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Robotic gaze and human views: A
systematic exploration of robotic
gaze aversion and its effects on
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Michael Koller1*, Astrid Weiss2, Matthias Hirschmanner1 and
Markus Vincze1

1Automation and Control Institute, TU Wien, Vienna, Austria, 2Human Computer Interaction Group, TU
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Similar to human–human interaction (HHI), gaze is an important modality
in conversational human–robot interaction (HRI) settings. Previously, human-
inspired gaze parameters have been used to implement gaze behavior for
humanoid robots in conversational settings and improve user experience
(UX). Other robotic gaze implementations disregard social aspects of gaze
behavior and pursue a technical goal (e.g., face tracking). However, it is unclear
how deviating from human-inspired gaze parameters affects the UX. In this
study, we use eye-tracking, interaction duration, and self-reported attitudinal
measures to study the impact of non-human inspired gaze timings on the
UX of the participants in a conversational setting. We show the results for
systematically varying the gaze aversion ratio (GAR) of a humanoid robot over
a broad parameter range from almost always gazing at the human conversation
partner to almost always averting the gaze. The main results reveal that on a
behavioral level, a lowGAR leads to shorter interaction durations and that human
participants change their GAR tomimic the robot. However, they do not copy the
robotic gaze behavior strictly. Additionally, in the lowest gaze aversion setting,
participants do not gaze back as much as expected, which indicates a user
aversion to the robot gaze behavior. However, participants do not report different
attitudes toward the robot for different GARs during the interaction. In summary,
the urge of humans in conversational settings with a humanoid robot to adapt
to the perceived GAR is stronger than the urge of intimacy regulation through
gaze aversion, and a high mutual gaze is not always a sign of high comfort,
as suggested earlier. This result can be used as a justification to deviate from
human-inspired gaze parameters when necessary for specific robot behavior
implementations.

KEYWORDS
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1 Introduction

In human–robot interaction (HRI) settings, such as visual joint attention
tasks or human–robot conversations, both robotic and human gazes guide the
attention of the interaction partner, influence the attitude toward them, and
provide and shape the rhythm of the interaction. Therefore, how robot engineers
integrate robotic gaze into an HRI setting is an impactful design decision.
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Gaze behavior is specified by low-level parameters, such as
animation curves of head and eye movements, specific gaze targets
or directions, and frequency and duration of fixations. Similarly,
gaze depends on the current context, such as the interaction partner
(Kendon, 1967). Previous studies have reported a relationship
between one high-level gaze behavior parameter, namely, the gaze
aversion ratio (GAR), and the perceived user experience (UX)
(Zhang et al., 2017). A positive UX is central to accepting social
robots in our everyday lives (Weiss et al., 2009). In current studies
with social humanoid robots such as Pepper,1 the GAR for a positive
UX is often determined through a human-inspired approach
(Andrist et al., 2014): gaze timings in human–human interaction
(HHI) are recorded and replicated in robotic systems.

We consider GAR a central parameter in conversational HRI
settings because it is a good representation of the overall gaze
behavior of a robot. Even if the robot behavior designer does not
explicitly model the behavior around a chosen GAR, the GAR of
a behavior can always be computed. Gaze aversion is also a social
interaction parameter for which a broad body of HRI work exists
(Admoni and Scassellati, 2017). A common approach is to create a
human-inspired gaze behavior. Thus, deviating from such human-
inspired gaze parameters produces relevant complementary findings
to the human-inspired approach.

Additionally, deviating from human gaze behavior is necessary
if the robotic gaze has specific additional goals and limitations. This
includes movement restrictions imposed by the robot embodiment
or sensor limitations that impose minimum observation times
for detecting certain objects (Ban et al., 2017) if the robot’s gaze
coincides with the camera view. This problem is relevant if design
principles of honest anthropomorphism are followed, for example,
if the camera is installed in the head of the robot in its assumed gaze
direction (Kaminski et al., 2016).

The effects of deviating from such HHI-inspired GAR have
not yet been systematically studied, and there are unexplored
assumptions: (1) Is the human-inspired parameter setting optimal
for a specific robot embodiment and scenario? Other parameter
settings might be equally or more appropriate for a specific robot
embodiment, and these will never be identified when adhering to
human-inspired parameters as closely as possible. (2) Assuming the
HHI parameter setting is optimal, how much does a deviation from
that optimum degrade the UX? Insights into these questions benefit
robot designers who need to balance the social and technical aspects
of robotic gaze behavior.

In this study, we explore a broad range of values for the robotic
GAR for the Pepper robot and whether there are systematic effects
on the different dependent interaction measures. We chose this
parameter because it is a high-level gaze behavior descriptor and
can be derived for every robotic social gaze behavior. Thus, we
argue that the findings of this study are relevant to many different
experimental settings. There are different implications for future
robot- and human-centered research, depending on the outcome.
If only one high-performing setting can be interpreted as “close to

1 https://www.softbankrobotics.com/emea/en/pepper.

the human behavior,” it might be reasonable to only inspect settings
close to this behavior in the future. Otherwise, if we observe several
high-performing settings or negligible differences, robot designers
will have more freedom in their choices. For technology-focused
approaches, if there is knowledge aboutmore lenient acceptable gaze
timings, it is easier for robot designers to approach the range of
acceptable parameters in their implementation.

We created an experimental design to determine the GAR that
enables a positive UXwithout being derived fromHHI. Asmeasures
for UX, we chose the feeling of being attended, the feeling of comfort
within the interaction, and the perceived interaction capabilities
of the robot (Pfeiffer et al., 2011). Furthermore, we recorded the
gaze behavior of the participants as an implicit measure of UX
because human gaze behavior, including gaze aversion (Chen and
Clarke, 2017), is closely linked to affect and emotion.We additionally
measure other interaction parameters, namely, the interaction
duration andword count uttered by the human participants, as these
variables have been linked to affective, emotional, and attentional
states (Burra and Kerzel, 2021).

In this study, we present the following contributions:

1. We introduce an experimental design to vary one parameter of
robot behavior, namely, the GAR, in a wide range of possible
values for a specific anthropomorphic robot, namely, Pepper,
without assuming that human behavior is optimal.

2. We implement a minimal-animacy robot behavior that isolates
the effect of the mere ratio of gazing at the human conversation
partner versus averting the gaze to the side.

3. We conducted a user study (n = 101) in which we recorded,
evaluated, and interpreted a rich dataset (10.48436/frswc-4dn44)
composed of gaze-tracking records over the whole duration of
the interaction, other behavioral measures, such as spoken word
count and interaction duration, and self-reported attitudes toward
a social robot.

4. We discuss guidelines for implementing robot behavior that
adheres less strictly to human-derived parameters.

The remainder of this work is organized as follows: related
work about gaze and eye-tracking in previous HRI experiments
is presented in Section 2. In Section 3, the research questions are
posed, followed by the used methods in Section 4. Then, results
are presented in Section 5, and discussed and transferred into
guidelines in Section 6. We finish with a conclusion in Section 7.

2 Related work

In this section, we first present related work in both human and
robotic gaze behavior research. We review different forms of social
gaze and why it is a crucial nonverbal social modality for humans.
Then, we review how social gaze behavior has been implemented in
previousHRI studies with different experimental designs. After that,
we review relevant user studies incorporating eye-tracking devices
and different ways of extracting empirical findings from eye gaze
data. Human eye gaze reveals latent variables, such as attributions
toward the robot. These measures have been used in HHI and HRI
studies.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1062714
https://www.softbankrobotics.com/emea/en/pepper
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Koller et al. 10.3389/frobt.2023.1062714

2.1 Robotic and human gaze behavior in
HRI

The GAR is a high-level descriptor of gaze. However, gaze
aversion can occur in different circumstances with varying goals.
There are findings concerning the neural correlates of gaze behavior
in humans and monkeys (Perrett et al., 1985). Different groups of
cells in the macaque temporal cortex were fully activated when
the monkey was confronted with different views of the head. In
Emery (2000), gaze as a social cue is discussed as an evolutionary
phenomenon that allows humans to interpret complex social
scenarios in the following taxonomy: (1) mutual gaze describes a
setting where two interaction partners are looking at each other’s
faces. (2) Averted gaze occurs when one partner looks away from
the other. (3) Gaze following occurs when one partner notices the
averted gaze of the other and then follows their line of sight to a point
in space. (4) Joint attention is similar to gaze following, except that
the person averting the gaze has a specific object as the gaze target,
and the other person attends to that object. (5) Shared attention is
a bidirectional process where both partners simultaneously perform
a mix of mutual gaze and joint attention on the same object. Thus,
both know that the other is looking at the target object. (6)Theory of
mind (ToM) uses higher-order cognitive strategies and performs a
mental state attribution to the interaction partner.Thus, one partner
can determine that the other intends to interact with an object or
react to a stimulus because they intend to achieve a goal by doing so
or have a particular belief about it that leads to a specific action.

