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OSM-SLAM: Aiding SLAM with
OpenStreetMaps priors

Matteo Frosi*†, Veronica Gobbi† and Matteo Matteucci†

Dipartimento di Elettronica, Informazione e Bioingegneria of Politecnico di Milano, Milan, Italy

In the last decades, Simultaneous Localization and Mapping (SLAM) proved to
be a fundamental topic in the field of robotics, due to the many applications,
ranging from autonomous driving to 3D reconstruction.Many systems have been
proposed in literature exploiting a heterogeneous variety of sensors. State-of-
the-art methods build their ownmap from scratch, using only data coming from
the equipment of the robot, and not exploiting possible reconstructions of the
environment. Moreover, temporary loss of data proves to be a challenge for
SLAM systems, as it demands efficient re-localization to continue the localization
process. In this paper, we present a SLAM system that exploits additional
information coming from mapping services like OpenStreetMaps, hence the
nameOSM-SLAM, to face these issues.We extend an existing LiDAR-basedGraph
SLAM system, ART-SLAM,making it able to integrate the 2Dgeometry of buildings
in the trajectory estimation process, by matching a prior OpenStreetMaps map
with a single LiDAR scan. Each estimated pose of the robot is then associated
with all buildings surrounding it. This association allows to improve localization
accuracy, but also to adjust possible mistakes in the prior map. The pose
estimates coming from SLAM are then jointly optimized with the constraints
associated with the various OSM buildings, which can assume one of the
following types: Buildings are always fixed (Prior SLAM); buildings surrounding
a robot are movable in chunks, for every scan (Rigid SLAM); and every single
building is free to move independently from the others (Non-rigid SLAM). Lastly,
OSM maps can also be used to re-localize the robot when sensor data is lost.
We compare the accuracy of the proposed system with existing methods for
LiDAR-based SLAM, including the baseline, also providing a visual inspection
of the results. The comparison is made by evaluating the estimated trajectory
displacement using the KITTI odometry dataset. Moreover, the experimental
campaign, along with an ablation study on the re-localization capabilities of the
proposed system and its accuracy in loop detection-denied scenarios, allow a
discussion about how the quality of prior maps influences the SLAM procedure,
which may lead to worse estimates than the baseline.

KEYWORDS
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1 Introduction

Autonomous robot navigation has been an increasingly studied topic in recent decades.
Many tasks, which are repetitive or hazardous to humans, may be carried out by means of
unmanned agents. Examples include mobile robots for cleaning, agriculture and farming,
automated driving vehicles, and robots for delivery and transportation on the road. These
robots need to be built in a way that allows them to operate, safely and reliably, in complex or
unknown environments, based only on the perceptions of their onboard sensors. To achieve
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this, an accurate map of the environment is mandatory, as it could
be used for both planning and localization, with the latter being of
particular interest in the field of robotics.

Simultaneous Localization and Mapping (SLAM) methods
address the problem of constructing a model of the environment
surrounding the robot, i.e., the map, while simultaneously
estimating its pose within it. In literature, many SLAM systems can
be found, relying either on cameras or laser range scanners (LiDARs)
asmain sensors. In this work, we focus on the latter, as LiDAR-based
SLAM systems have been proven to be more robust w.r.t. Other
approaches, mainly because of the way pose estimation and tracking
are achieved (usually by scan-to-scanmatching between consecutive
point clouds, usingwell known algorithms). State-of-the-art systems
can build a map of the environment using only equipped LiDARs
and do not exploit existing prior maps, which can be integrated to
achieve better localization. Moreover, temporary loss of input data,
e.g., caused by a sudden sensor failure, proves to be a challenge for
almost all methods, as it requires efficient re-localization, which is
inherently difficult when considering point clouds, to continue the
whole trajectory estimation and mapping process.

To address these problems, in this paper we propose an
extension of ART-SLAM Frosi and Matteucci (2022), using it as
the baseline for our system, in which we include information from
OpenStreetMapsmaps, hence the nameOSM-SLAM.We contribute
to the literature in the following ways:

• We improve the pose graph construction of ART-SLAM,
achieved through the g2o framework Grisetti et al. (2011),
adding knowledge about the buildings surrounding the robot,
at a given position.
• We propose a SLAM system able to cope with three different

scenarios. (1) Buildings are fixed (e.g., because they are assumed
to be correct in the OpenStreetMaps map), and only the
estimated trajectory of the robot is corrected (Prior SLAM).
(2) Buildings surrounding a pose of the robot are not fixed,
and they are optimized and moved by the same rigid motion,
while simultaneously correcting the estimated trajectory (Rigid
SLAM). (3) Lastly, buildings are again not fixed, but each entity
is roto-translated w.r.t. A single input scan while constraining
the corresponding robot pose (Non-rigid SLAM).
• We perform a quantitative and qualitative evaluation of the

presented methods on sequences of the state-of-the-art dataset
KITTI Geiger et al. (2012). Moreover, through an ablation
study, we test the re-localization capabilities of our system (e.g.,
in case of sensor failure) and its behavior when loop detection
and closure are not available (i.e., when only odometry and
mapping are performed).

Our work stands from other approaches leveraging on external
maps as we add buildings to the pose graph, which represents 3D
information, as 2D nodes, actively participating in the optimization
phase. This allows for simultaneously correcting both the estimated
trajectory, obtained through full point cloud-based LiDAR tracking,
and the buildings themselves, in case their placement in the
correspondingOSMmap is not coherentwith at least one input scan.
It should also be noted that, in ourwork, the pose graph is built using
nodes belonging to different dimensions (2D for buildings and 3D

for robot poses), while in the majority of works, all data are brought
in the same dimension, usually 2D, as the OSM maps.

