results verify that the agent can operate in
a narrow space, which is useful for practical robotic applications.

6 Conclusion and future works

We aimed to develop ostrich-inspired manipulators to achieve
dexterous manipulation and flexibility. A tendon-driven high-DOF
underactuated manipulator was previously introduced inspired by
the vertebral column of a real ostrich neck, known as the Robostrich
arm. In this study, we proposed a curriculum reinforcement learning
framework, to enable the Robostrich arm to gradually process from
simple to more complex tasks. Four reinforcement learning lessons
were defined depending on their complexities.These lessons can also
be explained as courses from learning fundamental manipulation
abilities, to obtaining advanced knowledge for specific tasks. A
manual control experiment was conducted to confirm that the
motion of the Robostrich arm can be reasonably represented
in the simulation environment. In the experiments for training,
we compared Curriculum-SAC learning with traditional SAC
learning and found that the proposed learning method is effective
in improving the accuracy of position control with a slight
decrease in the performance of orientation control. However, the
total reward of the proposed approach is higher than that of
traditional SAC learning. Finally, we investigated the performance
of Curriculum-SAC learning in the presence of noise by mounting
the Robostrich arm on a quadruped platform. The simulation
results demonstrate that the Robostrich arm can stabilize its head
movement during walking and flexibly pass through a narrow gap
to reach a target position at the top, despite perturbations are
presented by locomotion. These results demonstrated the feasibility
of curriculum-reinforcement learning for extended applications.
Although the Robostrich arm was the focus of this study, our
proposed learning method is also suitable for other complicated
manipulator systems. In particular, more complex manipulation
tasks can be trained by adding additional lessons.

In this study, the early demonstration of this approach was
limited to simulation environments which are not a faithful
representation of the real world. Some parameters should be further
tuned depending on the real robot properties, such as friction
coefficient, actuator gain, or sensor selection. To bridge the real
world gap and transfer learned policies from simulation, some
Sim2Real techniques are likely helpful to implement our approach
in a real Robostrich arm, such as: Domain Randomization to
randomize the friction and damping parameters in the simulation
or add noise to the joint measurement (Tobin et al., 2017); Domain
Adaptation to transfer the features from the source to the target
domain to encouraging agents to adopt similar behaviors in a
real environment (Christiano et al., 2016); Imitation learning to
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encourage agents to learn the policy for the real robot using the result
of the expert policy from simulation, instead of directly applying
it (Yan et al., 2017). In addition, only one tendon configuration
was tested in the experiments; the comparison of various tendon
configurations, and that between simulation and a real robot should
be systematically investigated in the future. Regarding the learning
method, although two application tasks were presented in this study,
the number of tasks remained limited; therefore, verification with
a wide range of tasks is necessary. Furthermore, it is necessary to
clarify the network properties, such as (1) the factors affecting the
control accuracy distribution, such as positions in the workspace,
and (2) the relationship between control accuracy and various
factors, such as various manipulator postures, different types of
noise, or observations.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

KO developed the environmental platform, conducted
the experiments, and contributed to manuscript writing. KW
developed the learning framework, conducted the experiments
and contributed to manuscript writing. KN, MI, and MA provided
expert advice and assisted with this study. YK and RN supervised
and managed the project. All authors contributed to the article and
approved the submitted version.

Funding

This work was supported by the JSPS KAKENHI Grant Number
JP18H05466 and JP20K19890.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
frobt.2023.1066518/full#supplementary-material

References

Baur, J., Pfaff, J., Ulbrich, H., and Villgrattner, T. (2012). “Design and development
of a redundant modular multipurpose agricultural manipulator,” in 2012
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Kaohsiung, Taiwan, 11-14 July 2012 (IEEE), 823–830. doi:10.1109/AIM.2012.
6265928

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). “Curriculum
learning,” in Proceedings of the 26th annual international conference on machine
learning (New York, NY, USA: Association for Computing Machinery), 41–48.
doi:10.1145/1553374.1553380

Borghesan, G., Palli, G., andMelchiorri, C. (2010). “Design of tendon-driven robotic
fingers: Modeling and control issues,” in 2010 IEEE International Conference on
Robotics and Automation, Anchorage, AK, USA, 03-07 May 2010 (IEEE), 793–798.
doi:10.1109/ROBOT.2010.5509899

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.
(2016). Open gym. arXiv preprint arXiv:1606.01540.