This classification does not separate gaze aversion into a single
category. Gaze aversion can occur in the averted gaze, as well as gaze
following, joint attention, and shared attention. However, the GAR
remains an objective, condensed descriptor of gaze behavior.

Like above, the GAR can differ in the context of its social
function and occur through different gaze acts: five functions of
social gaze and six types of gaze acts have been identified (Srinivasan
and Murphy, 2011). The five functions are establishing social
agency (reinforcing presence and aliveness), communicating social
attention (showing interest in humans), regulating the interaction
process (managing participation and turn-taking), manifesting
interaction content (looking at the object of interest), and projecting
mental state (expressing emotions and intentions). The six gaze
acts—fixation (at target object or person), short glance, gaze
aversion (away from a person), concurrence (repetitive horizontal
or vertical movement to interrupt fixations), confusion (signified by
consecutive rapid gaze shifts back and forth), and scan (several short
glances to random points in space)—have been identified.

Specifically for conversational settings, gaze aversion has
additional functions (Andrist et al., 2014): floor management,
intimacy regulation, and indication of cognitive effort. Floor
management gaze behavior consists of gaze aversions during speech
pauses to indicate that the conversational floor is being held and
an interruption of the speaker is not desired. Intimacy regulation
between two conversation partners is achieved by different degrees
of gaze aversion, depending on the relationship of the conversation
partners, the conversation topic, and scenario properties, such as the
physical distance of the two speakers. Cognitive effort can lead to
more gaze aversions of the speaker, as they can better focus on the
planning and delivery of the following utterances.

We summarize that gaze aversion behavior is highly dependent
on the conversation setting, the two interaction partners, and
dynamic aspects during the flow of conversation. However, there
have been attempts to derive empirical average percentages for
gaze at the interaction partner and mutual gaze: Argyle (1994) and
Argyle et al. (1994) reported that one person in a conversational
dyad spends approximately 60% of the time looking at the
conversation partner. 30% of the interaction time is spent in mutual
gaze. While listening, people gaze more often at the conversation
partner (71%) than while speaking (41%). The authors report
high interpersonal variance for gaze aversion. In our experimental
setting, the robot takes on the role of the listener in a dyadic
conversational setting. Thus, A GAR value of 0.3 (corresponding to
gazing at the partner about 70% of the time) constitutes the HHI
standard.

Rightly, previous work focused on determining robotic gaze
behavior that improves the interaction (Admoni and Scassellati,
2017, Chapter 5). However, the complexity of the implementation
and other test-theoretic design demandswould have led to infeasibly
large sample size for more fine-grained experimental setups. Thus,
in the different test conditions, the presumed high-performing
implementation is often compared against a deliberately poorly
performing or neutral condition. This type of research question
is valid for verifying specific implementations. Our work aims
to answer the complementary question of which insights can be
generated for future robot behavior designs when there is no explicit
split between different performance groups.This is alsomotivated by
(Admoni and Scassellati, 2017, p. 37): “It is tempting to assume that
perfectly matching robot gaze behaviors to human gaze behaviors
will elicit identical responses from people, but this is not always the
case,” as was shown by Admoni et al. (2011).

2.2 Eye-tracking in HRI

Eye-tracking in HRI research produces detailed and rich data
samples during interactions and provides task-specific sensory
data to robotic learning algorithms. Including eye tracking as a
dependent variable in experimental designs studying conversational
HRI settings is a common technique and has yielded several insights
into the connection between gaze behavior and UX.

Perugia et al. (2021) operationalized eye-tracking measures for
the feelings and attitudes of participants over time toward different
robot embodiments in a conversational HRI scenario. They found
that human gaze aversion is an indicator of the uncanniness of a
robot. Similarly, the more a participant gazed at the robot in a joint
task, the worse they performed. Gaze aversion in a social chat is
an indicator of the uncanniness of a robot. Liking of the robot and
mutual gaze develops congruently throughoutmultiple interactions.
Specifically, the reported uncanniness decreased, whereas mutual
gaze by the participants increased. Moreover, the authors argued
that later interactions represent a more stable gaze pattern after the
novelty effect wore out.

Additionally, in order to pure conversational settings, mutual
gaze has also been used to estimate the social engagement
of participants in joint task settings (Castellano et al., 2010;
Papadopoulos et al., 2016).
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Sidner et al. (2005) interpreted the freely chosen interaction
duration of their participants with a social robot as an implicit
measure of interest in engagement with the robot. The amount of
looking at the robot is a measure of attention toward the robot.
They found that in both experimental conditions (talking/gesturing
robot) of a conversational object reference game, participants spent
about 70% of the time looking at the robot in both conditions with
no differences in the self-reported likability of the robot.

Yu et al. (2012) employed a data collection procedure including
video recording and eye-tracking of human participants in an HRI
scenario, where participants taught object names to either a robot
or another confederate participant. They reported differences in the
amount of time spent gazing at the face of another human or a
robot interaction partner. Intimacy regulation (Argyle and Dean,
1965) in a conversation is achieved by averting the gaze from the
other person.Thus, inanimate characters such as persons on TV and
arguably social robots who exhibit limited sociability receive more
gaze than physically present human interaction partners. This result
is an indication against the human-inspired gaze control design
approach.

Baxter et al. (2014) interpreted the direction and timing of
a human’s gaze over time toward a robot while interacting by
comparing different gaze metrics derived from temporally split
interaction thirds.They noticed a decrease in gaze at the robot’s head
over time and thus proposed thismeasure as a proxy for engagement
in the interaction and the perceived social agency of the robot.

The human eye gaze acts as an implicit measure of engagement
(Jokinen, 2018) to determine whether an anthropomorphic
conversational robot is gazed upon as a communicative agent or
a technological tool. The robot performed the task of reading a
newspaper article out loud. Participants exhibited a high level of
gaze toward the face of the robot. This is regarded as evidence
for the communicative agent hypothesis, confirming the media
equation hypothesis (Reeves and Nass, 1996). There was a dynamic
change in gaze targets: at the beginning of an interaction, there is
more gaze toward the head of the robot than at the end, although
the small sample size limits the validity of this observation.

Eye gaze behavior is also linked to persistent personality traits
(Ijuin and Jokinen, 2020). Analyses of HHI and HRI conversations
revealed that participants gaze more at the partner’s body in HRI
than in HHI and more at the partner’s face in HHI than in HRI, and
there is a positive correlation between the character trait openness
and the average duration of gazing toward partner’s body in HRI.
This interpersonal effect is modulated by the situational effect of
intimacy regulation during a conversation.

Sabyruly et al. (2015) reported a temporal effect in their
conversational HRI setting; people who spend more time with the
robot have less favorable attitudes toward it. Participants spent, on
average, 50% of the time looking at the face of the robot, with
large interpersonal differences. They confirmed previous findings
that the maximal pupil diameter correlates with cognitive load and
concluded that telling a story constitutes a measurable cognitive
load.

Zhang et al. (2017) reported that a prolonged stare of a robot
at the participants increased their arousal. In their interactive gaze
experimental condition, a prolonged mutual gaze of the participant
at the robot correlated positively with a higher rating in fluency, fun,
and connectedness.

Similarly, Broz et al. (2012) found in HHI conversations that
gaze aversions and mutual gaze highly depend on both interaction
partners. They reported a positive correlation between mutual gaze
and the combined person’s agreeableness, as well as their familiarity.
Concerning gaze dynamics between the two interaction partners,
they reported correlations implying that mutual gaze cannot be
increased by only one of the two participants by simply looking at
their opposite for a more extended amount of time.

In summary, eye-tracking has several favorable properties for
HRI research: it produces more objective data than self-report
measures. The resulting data are richer and more granular than the
questionnaire results. Eye-tracking data reveal behavior, attitudes,
and emotional states that escape the conscious verbalization of
participants when filling out questionnaires. Previous studies allow
us to link gaze behavior with emotional states and attitudes.

3 Research questions

As our work aimed to determine whether viable parameter
ranges for HRI behavior implementations can be found without
adhering to previously determined HHI parameters, we varied one
gaze behavior factor, namely, the GAR. It is defined as the ratio of
time averting the gaze from the interaction partner to the gaze cycle
time. A GAR of 1.0 relates to always averting the gaze from the
interaction partner, whereas a GAR of 0.0 relates to always gazing
at the interaction partner.

Different robot behaviors can implement the same GAR as
different movement profiles and gaze cycle lengths can average
the same amount of time gazing at and away from the interaction
partner. In our study, we wanted to establish whether the mere ratio
of time spent gazing at the interaction partner’s face and the time
spent averting the gaze is already a significant factor for how the
users experience the behavior of the robot without varying different
dynamics, such as animation curves.