The rest of the paper is organized as follows, dealing with
literature, proposed approach, and results:

• Section 2 describes the related works, to give a brief insight into
existing systems for LiDAR-based SLAM and localization using
OpenStreetMaps data (either full maps or only buildings).
• Section 3 explains the proposed system, OSM-SLAM, going

into more detail about its pipeline and the three implemented
scenarios (Prior SLAM, Rigid SLAM, and Non-rigid SLAM).
• Section 4 is dedicated to the experimental validation of the

proposed system, which includes a visual evaluation and a
discussion about the influence of the quality of the maps over
the SLAM approach.
• Section 5 sums up and concludes the manuscript.

2 Related works

LiDAR-based SLAM methods produce very precise 3D scans
of the environment, represented as sets of points (also known
as point clouds), allowing for accurate localization of the robot
and the construction of a dense map, differently from Visual
SLAM algorithms. Although both methodologies are becoming
increasingly accurate over the past years Cadena et al. (2016), laser-
based systems are preferred over image-based methods, mainly
because of their greater precision and ability to reconstruct the
environment. The recent work in Garigipati et al. (2022) provides
a comparison between algorithms of different types, showing how
LiDAR SLAM outperforms Vision SLAM, especially in outdoor
scenarios. Moreover, the authors of Zou et al. (2021) show how
LiDAR-based systems can also be used in indoor environments,
achieving high localization and mapping accuracy, even with
reduced computational resources.

These systems can be classified as feature-based and full point
cloud-based, depending on the way tracking and localization are
performed. In feature-based approaches, 3D features are extracted
from LiDAR scans, such as edges or planes, which are later
matched to perform tracking. A well known system in literature,
of this type, is LOAM Zhang and Singh (2014), a low-drift
and real-time LiDAR odometry and mapping method. LOAM
performs feature-to-edge and feature-to-plane scan matching to
find correspondences between features extracted from a pair of
input scans. As no form of loop closure is done, LOAM, although
fast, quickly drifts along the estimated trajectory. To address this
issue, Shan et al. proposed LeGO-LOAM Shan and Englot (2018),
a revised and improved version of LOAM, consisting of five
independent modules: segmentation, feature extraction, LiDAR
odometry, LiDAR mapping, and transform integration. The same
authors also proposed LIO-SAM (Shan et al., 2020), which still has
LOAM as the baseline system, which couples mandatory IMU data
and LiDAR scans to achieve fast results.

Although incredibly fast, feature-based methods are, in general,
less accurate than full point cloud-based approaches. These kinds
of systems perform scan matching between two whole LiDAR
scans to find the 3D transformation which best represents the
motion of the robot, aligning the two point clouds. Indeed, this is
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more computationally demanding than feature-based approaches,
although it leads to very accurate results. To address this issue, a
family of algorithms that efficiently solve the SLAM problem, based
on non-linear sparse optimization, has been presented over the last
decade, consisting of graph-based approaches, also known as Graph
SLAM systems. These are based on the representation of the SLAM
problem as a graph, named pose graph, where nodes represent
entities such as poses of the robot, landmarks, and other elements of
interest, and where edges represent constraints between the nodes.
As Grisetti et al. describe in Grisetti et al. (2010), Graph SLAM
approaches present many advantages over other methods, such
as the possibility to model complex scenarios and the availability
of different frameworks for efficient sparse graph optimization, to
increase the overall performance of the localization and mapping
procedures.

HDLGraph SLAM(Koide et al., 2018) is a full point cloud-based
Graph SLAM system, the pipeline of which can be summarized
in four steps: input scans pre-processing, scan-to-scan point
cloud matching, ground detection, and pose graph building and
optimization. Although accurate, the system is slow, especially when
dealing with large point clouds. ART-SLAM (Frosi and Matteucci,
2022) enhances HDL, by adding performance improvements,
efficient multi-step loop detection and closure, and a re-engineered
structure, making it easy to customize and extend, while also being
a memory-friendly zero-copy approach.

To further improve the accuracy in SLAM systems, over the
past years, many works have been proposed, which exploit already
available pre-computed 2D maps, coming from external mapping
services, such as Google Maps, OpenStreetMaps (Haklay and
Weber, 2008) (OSM), or maps from the local land registry. In
particular, information from OSM seems to be the best choice,
in terms of availability, as it requires no permissions or tokens
to retrieve 2D data. Many systems relying on OSM include maps
into the observation model of a Monte Carlo localization, as in
Hentschel et al. (2008), in which buildings are extracted from the
2D map as a set of lines and are used to compute the expected range
measurement at a given position of the robot, or as in Floros et al.
(2013), where the trajectory of the robot is aligned w.r.t. The road
network.

A more recent Graph SLAM system, proposed by Vysotska and
Stachniss (2016), directly related LiDAR measurements with the
data associated with buildings coming from OSM. This alignment is
included in the pose graph, in form of a localization error w.r.t. The
available OSMmap. A disadvantage of this approach is that a precise
alignment between buildings and LiDAR scans is required in order
to get good accuracy on the estimated poses of the robot. However,
alignment becomes difficult when there is a lot of clutter in the
environment, typical of urban areas, or in zones when there are few
buildings surrounding the robot (in the OSM map, not necessarily
in the physical world). Other problems arise when buildings are not
correctly positioned inOSM, caused by human errors when creating
the 2D maps. Lastly, the OSM map could also not be representative
of the environment, as the topology may change over time.