Chirikjian, G., and Burdick, J. (1994). A hyper-redundantmanipulator. IEEE Robotics
Automation Mag. 1, 22–29. doi:10.1109/100.388263

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin,
J., et al. (2016). Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv e-prints. doi:10.48550/arXiv.1610.
03518

Chung, J. H., Velinsky, S. A., and Hess, R. A. (1998). Interaction control
of a redundant mobile manipulator. Int. J. Robotics Res. 17, 1302–1309.
doi:10.1177/027836499801701203

Cobley, M. J., Rayfield, E. J., and Barrett, P. M. (2013). Inter-vertebral flexibility of
the ostrich neck: Implications for estimating sauropod neck flexibility. PLOS ONE 8,
721877–e72210. doi:10.1371/journal.pone.0072187

Diego Mendoza, B. (2017). Curriculum learning for robot manipulation using
deep reinforcement learning. Master thesis. London: Artificial Intelligence of Imperial
College London.

Dzemski, G., and Christian, A. (2007). Flexibility along the neck of the ostrich
(struthio camelus) and consequences for the reconstruction of dinosaurs with extreme
neck length. J. Morphol. 268, 701–714. doi:10.1002/jmor.10542

Fujimoto, S., vanHoof, H., andMeger, D. (2018). Addressing function approximation
error in actor-critic methods. arXiv.

Gong, M., Chen, K., Zhao, K., and Chang, P. (2016). “Trajectory planning based
on multi-objective optimization for redundant robots,” in 2016 3rd International
Conference on Systems and Informatics (ICSAI), Shanghai, China, 19-21 November
2016 (IEEE), 133–138. doi:10.1109/ICSAI.2016.7810943

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv e-prints.
doi:10.48550/ARXIV.1801.01290

Huang, Z., Li, F., and Xu, L. (2020). “Modeling and simulation of 6 dof robotic
arm based on gazebo,” in 2020 6th International Conference on Control,
Automation and Robotics (ICCAR), Singapore, 20-23 April 2020 (IEEE), 319–323.
doi:10.1109/ICCAR49639.2020.9107989

Kilinc, O., and Montana, G. (2020). Follow the object: Curriculum learning for
manipulation tasks with imagined goals. arXiv preprint arXiv:2008.02066.

Ko, T. (2020). A tendon-driven robot gripperwith passively switchable underactuated
surface and its physics simulation based parameter optimization. IEEE Robotics
Automation Lett. 5, 5002–5009. doi:10.1109/LRA.2020.3005131

Misu, K., Ikeda, M., Or, K., Ando, M., Gunji, M., Mochiyama, H., et al.
(2022). Robostrich arm: Wire-driven high-dof underactuated manipulator. J. Robotics
Mechatronics 34, 328–338. doi:10.20965/jrm.2022.p0328

Mochiyama, H., Gunji, M., and Niiyama, R. (2022). Ostrich-inspired soft robotics: A
flexible bipedalmanipulator for aggressive physical interaction. J. RoboticsMechatronics
34, 212–218. doi:10.20965/jrm.2022.p0212

Morimoto, R., Nishikawa, S., Niiyama, R., and Kuniyoshi, Y. (2021). “Model-
free reinforcement learning with ensemble for a soft continuum robot arm,” in

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1066518
https://www.frontiersin.org/articles/10.3389/frobt.2023.1066518/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.1066518/full#supplementary-material
https://doi.org/10.1109/AIM.2012.6265928
https://doi.org/10.1109/AIM.2012.6265928
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/ROBOT.2010.5509899
https://doi.org/10.1109/100.388263
https://doi.org/10.48550/arXiv.1610.03518
https://doi.org/10.48550/arXiv.1610.03518
https://doi.org/10.1177/027836499801701203
https://doi.org/10.1371/journal.pone.0072187
https://doi.org/10.1002/jmor.10542
https://doi.org/10.1109/ICSAI.2016.7810943
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.1109/ICCAR49639.2020.9107989
https://doi.org/10.1109/LRA.2020.3005131
https://doi.org/10.20965/jrm.2022.p0328
https://doi.org/10.20965/jrm.2022.p0212
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Or et al. 10.3389/frobt.2023.1066518

2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven,
CT, USA, 12-16 April 2021 (IEEE), 141–148. doi:10.1109/RoboSoft51838.2021.
9479340

Mousavi, H., Imani, M., and Ghassemian, H. (2022). “Deep curriculum learning
for polar image classification,” in 2022 International Conference on Machine
Vision and Image Processing (MVIP), Kuala Lumpur, Malaysia, 17-22 July 2022
(IEEE).

Nakano, K., Gunji, M., Ikeda, M., Or, K., Ando, M., Inoue, K., et al. (2023).
Robostrich manipulator: A novel mechanical design and control based on the anatomy
and behavior of an ostrich neck. IEEE Robotics Automation Lett. 8, 3062–3069.
doi:10.1109/LRA.2023.3265301

Nakano, K., Ikeda, M., Or, K., Gunji, M., Mochiyama, H., Niiyama, R., et al. (2022).
“A study of sagittal motions with a flexible manipulator based on the anatomy of the
ostrich neck,” inThe Robotics and mechatronics conference 2022 (Japan: Springer).