The Softbank Pepper2 robot was chosen as the robot
embodiment. The humanoid shape allows a natural implementation
of gaze aversion, whereas the un-actuated face of the robot (except
for LED lit eyes) does not signal a false affordance to participants;
that is, participants do not expect elaborate facial animation during
the interaction. Pepper robots are currently a widespread social
robotics research platform, and thus findings can be incorporated
into future research for the same platform (and similar platforms
like the Softbank NAO robot3). Lastly, these robot platforms adhere
to the honest anthropomorphism design principle; that is, the
robot only gathers visual information in a visual field where the
anthropomorphic head is pointed. Designing robot behavior for
robot embodiments that do not violate the users’ trust poses
additional challenges but is necessary for a trustworthy relationship.

Our primary research interest was to determine to what degree
the GAR influences the behavior and attitudes of human interaction
partners. To operationalize this, we derived research questions
that can be grouped into three categories: 1) the gaze behavior of
participants, 2) interaction behavior, and 3) attitudes.

2 https://www.softbankrobotics.com/emea/en/pepper.

3 https://www.softbankrobotics.com/emea/en/nao.
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1) Gaze behavior:

• RQ 1a: Does the GAR affect the fixation durations of the
participants?
• RQ 1b: Does the effect of the GAR on the fixation durations

change during the interaction?
• RQ 1c:Does the GAR influence the fixation sequence behavior

of the participants?

2) Interaction behavior:

• RQ2a:Does the GAR affect the number of words spoken by the
participants?
• RQ 2b: Does the GAR affect the interaction duration?

3) Attitudes:

• RQ 3a: Does the GAR affect participants’ perception of the
robot’s attention toward them?
• RQ 3b: Does the GAR affect participants’ feeling of comfort

during interaction with the robot?
• RQ 3c: Does the GAR affect participants’ perception of the

robot’s interaction capabilities?

4 Methods

We designed an experiment in a conversational interaction
setting and validated it in a pilot study (Koller et al., 2019). During
the interaction, the robot greets a human participant and asks about
their favorite movie. Then, it listens to their statement. When the
human stops talking, the robot thanks the participant and says
goodbye to conclude the interaction.

The gaze aversion of the robot was the main behavior of the
robot while the participant was talking. It was manipulated as the
independent variable. The gaze aversion behavior cycled every 10 s.
During a cycle, the robot acted according to a specific GAR and a
predetermined gaze dynamic. Figure 1 shows the operationalization
of the independent variable GAR across five conditions (0.1, 0.3, 0.5,
0.7, and 0.9).

We added additional animacy behavior as gaze aversion head
shifts occur only every few seconds to avoid the robot appearing
as “turned off” during the listening phase of an experiment
trial. Johnston and Thomas (1981) reported twelve animation
principles derived from animation practices in animated movies.
These principles have also found use in the animation of robots
(Ribeiro and Paiva, 2019) to improve aspects such as readability or
likeability.There are several typically used animation profiles in HRI
experiments to convey animacy. Mota et al. (2016) implemented
the following idle movements on a Baxter robot in an HRI
scenario: eye blinking and gazing, opening and closing grippers,
and arm movements. For our experimental design, we iteratively
arrived at the following animacy behavior: eye blinking behavior
through Pepper’s LED eyes, “breathing” behavior through subtle
body movements, and short and randomized head movements
added to the explicit gaze shifts.Moreover, homogeneous interaction
length among the participants was desirable for the experiment.
We conducted several HHI pre-trials where a human played the

role of the robot. The participants rated 2–3 min as a comfortable
interaction length.

During the greeting and farewell part of the interaction,
the robot performed several utterances and gestures (see
Supplementary Material). If a participant stopped talking for
more than 3 s, the robot made an utterance to ask for more input
from the user (“Was that all?”) without an additional gesture. The
experimenter triggered the beginning of the experiment, that is,
the robot greeting, the robot utterance after a human speaking
pause, and the robot farewell utterance manually in the Wizard-of-
Oz (WoZ) style (Riek, 2012). In a pilot study (Koller et al., 2019),
we conducted the main experiment without eye-tracking and only
three GAR scenarios 0.1, 0.5, and 0.9 (n = 10).These trials were used
for wizarding training, and the first author acted as the only wizard
for all experiments. The wizard knew the research questions of the
experiment, but there were no hypotheses about group comparisons
that were likely to be significant. With respect to the guidelines
elaborated by Fraser and Gilbert (1991), the only wizard recognition
and production variables were detecting speech pauses of 3 s and
then triggering the following phase of the experiment. If the duration
was less than 2 min, the robot asked, “Was that all?” to encourage the
participants to talk longer. When a 3 s pause occurred after 2 min or
after the robot had already asked to elaborate once, the farewell
utterance was triggered.

The microphone integrated into the Pepper robot was not
reliable enough for the automatic detection of human speech. In
other HRI experiments, this difficulty was solved by providing a
hand-held or head-mounted external microphone to the human
participant (Hirschmanner et al., 2021). In our experiment,
however, this would have made it too cumbersome for the
participants, as they already wore a head-mounted eye-tracker.
Information about the degree of wizarding was given to the
participants only after completing the questionnaire. Riek (2012)
argues that a precise specification of the scenario for the participants
is also important.Thiswas achieved by providingwritten instruction
of the experiment before consenting and another verbal instruction
provided by the experimenter. Concerning the eye-tracking
procedure, the following steps were performed: 1) explanation of
the eye-tracking hardware, 2) fitting of the eye-tracker, 3) adjusting
the eye-tracking camera for robust pupil detection, 4) performing
the single marker calibration choreography, 5) confirming eye-
tracking quality, and 6) recording. Then, the robot started the
interaction with a greeting, which the experimenter triggered
(see Supplementary Material). The experiment design and data
processing procedure were peer-reviewed by the TU Wien Pilot
Research Ethics Committee.

For the main experiment, all participants (n = 101) were
recruited from the premises of TU Wien on the fly, most of whom
were students. The participants were asked to give written consent
after reading a short introduction to the experiment. After the
experiment, each participant received 10 € as compensation. We
performed the experiment in a room of the TU Wien library. The
room was only illuminated with artificial ceiling lights and the
window shadeswere closed to achieve consistent lighting conditions.
There was no sound except the fans of the robot and the computer
the experimenter used.

The room was split into two sides by an opaque room separator
(Figure 2). On one side, the participant sat on a chair in front of
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FIGURE 1
Timing of gaze focus transitions for the five conditions. At 0°, Pepper looks at the human. The movement time of 0.5 s is included in the gaze aversion
time. At 9.5 s, all GAR conditions return to 0°. Pepper’s different gaze angles are −25°, 0°, and +25°.

FIGURE 2
Schematic layout of the experiment room (4 m × 3.5 m). Participant
with eye tracker (P), experimenter (E), robot (R), cameras (C1, C2), and
room separator (S).

the Pepper robot at a distance of 110 cm between the chair and the
base of the robot. Two cameras were positioned near the robot and
the participant. On the other side of the separator, the experimenter
executed the robot interaction script from a desktop. The WoZ
controller could see the camera feed of the pepper robot and listen
to the participant.

COVID-19 hygiene measures were taken in all sessions. Pencils
and the eye-tracking device were disinfected before every trial, and
the room was ventilated between trials. The experimenter wore an
FFP2/N95 mask at all times, whereas the participants were asked to
remove their masks to accommodate the eye-tracker.

To measure behavioral differences between GAR conditions,
we record the eye gaze behavior, the interaction duration, and the
word count during the interaction as objectivemeasures. Tomeasure
the attitudes of the participants toward the robot, we compiled
sections from validated questionnaire series, namely, Godspeed

(Bartneck et al., 2009) and BEHAVE-II (Joosse et al., 2013). We
chose scales that are appropriate for the interaction setting and
research questions. Each section consists of four five-point Likert-
type scales, each with two positively and two negatively connoted
terms, with an additional “I don’t know” option.The aggregated scale
of attention consisted of the ratings responsive, interactive, ignorant,
and unconscious. The aggregated scale of comfort consisted of the
ratings creepy, feeling nervous, warm, and pleasant. The aggregated
scale of interaction capabilities consisted of the ratings artificial,
incompetent, intelligent, and sensible. To avoid misunderstandings,
we provided the participants with a glossary for the terms of
the questionnaire (see Supplementary Material for all forms used
during the experiment).

Additionally, we posed three open-ended interview questions
after participants completed the questionnaire to detect problems
during the experiment and get qualitative impressions: “How did
it feel to talk to the robot?”, “Do you have additional thoughts
about the robot?”, and “Do you have any other thoughts about the
experiment?”

The resulting dataset is securely and confidentially stored at the
TU Wien research data repository (10.48436/frswc-4dn44).

5 Results

The data analysis is performed for human gaze behavior (i.e.,
gaze fixations on a specific region of interest (ROI) and pupil
measures), interaction behavior (i.e., word count and duration), and
attitudinal measures (i.e., self-reported measures). The human gaze
data are analyzed in differentways: 1) aggregated statisticalmeasures
of the whole interaction, 2) aggregated statistical measures for each
interaction, 3) human gaze sequences, and 4) temporal correlation
of robot and human gaze shifts.