Instead of directly usingOSMmaps,Naik et al. (2019), proposed
a graph-based semantic mapping approach for indoor robotic
applications, which extends OSM with robotic-specific, semantic,
topological, and geometrical information. They introduced models
for basic structures, such as walls, doors, or corridors, which are

semantically grouped into a graph. Its hierarchical structure is then
exploited to allow accurate navigation, compatible with grid-based
motion planning algorithms.

OpenStreetMaps provides, in general, many advantages, such
as global consistency, a heavy-less map construction process, and
a wide variety of publicly available road information. In early
OSM-based works, the authors focused on improving localization
methods by sensor-based perception Ort et al. (2018), without
considering possible OSM inaccuracies, leading to trajectories
suffering from local deviations. In Suger and Burgard (2017), the
authors corrected the OSM global trajectory by matching it to the
previously segmented road, using a LiDAR sensor, although they did
not achieve robust results (because the correction depends strongly
on the road segmentation). Similarly, the work in Li et al. (2021)
used a similar approach, by correcting the OSM path using a cost
map, built using combined camera and LiDAR data.

The work in Muñoz-Bañón et al. (2022) presented an
autonomous navigation pipeline that exploits OSM information
as environment representation for global planning. To overcome
one major issue of OSM maps, i.e., low local accuracy, the authors
propose a LiDAR-based Naive-Valley-Path method, which exploits
the idea of valley areas to infer the local path always further from
obstacles. This allows navigation through the center of trafficable
areas, following the shape of the road, independently of OSM errors.

Lastly, Cho et al. (2022) proposed a vehicle localization (not
SLAM)method purely based onOSMmaps.Theirmethod generates
OSM descriptors by calculating the distances to buildings from
a location in OpenStreetMap at a regular angle, and LiDAR
descriptors by calculating the shortest distances to building points
from the current location at a regular angle. Comparing the
OSM descriptors and LiDAR descriptors yields a highly accurate
vehicle localization result. Compared to methods that use prior
LiDAR maps, the algorithm presents two main advantages: vehicle
localization is not limited to only places with previously acquired
LiDAR maps, and the method is comparable to LiDAR map-based
approaches.

Following the ideas of Vysotska and Stachniss (2016) and
Cho et al. (2022), in the following we introduce OSM-SLAM and
show how the issues currently present in state-of-the-art approaches
leveraging OSM information have been faced, providing a robust
yet flexible system for 3D LiDAR SLAM in urban cluttered
environments. Besides handling clutter and possible errors in the
OSM information, our system is also able to perform re-localization
using OSM maps as prior 2D maps, handling possible situations
where sensor data is lost for brief time periods (e.g., sensor failure),
and also substitute loop detection and closure.

3 OSM-SLAM

An overview of the proposed framework is presented in
Figure 1. As already stated, our system is built upon an existing
method, ART-SLAM Frosi and Matteucci (2022), with which it
shares the majority of modules used to perform LiDAR-based
SLAM. An input laser scan is processed to remove noise, reduce its
size, and possibly deskew it. The new point cloud is then used to
perform scan-to-scan matching, to estimate the robot motion, and
possibly detect the ground plane, within the cloud, to later integrate
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FIGURE 1
Architecture of the proposed system. The majority of core modules come from ART-SLAM Frosi and Matteucci (2022), while our improvements can be
found in the pose graph builder, and in the new module OSM MAP BUILDER, which handles OpenStreetMaps data.

FIGURE 2
High-level pipeline describing the contribution of the proposed system. The whole procedure happens during the pose graph construction, before
optimization takes place.

it in the pose graph as height and rotational constraints. As for
ART-SLAM, being a keyframe-based method, the proposed system
extracts, from the tracker module, only a few odometry estimates
(depending on the current rotation, translation, and time gap w.r.t.
Previous scans). These estimates, along with corresponding point
clouds, form a keyframe and are used to find loops in the trajectory
and to build the pose graph.

Before the optimization of the pose graph is performed, we
introduce a new pipeline, to allow a direct association between point
clouds and buildings derived from OSM data. The idea behind this
pipeline is that by aligning a prior map with a LiDAR scan, one can
obtain meaningful information about the pose of the robot (as the
LiDAR scan is associated with it), w.r.t. The features present in the

map (e.g., global coordinates of elements within it, like buildings),
and vice versa. A high-level scheme of the approach is represented
in Figure 2. Once a keyframe, obtained from the front-end of the
SLAM system, is inserted in the pose graph, it is ready to be given as
input to the whole OSM data association procedure.

Odometry and 3D point cloud related to the keyframe
considered are processed to extract a 2D map of the buildings,
while odometry and optional GPS data (only one datum in the
whole trajectory is required to make the method work) are used
to download and parse OSM data, to be converted in a 2D point
cloud representing the buildings surrounding the robot. Once the
buildings’ map and the map from the LiDAR scan are retrieved, ICP
(Besl and McKay, 1992) scan matching is performed, to obtain a
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first rough estimate of the rigid motion that should move the robot
towards its true position in the OSM map. This procedure is named
Rigid SLAM, as scanmatching is performed at a local level, involving
all surrounding buildings.