Okoli, F., Lang, Y., Kermorgant, O., and Caro, S. (2019). “Cable-driven parallel
robot simulation using gazebo and ros,” in Romansy 22 – robot design, dynamics and
control. Editors V. Arakelian, and P.Wenger (Cham: Springer International Publishing),
288–295.

Osman, M., Mehrez, M. W., Yang, S., Jeon, S., and Melek, W. (2020). End-effector
stabilization of a 10-dof mobile manipulator using nonlinear model predictive control.
IFAC-PapersOnLine 53, 9772–9777. doi:10.1016/j.ifacol.2020.12.2658

Rooban, S., S, I. J., Manimegalai, R., Eshwar, I. V. S., and Mageswari, R. U. (2022).
“Simulation of pick and place robotic arm using coppeliasim,” in 2022 6th International
Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 29-31 March 2022 (IEEE), 600–606. doi:10.1109/ICCMC53470.2022.9754013

Satheeshbabu, S., Uppalapati, N. K., Fu, T., and Krishnan, G. (2020). “Continuous
control of a soft continuum arm using deep reinforcement learning,” in 2020 3rd IEEE
International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May
2020 - 15 July 2020 (IEEE), 497–503.

Shahid, A. A., Sesin, J. S. V., Pecioski, D., Braghin, F., Piga, D., and Roveda, L. (2021).
Decentralized multi-agent control of a manipulator in continuous task learning. Appl.
Sci. 11, 10227. doi:10.3390/app112110227

Tatlicioglu, E., Braganza, D., Burg, T. C., and Dawson, D.M. (2009). Adaptive control
of redundant robot manipulators with sub-task objectives. Robotica 27, 873–881.
doi:10.1017/S0263574708005274

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
“Domain randomization for transferring deep neural networks from simulation to
the real world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 24-28 September 2017 (IEEE).
doi:10.1109/IROS.2017.8202133

Todorov, E., Erez, T., and Tassa, Y. (2012). “Moco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vilamoura-Algarve, Portugal, 07-12 October 2012 (IEEE), 5026–5033.
doi:10.1109/IROS.2012.6386109

van der Leeuw, A. H., Bout, R. G., and Zweers, G. A. (2001). Control of
the cranio-cervical system during feeding in birds. Am. Zoologist 41, 1352–1363.
doi:10.1093/icb/41.6.1352

Xiao, J., Han, W., and Wang, A. (2017). “Simulation research of a six degrees of
freedom manipulator kinematics based on Matlab toolbox,” in 2017 International
Conference on Advanced Mechatronic Systems (ICAMechS), Xiamen, China, 06-09
December 2017 (IEEE), 376–380. doi:10.1109/ICAMechS.2017.8316502

Xu, B., Zhang, L., Mao, Z., Wang, Q., Xie, H., and Zhang, Y. (2020). “Curriculum
learning for natural language understanding,” in Proceedings of the 58th annual
meeting of the association for computational linguistics (Stroudsburg, PA: Association
for Computational Linguistics), 6095–6104. doi:10.18653/v1/2020.acl-main.542

Xu, Z., Gan, Y., and Dai, X. (2019). “Obstacle avoidance of 7-dof redundant
manipulators,” in 2019 Chinese Control AndDecision Conference (CCDC), Nanchang,
China, 03-05 June 2019 (IEEE), 4184–4189. doi:10.1109/CCDC.2019.8832418

Yan, M., Frosio, I., Tyree, S., and Jan, K. (2017). “Sim-to-real transfer of accurate
grasping with eye-in-hand observations and continuous control,” in 31st conference on
neural information processing systems (NIPS 2017), Long Beach, CA (Spinger).

Zhou, D., Jia, R., and Yao, H. (2021). “Robotic arm motion planning based on
curriculum reinforcement learning,” in 2021 6th International Conference on Control
and Robotics Engineering (ICCRE), Beijing, China, 16-18 April 2021 (IEEE), 44–49.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.1066518
https://doi.org/10.1109/RoboSoft51838.2021.9479340
https://doi.org/10.1109/RoboSoft51838.2021.9479340
https://doi.org/10.1109/LRA.2023.3265301
https://doi.org/10.1016/j.ifacol.2020.12.2658
https://doi.org/10.1109/ICCMC53470.2022.9754013
https://doi.org/10.3390/app112110227
https://doi.org/10.1017/S0263574708005274
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1093/icb/41.6.1352
https://doi.org/10.1109/ICAMechS.2017.8316502
https://doi.org/10.18653/v1/2020.acl-main.542
https://doi.org/10.1109/CCDC.2019.8832418
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