5.1 Data preparation and descriptive
statistics

A total of 101 participants took part in the experiment, of
whom four participants had to be excluded due to technical
problems with the experimental procedure and 1 participant due to
misunderstanding the instructions, resulting in a sample size of 96
for the self-reported measures and interaction behavior measures
of word count and duration (n = 96, age: mean = 24.26, SD =
4.02). A total of 43 participants identified as female and 53 as
male participants. Every participant reported daily computer use.
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TABLE 1 Top: descriptive statistics of participants (n =96) for attitudinal and
interaction behavior measures. Bottom: descriptive statistics of participants
(n =88) for gaze-relatedmeasures.

GAR 0.1 0.3 0.5 0.7 0.9

N 19 19 21 17 20

Age mean (SD) 26.7 (6.4) 23.4 (2.6) 23.6 (2.5) 22.8 (2.2) 24.3 (3.8)

Gender 9 f/10 m 8 f/11 m 10 f/11 m 8 f/9 m 8 f/12 m

N 19 17 19 16 17

Age mean (SD) 26.7 (6.4) 23.4 (2.6) 23.4 (2.4) 23.1 (2.5) 24.6 (3.8)

Gender 9 f/10 m 6 f/11 m 9 f/10 m 7 f/9 m 6 f/11 m

Regarding the experience with robots, the participants reported
interaction with a robot as follows: never (61), once (12), or a few
times (23). No one interacted with robots on a regular basis until the
time of the experiment.

For the analysis, the negatively formulated scales ignorant,
unconscious, creepy, nervous, artificial, and incompetent were
inverted. Items answeredwith “I don’t know”were treated asmissing
values and occurred with the following frequencies: responsive, 1;
interactive, 2; ignorant, 4; unconscious, 5; creepy, 0; feeling nervous,
0; warm, 0; pleasant, 0; artificial, 0; incompetent, 5; intelligent, 6; and
sensible, 3.

The aggregated scale of attention is composed of the items
responsive, interactive, ignorant (inverted), and unconscious
(inverted). The composite scale of comfort is composed of the
items creepy (inverted), nervous (inverted), warm, and pleasant.
The composite scale of capability is composed of the items artificial
(inverted), incompetent (inverted), intelligent, and sensible.
Cronbach’s alpha tests for the aggregated scales of attention
(α = 0.84), comfort (α = 0.62), and interaction capabilities (α = 0.73)
were performed.

For the attitudinal and behavioral measure tests, descriptive
statistics per test condition are presented at the top of Table 1.
Discrepancies in the group sizes arose because we also tried
to have similar group sizes for valid eye-tracking data, where
additional errors occurred that led to the exclusion of some
participants.

For the eye-tracking analysis, from the 96 participants who
completed the self-report questionnaire, eight more needed to be
excluded due to poor average pupil detection confidence (<0.6) (n =
88, age: mean = 24.22 years, SD = 4.07, gender: 51 m, 37 f) (bottom
of Table 1).

Gaze data during the interaction period were recorded with a
Pupil Labs Core eye-tracking device. The gaze data were aggregated
as follows: from the gaze data per recorded frame, fixations were
detected through the Pupil Labs fixation detection algorithm.4 Thus,
each fixation is described by a duration and a gaze coordinate,
which can be mapped into world space and, more specifically, onto
a specific ROI in the world space. On the most granular level, the

4 The chosen parameter settings for the fixation classifier are dispersion
duration, maximum dispersion = 3°, minimum duration = 100ms, maximum
duration = 4,000ms, and single marker calibration choreography in Pupil
Player v3.3.0.

following ROIs are defined, as depicted in Figure 3: robot head (H),
robot body (B), top left of head (TLH), top of head (TH), top right
of head (TRH), left of head (LH), right of head (RH), top left of body
(TLB), top right of body (TRB), bottom left of body (BLB), bottom
right of body (BRB), bottom left (BotL), bottom (Bot), and bottom
right (BotR). Gaze at the head is defined as gaze at ROI head, and
gaze at the robot body is congruent with ROI body, whereas the
gaze at any remaining ROIs is coded as ROI gaze averted. These
individual ROIs constituting the ROI gaze averted can further be
grouped to distinguish between fixations on top and bottom. Gaze
fixations that do not fall into any of the defined ROIs are coded
with no ROI. These fixations have been added to the general gaze
averted ROI but have not been used when splitting gaze aversions
into top and bottom. The relevant time span of interaction started
at the end of the greeting utterance of the robot up to the start
of the farewell message or the utterance of the invitation to speak
more.

5.2 Power analysis

G*Power (Faul et al., 2009) was used to compute the power
of the study design and the compromise of α and power. For a
sufficiently sized sample, the preferred test statisticwould be the one-
way ANOVA, as normal distribution is expected in the dependent
variables. Therefore, we computed the a priori sample sizes using
Cohen’s f as effect size (f = 0.1, small; f = 0.25, medium; and f = 0.4,
large). With α = 0.05, power (1− β) = 0.8, and five groups, the
required sample sizes are n = 80 for a large effect and n = 200 for
a medium effect. The actual sample size of n = 100 is suitable for an
effect size of f = 0.355.

The used η2 effect size can be transformed into f
using f = √η2/(1− η2) (Cohen, 2013), which results in
η2 = 0.0828, f = 0.3 for the sensible item in the self-reported
data.

A compromise power analysis of q = β/α = 4 (as α = 0.5, and
test power 1− β = 0.8), N = 100, and five groups resulted in a
compromise value of α = 0.10 and test power of (1− β) = 0.60.
With this insight, the hypothesis test results that fall into
the range of 0.05 < α < 0.1 can serve as indicators for future
studies (e.g., the capability scale in the self-reported data
analysis).

5.3 Effect of gender

We did a preliminary check on the effect of gender, as gender
has been reported to affect eye gaze behavior Gomez et al. (2019).
Because the t-test assumptions for a t-test between attention,
comfort, capability, duration, andword count as dependent variables
and gender (f/m) as an independent variable were not met, we
performed a Mann–Whitney U test on these dependent variables
without any significant results. The same applies to the main
dependent eye gaze variables, namely, the normalized summed-
up fixation durations of the ROIs head, body, and gaze averted.
These results, together with the gender stratification in the GAR
conditions, lead us to exclude gender as a covariate from further
analysis.
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FIGURE 3
Regions of interest (ROI) relative to the Pepper robot as seen from the world view camera of the eye-tracking device from top left to bottom right: top
left head (TLH), top head (TH), top right head (TRH), left head (LH), head (H), right head (RH), top left body (TLB), body (B), top right body (TRB), bottom
left body (BLB), bottom right body (BRB), bottom left (BotL), bottom (Bot), and bottom right (BotR).

FIGURE 4
Normalized gaze duration on ROIs, head, body, gaze averted, for each GAR condition.

5.4 “Was that all?”: Robot asked for more
information

Among the 96 participants, the robot asked 44 to continue
talking about their chosen movie because otherwise, the interaction
duration would have been shorter than 2 min. The other 52
participants were not asked to elaborate further. This does not
influence the eye gaze measures as the gaze behavior is only
evaluated for the interval between the end of the robot greeting
utterance and the next robot utterance after that, that is, query for
more information or farewell. However, the participants filled in the

questionnaire at the end of the interaction. Thus, the possibility that
the additional question posed by the robot influenced the perception
of the participants must be investigated.

We tested for significant group differences for the
attitudinal and behavioral measures using a Kruskal–Wallis
test (Supplementary Tables S1, S2). There were no significant
differences in the self-report data. Thus, we conclude that the
additional question by the robot did not influence the attitudinal
measures. However, as expected, there were significant differences
in the interaction duration and word count. Participants, who were
queried for more information, talked for a shorter amount of time.
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FIGURE 5
Left: linear regression model between GAR and fixation duration at ROI head. Right: the residuals of the linear regression.

5.5 Human gaze data evaluation

The 88 participants with valid eye-tracking produced 23,529
fixations. The average fixation count per participant was 247 (SD
= 158). The average fixation duration per participant was mean =
404 ms (SD = 215 ms). In total, 913 fixations were categorized as
no ROI. The descriptive statistics per GAR condition are shown in
Supplementary Table S3.

5.5.1 Fixation duration
We investigate whether the fixation durations differ between the

groups per ROI when aggregated over the whole interaction. We
normalized the fixation duration sums per participant and averaged
them per condition for the three ROIs head, body, and gaze averted
between the GAR conditions.

The ANOVA test assumptions are met for the gaze duration at
the head but not for the body and the averted ROI.5

We performed an ANOVA on the head ROI
(Supplementary Table S4) between GAR conditions (F (4) = 2.704,
p = 0.036,η2 = 0.117). We performed a Kruskal–Wallis test on the
ROI body (χ2 (4) = 6.4074,p = 0.1707,η2 = 0.0294) and the ROI
gaze averted (χ2 (4) = 3.15,p = 0.533,η2 = −0.0104). These results
indicate that the GAR affects ROI head, not body and gaze averted.
However, a Tukey HSD post hoc test for pairwise differences in the
fixation duration of the head ROI revealed no significant group
differences. The lowest adjusted p-value occurred between the two
groups GAR 0.3 and 0.9 (p = 0.065).