Alignment can also (optionally) be repeated, using as an
initial guess the just computed transformation, for each building,
independently of one another.This allows for obtainingmore precise
information about the displacement of all buildings, and possible
errors in the OSM map. As, following this approach, buildings now
exist as separate entities w.r.t. The pose of the robot, differently from
the previous case where the computed transformation was the same
for all buildings surrounding the robot, the name given is Non-rigid
SLAM. Independently from the selected approach, i.e., Rigid orNon-
rigid, all the constraints of the type robot pose, building are added
to the pose graph, ready for optimization.

It should also be noticed that buildings can be fixed during
the graph optimization procedure, especially if it is known that the
used 2D OSM map is precise and accurate. This solution, which
takes the name of Prior SLAM, has the advantage of increasing
the overall performance w.r.t. The non-fixed buildings counterparts,
but it also maintains a relationship between the buildings and the
pose of the robot, exploited in the optimization step. In other
words, buildings are not modified but still constrain the estimated
trajectory.

3.1 Point cloud processing branch

LiDAR scans cannot be directly aligned with a 2D prior map
representing buildings, due tomany issues. First, the point cloud is 3-
dimensional, differently from the prior map, leading to convergence
errors, assuming that the scanmatching procedure even starts.Then,
LiDAR scans represent a richer environment than the one given
by OSM maps, including many elements of disturbance, such as
vehicles, road signs, cyclists, fences, small walls, and even the ground
itself. Lastly, using a whole point cloud would be wasteful, needing
toomany computational resources, due to the complexity of the scan
matching algorithm.

To overcome these problems, we propose a small sequence of
pre-processing operations, to be applied on an input point cloud,
with the goal of obtaining a 2D map of the buildings, extracted
from it (blue box of Figure 2). As a first step, we remove all non-
vertical and non-plane-like elements of the cloud, as they should
not be part of the final map. This is achieved through the iteration
of a slightly modified version of RANSAC, i.e., Random Sample
Consensus Model for Parallel Planes, to estimate all planes in the
cloud which normal is perpendicular (meaning that the plane is
parallel) to a given axis (we use the normal to the ground), within a
threshold angle. In our experiments, we consider a maximum value
of 10°, above which a plane is no longer considered a wall, to account
also for errors in the LiDAR scans.

As a second step, we filter the obtained point cloud to only
consider points above the LiDAR horizon. Indeed, it is very likely
to find false walls between the ground and the considered height
threshold, including small fences, cars, road signs, and so on. This
way, we further de-clutter the point cloud, leaving in it almost only
3D points associated with walls and high vertical planes (e.g., panels
or high vans).

We should remember that, up to now, the processed point cloud
lives in the local coordinate frame, i.e., the one associated with the
sensor. This approach is adopted to increase performance while
performing iterated RANSAC for plane removal, which represents
a quite expensive task. To perform accurate scan matching with a
map derived from OSM, as a third step, we then transform the point
cloud into the map coordinate frame, using the estimated corrected
odometry (meaning that it follows a previous optimization, to take
into account possible adjustments, e.g., a previous alignment with
some OSM buildings).

Once transformed, the point cloud is projected from 3D to
2D, onto the ground plane z = 0. At this point in the pipeline, the
cloud obtained is already usable to perform scan matching, having
a similar representation to the OSM map. Nevertheless, we want to
further clean up the 2D cloud, so, as a last step, we perform some
noise filtering and outlier removal, using a simple radius search
algorithm.

The blue box of Figure 2 follows the procedure described above,
showing the initial point cloud to the left and the processed buildings
map to the right. Thanks to the pre-processing, we are able to obtain
great data reduction, while simultaneously refining more and more
an initial scan to better fit our purposes. However, the iterative
RANSAC proves to be a bottleneck in the pipeline, as it involves a
continuous search in the initial cloud.Webelieve that this step can be
interchanged with equivalent methods, which are beyond the scope
of this paper, e.g., deep learning-based 3D point cloud segmentation
or advanced clustering.

3.2 OSM buildings map creation branch

Data downloaded from third-party mapping services such as
OpenStreetMaps do not come already in the form of point clouds.
Instead, they are given in a specific data format and structure, typical
ofmany systems. For this reason, it ismandatory to collectOSMdata
surrounding the robot position and process it, to create a suitable
point cloud representation that allows fast and efficient scan-to-scan
2D matching.

OSM implements a conceptual data model of the physical world
based on components called elements. There are three types of
elements: nodes, ways, and relations. All elements can have one or
more associated tags. A node represents a point on the surface of
the Earth and it comprises at least an ID number and a pair of high-
precision coordinates corresponding to the latitude and longitude
of the point. A way is an ordered list of nodes that define a poly-
line. It can be used to represent linear features, such as roads or
rivers, or the boundaries of areas and polygons (closed way), like
buildings or forests. A relation is a multi-purpose data structure that
tells the relationship between two or more data elements, being an
ordered list of nodes, ways, and other relations. Lastly, a tag describes
the meaning of the particular element to which it is attached. It
is made up of two fields: a key and a value, both represented as
strings of characters. The key describes the meaning of the tag, such
as “highway”, and it is unique. The value is the description of the
key, such as “residential”, and it gives more detailed information,
associating semantic value.

It is possible to access and download map data from the OSM
dataset in many ways. The most convenient, and suitable for the
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FIGURE 3
Example of an OSM XML response, following a query to the Overpass API. The structure described in this response is a building, as can be seen by its
shape and tags.

purpose of our work, is the Overpass API. It is a read-only API
that allows accessing parts of the OSM map data selected in a
custom way, given search location (latitude and longitude) and
radius. It allows the client to send a query through an HTTP
GET request to the API server, which will, in turn, send back the
dataset that resulted from the query. There exist two languages
in which to write a query: Overpass XML or Overpass QL. The
Overpass QL syntax is more concise than Overpass XML and is
similar to C-like programming languages. On the other hand, the
Overpass XML syntax is safeguarded, because it uses more explicit
named parameters than QL. We chose the QL language because it
is easier to use. The response can also be in different formats, such
as OSM XML, OSM JSON, custom templates, and pretty HTML
output. In this case, we chose to get the data in the OSM XML
format, as it can be parsed in an efficient and fast way, suitable
for SLAM. Figure 3 shows an XML response, following a query to
the Overpass API. Aside from tags of the header, other elements
inside the response are nodes and ways, as described above. In
particular, inside the way, nd elements are specified, whose attribute
ref coincideswith the id of a node belonging to it. As the tags suggest,
the object represented by the way in the response is a building, as
we are interested in such structures to later align them with LiDAR
scans.

As a first step, to query the Overpass API and find the
buildings surrounding the robot, we need a position to center the
search of buildings. In fact, the query has the following structure:
(way[”building”](around: radius, latitude, longitude);); (._;>;); out;,
which retrieves all buildings in a certain area specified by a radius

centered in a given position. As we have seen before, the geographic
position in longitude and latitude coordinates is required. GNSS
data is not always available, or even reliable, as it may happen
in complex scenarios (due to errors caused by the Urban Canyon
effect) or tunnels. For this reason, the position, estimated through
tracking, associated with the considered keyframe is used as a
geographic location to query the Overpass API and download
buildings.The position used is the same asmentioned in Section 3.1
when converting the LiDAR scan from local to map coordinate
frame. Nevertheless, at least one GNSS datum is required to give
a rough estimate of where, in the world, the robot is located. This
value serves as the origin of the map, and it is used to convert
both estimated positions of the robot and buildings of OSM from
Longitude-Latitude-Altitude to East-North-Up (ENU) coordinates
and vice versa.

From this query, we are able to obtain a list of buildings
surrounding the estimated pose, of the keyframe, in the format
described above. This response is then parsed, to form a point
cloud for each building, containing the 2D points representing its
corners, referencedw.r.t.TheGNSS origin (meaning that the corners
are expressed in ENU coordinates, easier to work with). Given the
corners, for each building, we interpolate its edges, generating 100 to
1000 points for edge. In this way, we obtain a structured cloud, fully
representing the buildings. Lastly, all the point clouds associated
with the various buildings are merged, to form an accurate 2D map
of the buildings surrounding the robot. This map is now ready to be
matched against the map computed in the point cloud processing
branch, previously described in Section 3.1.
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FIGURE 4
Example of alignment between the 2D buildings’ map from OSM (pink)
and the 2D map extracted from LiDAR scan (orange). The aligned
point cloud (blue) correctly overlaps the buildings’ map.

3.3 Data association - Rigid SLAM and prior
SLAM

Following the procedures described in Section 3.1 and
Section 3.2, the proposed system is able to obtain, starting from
the pose associated with a keyframe and the corresponding point
cloud, a rough 2Dmap that contains the visible edges of the buildings
surrounding the robot and a refined 2Dmap formed by the contours
of all buildings, derived from OSM data collected at the position of
the robot.

These two point clouds are matched using the ICP algorithm,
fine-tuned to obtain very accurate alignments. Despite ICP suffering
from local minima, point clouds and buildings are more or less
already aligned, leading to an almost certain convergence of the
matching method. Moreover, other algorithms (e.g., Generalized
ICP or NDT) did not lead to more accurate results, being, instead,
more time-consuming.

Figure 4 shows the result of this alignment: the 2D map
extracted from the LiDAR scan (orange) is matched against the
OSM map (pink), obtaining an accurate transformed point cloud
(blue, clearly overlapping the pink one, as it should). Now that the
transformation is computed, we need to add this constraint to the
pose graph, along with odometry or other kinds of constraints.
Figure 5 can be used to understand the insertion of new elements
in the pose graph, including also buildings, described as follows.

Given a building Bi, we always set its reference frame in the
corner with the lowest x value, in ENU coordinates. PBi

j is the 2D
position of said corner, when associated with keyframe j (note that
the same building can be seen by multiple keyframes, but it has only
one associated position, i.e., the one that best satisfies all pose graph
constraints). Building Bi is inserted in the pose graph as a node,
which position corresponds to PBi

j . In particular, the translation part
is its ENU coordinates, while the rotation is the 2-by-2 identity

FIGURE 5
First, we find the correct position of the robot P̂j, w.r.t. OSM buildings
map. Then, we compute the displacement between P̂j and the pose of

the building, P
Bi

j .

matrix, meaning that the local frame of the building is oriented as
the ENU coordinates.