Figure 4 motivated a correlation and linear regression
analysis between GAR conditions and fixation duration
on the ROI head. GAR is an interval scale regarding its
implementation on the robot. We performed a Pearson correlation
(r = −0.2981547, t (85) = −2.8798,p = 0.005). The linear regression
resulted in an intercept of 0.71 (Std. Err = 0.04, t = 16.98,p < 0.000)
and slope (i.e., the effect of the condition) of −0.21 (Std. Err =
0.07, t = −2.88,p = 0.005).Themultiple R-squared value of the linear

5 The results of the analysis of the fixation counts yield largely the same results,
but the summed fixation duration is more widely used and more principled.

regression is 0.089. Visual inspection of the residuals (Figure 5) does
not suggest higher-order functional relations between GAR and
fixation duration at ROI head, and a quadratic regression analysis
was non-significant.

The regression and correlation indicate that the lower the robot’s
GAR (i.e., the more the robot gazes at the human), the more the
human gazes at the face of the robot. Conversely, the more the robot
gazes away from the human, the more the human gazes at the body
of the robot.

5.5.2 Fixation duration: Temporal split
Until now, we inspected gaze metrics that are temporally

aggregated across the whole interaction duration. In this section,
we analyze the influence of time on gaze behavior in the different
GAR conditions. Therefore, we split each individual interaction
into thirds, similar to Baxter et al. (2014) and Kennedy et al.
(2015).

For each third, the gaze metrics are calculated. The ANOVA
assumptions aremet for theROI head but not for the other twoROIs,
body and gaze averted.Thus, we performed a MANOVA on the ROI
head with the within-factor time and the between-factor condition
(Table 2; Figure 6), which revealed significant main effects and a
significant interaction effect, all with a small effect size.

To determine where the interaction effect lies, we performed
two groups of one-way ANOVAs: first, we examined the effect of
the condition in the separate interaction thirds (middle of Table 2).
The condition has a significant and large effect in the last interaction
third.

Second, we examined the effect of time in the different
conditions via another group ofANOVAs (bottomofTable 2).There
was a significant difference in the time spent gazing at the robot
head (medium effect) between the interaction thirds in the GAR
condition 0.5. This finding emphasizes the visual result of Figure 6,
where the gaze at the head in the 0.5 GAR condition occurs for
a longer duration in the first third than in the other two-thirds.
Summarizing the interaction effect, an inspection of the median
values in Figure 6 suggests that the gaze durations form a “∧” shape
in the first third, whereas this is transformed into a downward slope
in the last third over time.
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TABLE 2 Top: MANOVA for the within-factor time and the between-factor
condition (α =0.05 (*)). Middle: ANOVAwith the factor condition on the
normalized fixation duration of the ROI head for each interaction third.
Bottom: ANOVAwith the factor time on the normalized fixation duration of
the ROI head for each condition.

F df1 df2 p p adj η2

Condition 2.54 4 80 0.046* 0.093

Time 4.64 2 160 0.011* 0.011

Interaction 2.13 8 160 0.035* 0.020

Time F df1 df2 p p adj η2

1st third 1.98 4 82 0.106 0.110 0.088

2nd third 2.42 4 82 0.055 0.112 0.105

3rd third 3.38 4 80 0.013 0.039* 0.145

Condition F df1 df2 p p adj η2

0.1 0.512 2 36 0.604 1.000 0.007

0.3 0.985 2 28 0.386 1.000 0.016

0.5 12.781 2 34 <0.000 <0.000* 0.070

0.7 4.424 2 30 0.021 0.084 0.043

0.9 0.348 2 23 1.000 1.000 0.017

Finally, for the ROI head, Tukey HSD post hoc tests for the
interaction effect revealed no significant comparisons. However,
this can be explained by the unusually high number of group
comparisons when both interaction third and condition are
examined. For the other two ROIs, body and gaze averted, the
ANOVAassumptionswere notmet.Therefore, themultivariate non-
parametric Scheirer–Ray–Hare test was chosen and performed on
the ROI body (GAR condition: H (4) = 16.4, p = 0.002, time: H (2) =
0.55, p = 0.76, interactionH (8) = 3.60, p = 0.89) (Figure 6). Only the
GAR condition had a significant effect. Dunn post hoc tests revealed
the two different GAR groups (GAR 0.3, 0.5 and GAR 0.7, 0.9), with
the second group exhibiting a higher amount of gazing at the body.
GAR 0.1 almost met the significance level for being significantly
different from GAR 0.7 and 0.9. The significant group comparisons
are 0.1–0.7 (adjusted p (p adj.) = 0.06); 0.1–0.9 (p adj. = 0.06); 0.3–0.7
(p adj. = 0.03); 0.3–0.9 (p adj. = 0.02); 0.5–0.7 (p adj. = 0.02); and
0.5–0.9 (p adj. = 0.01). This reinforces the linear regression result of
the ROI head: people looked at the robot’s body and not at its face
more often when the robot displayed a high GAR.

The procedure was repeated for ROI gaze averted (GAR
condition: H (4) = 8.79, p = 0.06, time: H (2) = 0.50, p = 0.77,
interaction H (8) = 2.98, p = 0.93) (see Figure 6) without any
significant effects.

5.5.3 Analysis of gaze sequences
Similar to Yu et al. (2012) and Broz et al. (2012, 2013), we

are interested in whether the different GAR conditions lead to
different dynamic gaze patterns in the participants. The gaze
directions of the human participants are categorized into ROIs
(Figure 3). Thus, every participant produced a sequence of fixations
on the ROIs, similar to Lehmann et al. (2017) and Acarturk et al.
(2021). For this section, we group the ROIs into the following

gaze directions (Figure 3): head (H = {H}), body (B = {B}), up
(U = {TH}), up-left (UL = {TLH,LH}), down-left (DL = {TLB,BLB}),
up-right (UR = {TRH,RH}), down-right (DR = {TRB,BRB}),
and down (D = {BotL,Bot,BotR}). Therefore, each participant
i, (i ∈ {1,…,N}) produces a sequence Si = {Si1,Si2…,SiTi

}, with
Sit ∈ D = {H,B,U,UL,DL,UR,DR,D} and t ∈ {1,…,Ti}, withTi as the
length of the fixation sequence of participant i. For each participant,
a sequence of fixation transitions is constructed.They can be used to
create a stochastic model of the gaze behavior of a single participant
in the form of a discrete-time Markov chain (DTMC) (Papoulis,
1984). For these models, the Markov property assumption dictates
that the gaze direction probability depends only on the previous
gaze direction. This assumption is expressed as

Pr(St+1 = st+1 ∣ S1 = s1,S2 = s2,…,St = st) = Pr(St+1 = st+1 ∣ St = st) ,

where the single fixation directions are random variables with
the domain D. Thus st ∈ D. Additionally, assuming time-invariance
across an interaction, the stationary distribution is represented as a
|D|× |D| transition matrixM, where an elementmij, i, j ∈ {1,…, |D|},
describes the probability of transitioning from direction i to
direction j, with ∑j∈{1,…,|D|}mij = 1 for all i ∈ {1,…, |D|}. Transitions
include loops, which result from starting and ending in the same
ROI.This can occurwhen a participant has two consecutive fixations
in the same ROI.

Subsequently, the transition matrix for each participant is
created. In order to aggregate them, the single-participant transition
matrices are summed up and normalized row-wise. This way, the
gaze behavior of each participant influences the outcome with the
same weighting, independent of the interaction duration.

For each GAR condition, there is a different DTMC model.
Each DTMC is a 14× 14 transition matrix. Visual inspection of
the differences between these matrices can reveal how the gaze
transitions differ. However, to determine whether the models differ
from each other in a statistically significant way, each of the five
14× 14 matrices is flattened into a vector of length 196. Then,
these five vectors can be stacked into a 5× 196 matrix. In this
representation, each column describes one fixation transition (e.g.,
head → body). Considering the non-normalized fixation counts,
each row describes the categorical distribution of fixation shifts.
This matrix is very sparse, containing many zero values for unlikely
transitions. To interpret the results and perform a χ2 test of
independence, we aggregated the fixation shifts into the transitions
between the previously defined ROI regions head, body, and gaze
averted.This transformation yields a 5× 9matrix, with all cell values
>5 (Table 3).