Given the estimated position of the robot Pj, again related to
keyframe j, to which correspond a node in the pose graph, we would
like to associate it with the building node Bi, through some sort of
measurement. Let P̂j be the correct position of the robot w.r.t. The
OSM map. Ideally, Pj = P̂j, which means that the current estimated
position of the robot is also the correct position w.r.t. OSM. In
practice, this does not happen, and the scan matching algorithm
would return a rigid transformation between the buildings map and
the processed LiDAR scan. We name this transformation P̂jTPj

, as it
moves the estimated position towards the correct one, such that:

P̂j =
P̂jTPj
∗ Pj. (1)

Now that we have an adjusted value of the pose of the robot w.r.t.
The buildings map of OSM, we are able to find the rigid motion
between the corrected keyframe and the pose of the associated
building Bi, computed as:

PBij T
P̂j
= PBi

j ∗ P̂
−1
j . (2)

This transformation suggests how rotated and translated are,
w.r.t. Each other, the position of the building (corner), and the
estimated pose of the robot. The constraint is inserted into the pose
graph as an edge between the two corresponding nodes and is later
used in the optimization phase to adjust and correct the positions
associated with the nodes. To better understand this concept, one
can think, again, at the ideal case, wherePj = P̂j.What happens in the
pose graph is that nodes and constraints already satisfy an equality
with no measurement error, as there is no displacement between
the estimated and correct pose (same by assumption). However, this
scenario does not happen, and the given measurement yields some
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information about the true displacement between the robot and the
buildings, which is later satisfied and corrected by the optimizer. In
other words, we try to align the LiDAR scan with the contour of the
building.

Thewhole procedure takes the name of Rigid SLAM, as it always
estimates a rigid motion between the considered keyframe and
the buildings, considered as a whole, surrounding the associated
robot pose. When inserted in the pose graph, all buildings are
treated equally, as the same transformation P̂jTPj

is used to find
the measurements needed to characterize the relative constraint, as
previously described. Nevertheless, consecutive keyframes may lead
to different transformations, making the Rigid SLAM approach only
“rigid” for each keyframe independently. Moreover, one can decide
to fix the position of the buildings, if it has prior knowledge that the
OSM map is mostly correct. In this case, which takes the name of
Prior SLAM, the poses associated with the corners of buildings are
notmodified during the optimization procedure. Nevertheless, their
influence on the keyframe is considered in the sameway as described
for Rigid SLAM, as they are associated with it by transformation
PBij T

P̂j
, for all buildings.

3.4 Data association—Non-rigid SLAM

As we have seen in Rigid SLAM, a single global alignment is
performed to associate the pose of a keyframe and the corresponding
map of the buildings surrounding it, downloaded from OSM.
Although simple to implement and relatively accurate, this approach
may lead to some problems. When multiple keyframes see the
same building in almost the same location, even if the building is
wrongly positioned w.r.t. The real world, its position would never
be modified. In other words, the Rigid SLAM method is able to
move and correct buildings, but is not able to tell whether a building
is in a wrong or correct position in the real world, leading also to
mistakes in the optimization procedure, e.g., incoherence between
the relationships keyframe - buildings across multiple, consecutive,
keyframes.

To address this issue, once the global alignment is computed,
each building is taken individually, to repeat the same procedure
described in Section 3.3, with few differences. Before, we tried to
align the LiDAR scan, associated with the considered keyframe
j, against the point cloud that represents all the contours of
the building surrounding the robot at that precise location. This
alignment resulted in transformation PBij T

P̂j
, which is the same for all

buildings. In otherwords, let i ∈ {k,k+ 1,…,k+ s} be all the buildings
in the OSM map surrounding the robot whose estimated position
is described by keyframe j. In Rigid SLAM, we obtain the same
transformation, such that:

PBkj T
P̂j
= P

Bk+1
j T

P̂j
=⋯ = P

Bk+s−1
j T

P̂j
= P

Bk+s
j T

P̂j
, i ∈ {k,k+ 1,…,k+ s} (3)

In Non-rigid SLAM, after this procedure, each building is
considered separately, being formed by a relatively low number of
2D points. Then, scan matching is performed between the LiDAR
scan and the point cloud of the single building. This alignment is
aided using transformation PBij T

P̂j
as an initial guess, to facilitate

it and boost performance. The resulting motion PBij T̂P̂j
directly

TABLE 1 ATE on Sequence 07 of the KITTI odometry dataset Geiger et al.
(2012).

ATE [m] MEAN RMSE Standard deviation

LOAM > 10 > 10 >10

LeGO-LOAM 1.191 1.309 0.546

LIO-SAM 0.509 0.675 0.351

HDL 0.954 1.253 0.767

ART-SLAM (baseline) 0.698 0.777 0.341

Prior SLAM (ours) 1.084 1.198 0.510

Rigid SLAM (ours) 3.253 3.420 1.057

Non-rigid SLAM (ours) 0.912 1.157 0.485

tells the correct position of the building w.r.t. The keyframe, and
it is independent of the transformations derived from the other
buildings.

Let us consider again buildings i ∈ {k,k+ 1,…,k+ s}, located
around the robot w.r.t. Keyframe j. From Rigid SLAM, we are able to
align the LiDAR scan of the keyframe with the point clouds formed
by all 2D buildings, resulting in a global transformation PBij T

P̂j
. It

should be noticed that this relative motion is the same for all entities
since they are considered jointly. In Non-rigid SLAM, the buildings
are then considered separately one from the other and are once again
aligned with the point cloud of the same keyframe as before, using
the global transformation as the initial guess. This way, for each
building we can obtain a local transformation PBij T̂P̂j

, which is more
precise and captures the true displacement between the 2D structure
and the LiDAR scan, since it will be used later in the optimization
step.