For this matrix, we performed a χ2 test of independence
(χ2(32) = 973.57,p < 2.2e− 16, Cramer’s V = 0.108 (weak effect)).
The z-scores for the cells were calculated to determine which cells
lead to this significant result (where z < −1.96 or z > 1.96 would
represent a significant deviation without Type I error correction).
Then, the χ2 values were calculated using the z-scores. For each of
the χ2 values, the p-value was compared against a χ2 distribution (df
= 1, one-sided) (Beasley and Schumacker, 1995; Garcia-Perez and
Nunez-Anton, 2003).The adjusted significance level α = 0.5/(5 ⋅ 9) =
0.00 ̇1 was used to check which cells differ significantly from the
expected distribution (Table 3). For example, all entries in the body-
to-body transitions column are significant. Negative cell entries
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FIGURE 6
Normalized fixation durations for variable ROIs, head (left), body (middle), and gaze averted (right), for the between-factor GAR condition and the
within-factor interaction third.

TABLE 3 Top: observed transition counts between the ROIs body (b), head
(h), and gaze averted (a). Bottom: differences in transition counts
(observed−expected) for the transitions between the ROIs body (b), head (h),
and gaze averted (a) per GAR condition. The adjusted α level is 0.001̇ (*),
0.000 ̇2 (**), and 0.0000 ̇2 (***), respectively. Colored cells highlight
comparisonsmade in Section 5.

GAR b-b b-h b-a h-b h-h h-a a-b a-h a-a

0.1 205 153 67 160 1,870 313 56 324 488

0.3 225 161 79 161 1,517 380 77 374 585

0.5 249 150 67 144 2,298 537 77 530 1,116

0.7 481 248 131 268 1,322 394 103 409 749

0.9 510 267 133 267 1,263 401 134 378 941

0.1 −87 *** −18 −17 −15 422 *** −42 −22 −29 −191 ***

0.3 −61 ** −7 −3 −10 99 ** 33 0 29 −80 **

0.5 −167 *** −94 *** −52 *** −105 *** 239 *** 33 −34 ** 28 150 ***

0.7 151 *** 54 *** 37 *** 70 *** −313 *** −6 15 11 −18

0.9 165 *** 65 *** 34 ** 60 *** −447 *** −18 42 *** −39 139 ***

indicate that fewer gaze transitions than expected have occurred,
whereas positive cell entries indicate that more transitions than
expected occurred. Figure 7 visualizes all significant deviations
from expected gaze transition frequencies. In Figure 7, solid blue
arrows indicate a significant positive result (i.e., more transitions
than expected), whereas orange dashed lines indicate significant
negative results (i.e., fewer transitions than expected). This graphic
only indicates significant deviations from expectations, not the
absolute number of transitions. For example, a comparison of the
two columns h-b and h-a (marked in red color) in Table 3 reveals
that h-a transitions occurred more frequently than h-b transitions
among all groups. This means, in general, after gazing at the head,
participants averted their gaze rather than look at the robot’s body.

However, we are interested in the differences between the GAR
conditions, and thus we proceed to cluster the significant cell entries
in Table 3 to interpret them on a higher level.

The three self-loop columns in Table 3 for h-h, b-b, and a-a
(cells colored in blue) confirm the findings of the gaze behavior with
respect to the total time spent gazing at a particular ROI. All entries
in column h-h display significant differences from the expected
occurrences, namely, a higher count for the low GAR conditions
0.1, 0.3, and 0.5 and a lower-than-expected count for the conditions
0.7 and 0.9. Comparable results are visible in columns b-b and a-
a, where the relationship is reversed for the GAR conditions. This
means thatwhen the robot gazed at the participants for a longer time,
the participants reciprocated the robot’s mutual gaze.

Regarding true fixation shifts (i.e., transitions between different
ROIs), a large pattern of significant results can be observed in the
submatrix GAR 0.5, 0.7, 0.9 and transitions b-h, h-b, b-a, and a-b
(cells colored in orange). These transitions occur less frequently for
the 0.5 GAR condition and more frequently for the GAR conditions
0.7 and 0.9. This means that in the 0.5 GAR condition, participants
shifted their gaze less frequently between the body and the head
and less frequently between the body and the gaze averted ROI
(although in this GAR condition, gazing at the head was more
frequent). The relationship is reversed for conditions 0.7 and 0.9:
much fixation shifting between head and body, with less frequent
gazing at the head. Similarly, there are more transitions between the
body and gaze averted ROI. This means the gaze pattern in the 0.7
and 0.9 conditions centers more around the robot’s body. However,
in the 0.5 condition, the gaze at the body occurs less frequently. In
short, in the 0.5 GAR condition, significantly fewer fixation shifts
occurred between different ROIs, whereas in conditions 0.7 and 0.9,
significantly more fixation shifts occurred between different ROIs.

The gaze transition a-b happened less frequently in the 0.5
condition and more frequently in the 0.9 condition. Interestingly,
there are no differences in the gaze shifts h-a and a-h. This means
there is no difference between the GAR conditions for looking at the
robot’s head after averting the gaze. However, this is the gaze shift
the robot performed.

In summary, these results confirm that robotic GAR influences
human gaze behavior, but not in a direct way. Otherwise, the
frequency deviations in the gaze shifts between the ROIs head
and gaze averted would be significant as the robot gaze aversion
pattern consists solely of shifts between the ROIs head and gaze
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FIGURE 7
Visualization of significant deviations from the expected gaze transition frequencies in the 5 GAR conditions. Top: ROIs head, body, gaze averted.
Bottom: ROIs head, body, top, and bottom.

averted. Participants reacted with more gaze aversion to a high gaze
aversion pattern of the robot. However, the participants seemed
not to perform mere gaze following. Deviations from the expected
frequencies occurred in the gaze pattern centered around the robot’s
body to shift the gaze to the robot’s head or averting the gaze.

Gaze aversions in different directions have been associated with
different conversational goals. Andrist et al. (2014) reported that
people in conversations more often avert their gaze upward when
they experience a high cognitive load, and they gaze downward
when they need to regulate the level of intimacy. Therefore, we split
the single ROIs of the aggregated ROI gaze averted into top (t)
and bottom (bot). The ROI top consists of all ROIs above body,
except the ROI head. The ROI bottom consists of all ROIs below
the head except body (Figure 7). The χ2 tests of independence were
significant (χ2 (60) = 1122.2,p < 2.2e− 16, Cramer’s V = 0.116 (weak
effect)). The results for single significant cells are shown in Table 4.
We adjusted the α level for top–bottom to α = 0.5/(5*12) = 0.0083.

Concerning the general gaze pattern for all groups, the head-to-
top, top-to-head, and top-to-top gaze shifts were far more numerous
than the gaze shifts regarding the ROI bottom and body (cells
marked in blue). This gaze aversion pattern rather indicates a
cognitive effort than intimacy regulation. Checking the top to
bottom and body-to-bottom columns reveals that this cannot be a
measurement artifact. Assuming that the true gaze shift occurred
between head and bottom, but the eye tracker falsely registered an
intermittent fixation on top or body, we would expect more shifts
from the top-to-bottom or body-to-bottom column. However, the
frequencies in both columns are relatively low, too.

As mentioned above, we are interested in group differences
between the GAR conditions and try to find an explanatory pattern
for the significant cells. The following significant results were
observed: participants in the 0.5 and 0.9 conditions had more
fixation shifts from bottom to bottom. In contrast, in conditions
0.1 and 0.7, this occurred less frequently (cells marked in red). The
top-to-top transitions occurred less frequently in the 0.1 condition
and more frequently in the 0.5 and 0.9 conditions (cells marked in
orange).There were no other significant results for the 0.1 condition.
Participants in condition 0.3mademore gaze shifts from head to top

than from head to bottom. In condition 0.5, participants gazed less
frequently from body to top and from body to bottom. In condition
0.7, more gaze shifts occurred from body to top. There were more
significant results in condition 0.9: there were more occurrences of
shifts from body to bottom, head to bottom, and bottom to body and
fewer occurrences of top to head (cells colored in blue).

Top-to-bottom or bottom-to-top fixation shift frequencies did
not differ between groups. Looking for a pattern reveals significant
results in the bot—bot column, largely congruent with the a-a gaze
shift in the previous ROI split. For conditionGAR 0.9, the gaze shifts
paint a picture of higher frequency gazing downward, indicating
intimacy regulation (Andrist et al., 2014) in contrast to the other
groups. In summary, splitting the gaze averted ROI into top and
bottom reproduces the previous result.

5.5.4 Temporal correlation of robot and human
gaze shifts

Subsequently, we wanted to examine whether the gaze behavior
of the robot causes temporally aligned fixation shifts in the
participants. Therefore, for each participant, we calculated the
point in time of each real fixation shift (i.e., no loop-like head-
to-head) with respect to the 10 s gaze cycle time of the robot.
Thus, each fixation has a starting time of 0–10 s with respect to
the gaze cycle duration. These starting times per participant are
gathered per GAR condition. This results in five distributions,
which we tested for significant differences. Because the variables
were not normally distributed, we conducted one Kruskal–Wallis
test counting all real fixation shifts (χ2 (4) = 5.36,p = 0.25) and one
Kruskal–Wallis test that counted only fixation shifts from and to
the head (χ2 (4) = 4.31,p = 0.36). Thus, there is no evidence for
differences in the temporal occurrence of gaze shifts within the
10 s robot gaze cycle. The distribution for all GAR conditions is
depicted in Figure 8. The histograms suggest a uniform distribution
within the 10 s cycle for all five conditions. This result indicates
that the robot gaze shifts do not trigger human gaze shifts. In the
previous sections, differences in the gaze behavior between the GAR
conditions were found, but the differences cannot be explained by
mere gaze following.
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TABLE 4 Top: observed transition counts between the ROIs body (b), head (h), top (t), and bottom (bot). Bottom: differences in transition count
(observed−expected) for the transitions between the ROIs body (b), head (h), top (t), and bottom (bot). The adjusted α level is 0.00083(*), 0.00017(**), and
0.000017(***), respectively. The transitions h-h, h-b, b-h, and b-b are omitted, as they are already depicted in Table 3. Colored cells highlight comparisonsmade in
Section 5.

GAR b-t b-bot h-t h-bot t-b t-h t-t t-bot bot-b bot-h bot-t bot-bot

0.1 22 45 254 59 19 263 369 24 37 61 30 65

0.3 27 52 353 27 35 336 454 27 42 38 24 80

0.5 17 50 467 70 23 447 824 41 54 83 27 224

0.7 56 75 343 51 38 346 595 39 65 63 36 79

0.9 35 98 318 83 41 294 688 28 93 84 25 200

0.1 −5 −11 −50 8 −8 −32 −144*** −4 −14 3 5 −48***

0.3 0 −3 56* −23* 8 47 −48 −0 −8 −18 −0 −31

0.5 −22** −30** 35 −2 −16 27 95*** 1 −18 1 −8 63***

0.7 25*** 12 −0 −6 7 13 16 8 7 −2 8 −49***

0.9 3 32*** −41 23* 9 −55* 82** −5 33*** 16 −4 66***

FIGURE 8
Distributions of the occurrence of a fixation shift of the participants with respect to the 10 s gaze cycle of the robot. From left to right: GAR 0.1, 0.3, 0.5,
0.7, 0.9.

TABLE 5 Descriptive statistics of the word count and interaction duration, as well as the Likert scale comfort.

Word count Duration Attention Comfort Capability

Condition Mean Median SD Mean Median SD Mean SD Mean SD Mean SD

0.1 180 140 106 113 89 72 3.92 0.85 3.70 0.50 3.59 0.72

0.3 232 211 139 138 120 80 3.94 0.90 3.76 0.81 3.67 0.69

0.5 309 239 197 168 147 82 3.47 1.15 3.74 0.65 2.94 0.93

0.7 272 253 107 157 136 66 3.84 0.82 4.04 0.66 3.44 0.65

0.9 243 232 120 137 133 55 3.70 0.81 3.89 0.87 3.34 0.81

5.6 Interaction behavior evaluation

The two variables, duration and word count (Table 5), were
naturally highly correlated (ρ = 0.922, t = 23.139,p < 0.000). The
ANOVA assumptions for the effect of GAR on these two variables
were notmet.Therefore, we applied aKruskal–Wallis test (Figure 9).
The null hypothesis of RQ 2a that there is no effect of the robot’s
GAR on the number of words spoken by the participants can be
rejected (χ2 (4) = 11.3,p = 0.02,η2 = 0.08). The null hypothesis of
RQ 2b that there is no effect of the robot’s GAR on the interaction
duration can be rejected (χ2 (4) = 11.6,p = 0.02,η2 = 0.08).

For both significant tests, there is moderate effect
size.

We conducted pairwise comparisons for word count and
duration using the Dunn test with Bonferroni–Holm correction.
There are significant differences in the word count and duration
between groups 0.1 and 0.5 (p adj = 0.03, p adj = 0.02), as well as
0.1 and 0.7 (p adj. = 0.03 p adj. = 0.04).

This means participants in the GAR 0.1 condition (the robot
mostly stares at the participant) spoke fewer words and for a shorter
amount of time than those in the 0.5 (robot averted gaze half of
the time) and 0.7 GAR conditions. Thus, there is a moderately sized
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FIGURE 9
Top: word count (left) and duration (right) per GAR condition. Bottom: attention displayed by the robot (left), comfort during the interaction (middle),
and perceived robot capability (right) per GAR condition.

TABLE 6 Pearson correlations between self-reported (attention, comfort,
and capability) and behavioral measures (duration and word count) and
pupil size (avg. pupil size and pupil size SD) for the whole sample.

Attention Comfort Capability

t p r t p r t p r

Duration −2.81 0.005** −0.27 −0.47 0.63 −0.04 −2.00 0.04* −0.20

Word count 2.72 0.007** −0.27 −0.18 0.85 −0.01 −2.20 0.02* −0.22

Avg. pupil size (mm) 2.22 0.02* 0.23 −0.27 0.78 −0.02 −0.47 0.63 −0.05

Pupil size SD (mm) 1.56 0.12 0.16 1.97 0.05* 0.21 −0.33 0.73 −0.03

effect of the GAR on the interaction level. In conversational settings,
listeners tend to gaze at the speaker more often than the speaker
gazes at the listener (Argyle et al., 1994). However, we observe that
in the 0.1 GAR condition, participants talked significantly less. A
possible explanation is that a too low GAR is perhaps not (only)
interpreted as benevolently paying attention to the speaker. Together
with the gaze behavior results, we observe now that participants in
lower GAR conditions (i.e., more robot staring) talked less while
gazing more at the robot.

5.7 Attitudinal data evaluation

Until now, only behavioral data were evaluated, revealing
differences in gaze behavior and interaction duration between the

GAR groups. In addition to this, self-reported attitudinal data were
recorded to learn more about how participants experienced the
conversational situation. The preconditions for ANOVA were not
met. We performed Kruskal–Wallis tests to evaluate the research
questions about the impact of the GAR conditions on the aggregated
scales attention displayed by the robot, comfort elicited by the robot,
and robot capabilities (Supplementary Table S5). The mean and
standard deviations of the aggregated scales per condition are shown
in Table 5 and Figure 9.

There are no significant differences between the GAR conditions
with respect to the scales of attention, comfort, and capability
(Supplementary Table S5). If there is a meaningful effect, it cannot
be detected because the sample size or the actual effect size is too
small. Otherwise, the GAR could not have a significant effect on
attitudinal measures. Therefore, although the GAR has a moderately
sized effect on the behavior level, both for gaze behavior and
interaction duration, the participants did not form significantly
diverging opinions about the robot in the different conditions.

Additional exploratory evaluations revealed correlations
between measures. The Pearson correlation coefficient r was
calculated for the three composite self-reported scales, attention,
comfort, and capability, on the one hand and the behavioral data,
word count and duration, on the other (Table 6). When aggregated
for the whole dataset, no extreme outliers were detected in these
variables. The data suggest a moderate negative correlation between
the participants’ perception of attention shown by the robot and
interaction duration and word count. The longer the interaction
took, the less the participants felt the robot was paying attention to
them. A possible reason is the missing backchannel communication
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(e.g., utterances like “mhm” and “aha”) or gestures (e.g., nodding)
that humans use during prolonged periods of listening.

Correlations for the attitudinal measures and the physiological
measures, average pupil size and pupil size variance, revealed a
significant moderate positive correlation between the pupil size and
the attention score (Table 6). There is also a significant moderate
positive correlation between pupil size variance and the level of
comfort.These findings affirmprevious psychophysiological studies:
Beatty (1982) and Joshi et al. (2016) found that cognitive processes
are associated with constantly higher pupil dilations. One can
speculate that participants who put more effort into retelling a
movie exhibited more cognitive effort, which led to a larger pupil
dilation and a higher self-worth protecting assignment of the robot’s
attention to their story. Similarly, participants who might have felt
a certain comfort in the interaction thus exhibited a higher pupil
dilation variance. This is in accordance with Partala and Surakka
(2003), where pupil dilation variance is positively associated with
affective processing. If this is the case in this experiment, to arrive
at the positive correlation between pupil variance and comfort
attribution, the elicited affect spectrum ranges from neutral to
positive.

6 Discussion

In this section, we will discuss and summarize 1) the findings
regarding the three research questions, 2) the limitations of the study,
and 3) the design recommendations resulting from our work.

6.1 Answering the research questions

The previous section presented the statistical test results of the
research questions. For the three sub-questions (RQ 1a–c) on gaze
behavior, several different analytical methods were used because of
the wealth of data from the eye-tracking procedure. There are fewer
metrics for the two sub-questions (RQ 2a and b) on interaction
behavior and the three sub-questions (RQ 3a–c). They will be used
to corroborate the gaze tracking results.

6.1.1 RQ 1: Gaze behavior
For all three sub-questions of RQ 1, the null hypothesis can be

rejected: GAR does affect the fixation durations (RQ 1a). The effect
ofGARon the fixation durations changes during the interaction (RQ
1b). The GAR does influence the fixation sequence behavior of the
participants (RQ 1c).