Differently from Rigid SLAM, each building is treated as a
standalone element in the pose graph, each associated with at least
one keyframe by a unique transformation. With Non-rigid SLAM,
we are able to detect errors and incorrect information present in
the OSM map by using LiDAR scans, which directly model the
environment surrounding the robot. From a local alignment, in fact,
we are able to check for discrepancies between theOSMmap and the
map built using SLAM, possibly caused by annotation errors or due
to a large time gap between LiDAR acquisitions and the creation of
the OpenStreetMaps outline.

4 Experiments

We compare the proposed system with different methods for
LiDAR SLAM: LOAM (Zhang and Singh, 2014), LeGO-LOAM
(Shan and Englot, 2018), LIO-SAM (Shan et al., 2020), HDL
(Koide et al., 2018) and the baseline of our work, ART-SLAM (Frosi
and Matteucci, 2022) (without Scan Context). In particular, we
evaluate all three variants of OSM-SLAM. First, we consider Prior
SLAM, which follows the same procedure as in Rigid SLAM (as
described at the end of Section 3.3), in which the nodes in the pose
graph associated with buildings are fixed and therefore cannot be
modified by the optimization procedure. Then, we evaluate both
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FIGURE 6
Localization accuracy of two proposed approaches (Prior SLAM on the left, Non-rigid SLAM on the right) on Sequence 07 of the KITTI odometry
dataset Geiger et al. (2012). (A) Error distribution (Prior SLAM). (B) Error distribution (Non-rigid SLAM).

FIGURE 7
Detailed view of the reconstruction obtained with Non-rigid SLAM on Sequence 07. Notice the displacement of the buildings (blue dots) w.r.t. Their
original location (red shape).

Rigid and Non-rigid SLAM approaches, to see their differences and
behaviors.

To conclude the results, we perform an ablation study of the
system, considering two different scenarios. In the first study, we
present a re-localization experiment on one of the sequences used
for testing, where we stop the tracking at the beginning for about
100 consecutive frames, and use OSM buildings maps to estimate
the missing odometry and evaluate the re-localization possibilities
using external mapping services. In the second scenario, we disable
loop closure and run Prior SLAM, comparing it with the baseline.

We evaluate all systems on Sequence 07 and Sequence 00 of the
KITTI odometry dataset (Geiger et al., 2012), as they correspond
to trajectories with medium and high complexities, respectively,
and the associated OSM maps are sufficiently detailed for testing.
Experiments are done on a 2021 XMG 64-bit laptop with Intel(R)
Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores, with 24,576 KB of
cache size.

4.1 Comparison and results

The goodness of the methods used for the comparison is
computed by means of absolute trajectory error (ATE). With this

metric, we are able to measure the difference between the estimated
and true poses of the robot. As some of the considered methods are
all keyframe-based,meaning that only a fraction of the input scans is
inserted in the pose graph, we perform a pre-processing step to filter
out ground truth elements corresponding to the keyframes indices
and timestamps. We also include here a detailed visual evaluation of
the estimated trajectory and placement of the buildings in the global
map, overlapped with OSM tiles.

Table 1 details the obtained results in terms of mean, root mean
square error (RMSE), and standard deviation (STD) of the ATE,
in meters. Looking at the table, one may infer that the overall
accuracy of the proposed system, in all three approaches, decreased
w.r.t. The baseline, even if by an acceptable amount. However, using
only these statistics does not explain in detail how the systems
behave when dealing with OSM. Figure 6 shows the distribution
of the ATE over the whole trajectory. In particular, Figure 6A
refers to the results obtained with Prior SLAM, while Figure 6B
represents the trajectory estimated with Non-rigid SLAM. It is clear
how, especially for the latter case, the majority of the estimates
prove to be definitely more accurate than the baseline, reaching
error values below half a meter. Other sections, however, heavily
influence the overall ATE mean value, and this is caused by
the way buildings are placed in the corresponding high-error

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1064934
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Frosi et al. 10.3389/frobt.2023.1064934

TABLE 2 ATE on Sequence 00 of the KITTI odometry dataset Geiger et al.
(2012).

ATE [m] MEAN RMSE Standard deviation

LOAM > 10 > 10 >10

LeGO-LOAM 9.537 11.666 6.718

LIO-SAM > 10 > 10 >10

HDL 1.378 1.424 0.779

ART-SLAM (baseline) 0.981 1.092 0.478

Prior SLAM (ours) 3.802 4.778 2.893

Rigid SLAM (ours) 4.064 4.494 1.918

Non-rigid SLAM (ours) 3.648 4.214 2.110

areas. For example, the segment of trajectory having the highest
ATE is associated with a sequence of tightly joint buildings,
meaning that the corresponding point clouds are just straight lines,
tricking ICP into wrong alignments both in travel and orthogonal
direction.

These results also give usmore insight into the proposed systems.
In case of Prior SLAM, where buildings are fixed, the constraints
between buildings and keyframes are completely weighted on
the keyframes themselves, leading to an overall distribution of
the trajectory error. On the other hand, in Non-rigid SLAM, all
buildings, independently one from the other, are free to move
and adjust their location in the map, jointly with keyframes. This
means that the trajectory error will be majorly concentrated in
areas with possible issues. Lastly, one can also see the optimization
effects on the buildings in Figure 7, which shows two detailed
areas of the reconstruction with Non-rigid SLAM, overlapped
to OSM tiles. Elements are slightly moved (blue dots), w.r.t.
Their original position (red shape), to satisfy all constraints of
Section 3.4.

From there, we moved to Sequence 00 of the same dataset.
Table 2 contains the ATE statistic. As in the previous case, the
accuracy of OSM-SLAM seems to be worse than the baseline.
Remembering the same reasoning done for Sequence 07, one
should also look at the trajectory error distribution, to effectively

understand the impact of OSM maps. Figure 8 represents the
distribution of the ATE over the whole trajectory, with Figure 8A
referring to the Prior SLAM case, and Figure 8B showing the results
ofNon-rigid SLAM. In the first case,most of the estimated trajectory
has a low error, almost half of the baseline, whereas in a small
area (curved road on the bottom right side, where only a few OSM
buildings can be found) we see a noticeable drift that influences
the mean error. On the other hand, in the Non-rigid SLAM
scenario, we can see that the error is spread over the trajectory,
reaching the lowest values of less than 10 cm (which is quite
outstanding on such a complex map, containing multiple turns and
loops).

Lastly, we show the evolution of the 3D reconstruction and
trajectory estimation (with Prior SLAM), visible in Figure 9.
Already at half of the traversed path, visible in the left panel, the
constructed map shows a high level of accuracy and details, which
is kept for the rest of the whole SLAM procedure, and it ends
in the right panel of the figure, which depicts the complete 3D
reconstruction of Sequence 00.

4.2 Ablation study

As the first experiment of the ablation study, we tried
to evaluate the re-localization capabilities of OSM-SLAM on
Sequence 07. This was achieved by simulating a faulty tracking,
for about 100 consecutive frames (slightly less than 10% of
the whole sequence), right at the beginning of the trajectory,
as depicted in Figure 10. Then, we used the available OSM
maps to re-localize the robot within it (using the same scan
matching procedure described for both Rigid SLAM and Non-
rigid SLAM, in Section 3.3; Section 3.4, respectively) automatically
estimating the relative motion of consecutive LiDAR scans. While
the baseline of the system would completely fail, OSM-SLAM
works as intended, after re-localization, with a small loss in
accuracy (a few centimeters worse than ART-SLAM). This proves
that re-localization can be accurately performed through the
means of 2D maps coming from mapping services, such as
OpenStreetMaps.

In the second experiment of the ablation study, instead, we
disabled the loop detection and closure module of both baseline
and Prior SLAM, evaluating the ability of the proposed system to

FIGURE 8
Localization accuracy of two proposed approaches (Prior SLAM on the left, Non-rigid SLAM on the right) on Sequence 07 of the KITTI odometry
dataset Geiger et al. (2012). (A) Error distribution (Prior SLAM). (B) Error distribution (Non-rigid SLAM).
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FIGURE 9
Evolution of the trajectory and 3D map estimation on Sequence 00, using Prior SLAM.

FIGURE 10
3D map obtained through the re-localization experiment. The red
zone consists of frames that are not used for tracking, and for which
the odometry is computed through OSM map alignment.

compensate for drift errors in the absence of loops. Table 3 shows
the absolute trajectory error statistics (not just mean, RMSE, and
standard deviation, as done in Section 4.1), of the two compared
systems, both on Sequence 07 and Sequence 00. Prior SLAM
definitely outperforms the baseline in every aspect when tested on
the medium-length path (Sequence 07), which contains only one
loop at the end. ART-SLAM, instead, is slightly more accurate, on
average, on the other trajectory, Sequence 00, due to the fact that
many buildings are missing in the map or are slightly misplaced
w.r.t. The LiDAR measurements. It is noticeable, however, that
Prior SLAM always shows the lowest minimum error and standard
deviation, reaching values of about 4 cm for Sequence 07 and 6 cm
for Sequence 00 (more accurate than when loop detection was
enabled). This confirms what was stated in the previous section,
i.e., that the proposed system (Prior SLAM, in this case) is more
locally accurate than other methods and more stable over long
runs.

TABLE 3 ATE statistics on Sequence 07 and Sequence 00 of the KITTI
odometry dataset Geiger et al. (2012), evaluating Prior SLAM and the
baseline with disabled loop detection and closure. Bold numbers represent
the best values for eachmetric in the two sequences.

ATE [m] Sequence 07 Sequence 00

Prior SLAM (ours)ART-SLAMPrior SLAM (ours)ART-SLAM

Max 2.670 4.199 11.064 9.820

Mean 1.166 1.537 3.152 2.978

Median 1.194 1.368 3.129 2.544

Min 0.044 0.228 0.064 0.212

RMSE 1.306 1.799 3.838 3.629

SSE 225.101 427.399 8958.518 8005.911

STD 0.587 0.936 1.869 2.074

5 Conclusion

In this paper, we presented OSM-SLAM, a LiDAR-based
Graph SLAM system that exploits OSM data to extract
geometric information of buildings surrounding a robot and
use this information to optimize the estimated trajectory, while
simultaneously correcting possible mistakes in the corresponding
OSM map. In particular, we presented three variants of the system,
i.e., Prior, Rigid, and Non-Rigid SLAM, which respectively try
to align a LiDAR scan with either a complete 2D map of fixed
buildings from OSM, non-fixed buildings, or the contour of each
structure, considered separately one from the other. We showed that
the proposed systems achieve equal or better local accuracy than the
baseline (also when loop detection is disabled), while also proving
that re-localization using external mapping services, like OSM, is
possible even in case of considerable data loss, without impacting
much the estimated trajectory.
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