The analysis of the fixation shifts was structured to advance from
overall differences of fixation durations on large ROIs, head, body,
and gaze averted, to fine-grained dynamic gaze shift patterns.

The main point of discussion is whether the robotic gaze
behavior influences the gaze behavior of the participants and the
attitudes of the participants toward the robot.We use gaze as a proxy
measure of attitudes toward the robot by incorporating correlations
between gaze behavior and affect presented in the related work.
These results are compared with the self-reported attitudes and the
interaction duration, another proxy measure of engagement.

There are two competing interpretations regarding the linear
regression results across all groups for the overall head GAR

behavior between the groups: 1) participants mirror the GAR of the
robot (i.e., they create rapport) (St-Yves, 2006) or 2) participants
find the interaction with higher GAR more uncomfortable and
therefore avert their gaze more (Argyle and Dean, 1965). We
discussed another proxymeasure from the related work, namely, the
interaction length (Sidner et al., 2005): the longer a participant keeps
up the conversation, the more engaged they are with the robot, and
this again is a sign of comfort during the interaction. Thus, because
participants in the 0.1 GAR condition (high robot mutual gaze)
talked for a shorter amount of time, this indicates that the rapport
explanation is more likely.

However, there is a noteworthy deviation from the linear
regression: in the linear regression of the normalized fixation
durations for the whole interaction, the 0.1 GAR setting does not
adhere to the otherwise linear relationship between the participant
and the robot GAR. For a stronger relation, the median of the 0.1
setting was supposed to be higher than that of the 0.3 setting, but
this was not the case. This might indicate that the overall trend
of participants mirroring the robot’s GAR is invalid at the 0.1
end of the GAR spectrum, where the robot stares at the human.
Otherwise, when the robot has a higher GAR and thus averts
the gaze more often, participants mirror this behavior instead of
increasing the gaze toward the robot. If we suppose the robot was
perceived as a social agent and creating rapport is a typical human
adaptation in a conversation setting, another effect must have been
stronger at this end of the robot GAR scale and prevented GAR
mirroring. This might indicate that the 0.1 setting of the robot was
perceived as uncomfortable, and participants felt being stared at.
They sought to regulate the intimacy level by avoiding their gaze
more often. This indicates that high mutual gaze is not always a
justified proxy measure of comfort in the interaction, as suggested
by Castellano et al. (2010), Papadopoulos et al. (2016), Baxter et al.
(2014), and Jokinen (2018).

Subsequently, we studied how the fixation distribution changes
over the duration of the interaction. Similar to Perugia et al. (2021)
and Jokinen (2018), we also observed a time effect. In their study,
the gaze toward the robot head increased over time, whereas Jokinen
(2018) observed a decrease in time spent gazing at the robot head.
The second result is replicated in our work. Perugia et al. (2021)
argued that later interactions represent a more stable interaction
pattern. If this statement was also applicable to single interactions,
we can interpret the decreasing gaze at the robot as an effect of
habituation or the wearing-off of the novelty effect. Regarding the
interaction effects, the GAR condition has the strongest effect in
the last interaction third, where we can observe a linear regression.
However, for the linear regression of the whole interaction, the
median of the 0.1 GAR is not as high as expected. Time as a
single factor also showed an effect across all conditions, namely, the
decrease in time spent gazing at the head of the robot. The strongest
interaction effect of time and GAR occurs in the 0.5 GAR condition.
The gaze at the robot’s head is higher in the first third than in the
other two thirds.

Then, we were interested in the fixation shifts of the participants.
The statistical tests revealed which fixation shifts occurred more
or less frequently than expected. The fixation shifts that started
and ended in the same ROI largely reproduced the findings of the
normalized fixation duration analysis: the true fixation shifts (i.e.,
when the start and end ROI are not equal) show a pattern of higher
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gaze aversion for the 0.7 and 0.9 GAR setting, but noticeably a
pattern of less gaze aversion in the 0.5 condition. This could indicate
a higher comfort for the participants in the 0.5 condition. However,
this identified pattern also does not follow the results of the linear
regression above.

We tried to distinguish between top and bottom gaze aversion.
There, the gaze aversion pattern for the 0.7 and 0.9 GAR conditions
indicated an intimacy regulation gaze aversion pattern that typically
occurs in uncomfortable situations (Andrist et al., 2014).

Lastly, in this section, we explored the temporal relationship
between robot and human gaze shifts, that is, if the human
participants engage in gaze behavior after a certain amount of time
after a robot gaze shift.This test produced non-significant results and
might be another indicator toward the conclusion that humans react
to the robotic gaze behavior, but not by the mere gaze following the
robot.

6.1.2 RQ 2: Interaction behavior
We can reject the null hypothesis for RQ 2 and thus state that the

GAR does affect the number of spoken words (a) and the interaction
duration (b). In the related work, interaction duration was used as a
proxy measure of engagement (Sidner et al., 2005). Using the same
argument, we can conclude that in the 0.1 GAR setting, engagement
was the lowest. This, together with the conclusion of the 0.1 linear
regression outlier in the above subsection, paints a picture of an
uncomfortable situation in the 0.1 setting.

However, this contrasts the exploratory identified significant
negative correlation between attention and interaction duration.
This might indicate that interaction duration should not be used
alone as a proxy measure of interest.

6.1.3 RQ 3: Attitudes
The results for self-reported attitudinal scales perceived

attention shown by the robot (RQ 3a), the level of comfort of the
participants (RQ 3b), and the perceived robot capability (RQ 3c) did
not significantly differ between GAR conditions. We argue against
the existence of a medium or large effect of GAR on the conscious
perception of the robot interaction in this interaction setting. In the
following, we want to contextualize our line of thought.

The median value for attention was highest in the 0.1 GAR
setting (though not significantly different from other settings).
Together with the shortest interaction duration, this could indicate
that participants felt “watched” in a negative sense. The lowest
median attention and capability value occurred in the 0.5 GAR
group, where there was significantly less gaze-shifting behavior on
the body of the robot, though these values were not significantly
different.

In the qualitative interview, participants repeatedly mentioned
that they experienced the robot GAR as a “turning the ear toward
the speaker to better listen.” Most participants mentioned both
positive and negative aspects of the interaction, for example, “It was
weird in the beginning, then it was nice”; “jerky moves, but cool and
nice”; “less weird than expected”; and “funny and strange.”The robot
implementation resulted in a range of descriptions, even for the same
GAR setting: “The robot seems alive, especially the eye blinking and
head movements” on the one hand, and “The robot did not react
at all; there was no interaction” on the other hand. Both statements
occurred in the 0.1 GAR setting. Many participants mentioned

a missing backchannel communication of the robot while
listening.

The occurrences of “I don’t know” answers in the attitudinal
measureswere counted as omissions and indicatedwhat participants
can judgewith certainty. Participants always knewwhether the robot
was creepy, they were feeling nervous, or the robot appeared warm,
pleasant, or artificial, all with zero omissions. However, they were
less certain about whether the robot was ignorant, unconscious,
incompetent, or intelligent, all with four-to-six omissions. This
might indicate that the type of data collection is inadequate
for certain topics. The participants were sure when introspective
questions were posed and more unsure when statements about the
innerworking of the robotwere asked about.More specific questions
tailored to the interaction might be adequate for such external
evaluations.

6.2 Limitations

The following limitations and considerations should inform
future work. The remarks concern the interaction setting and the
statistical evaluation.

Participants were engaged when talking to the robot. Therefore,
we consider “talking about a movie” as a suitable main task in our
setting. However, some participants mentioned in the interview that
the task was stressful, even though they were explicitly told that the
interaction was in no way a test.

However, was the simulation of an autonomous robot listening
to them convincing for the participants? In accordance with the
WoZ reporting guidelines (Riek, 2012), we reported that participants
mentioned that they found the robot behavior very sophisticated,
or rather basic, as well as very entertaining or boring. Some of
them asked about the natural language processing capabilities of
the robot before filling out the questionnaire. In this case, the
experimenter asked them to wait with the question until after filling
out the questionnaire. The degree of awareness about which parts of
intelligent behavior are difficult to achieve on a technical basis might
have influenced their perception.

However, there was no floor or ceiling effect in attitudinal
measures, which indicates that the different parts of the behavior
implementation (greeting and farewell procedure, idle behavior, and
gaze behavior) were adequate.

We did not attempt to categorize the movie genres of the
described movies. Arguably, the chosen genre might have had an
emotional priming effect. Remembering the plot of a comedy in
contrast to a drama might change the participants’ perception of the
robot.

Next, we talked about the limitations of the statistical evaluation.
We wanted to establish a functional relationship between GAR in
the range of 0.1 and 0.9. However, it is difficult to produce sample
points for the continuous range of 0.1–0.9. Therefore, we settled on
0.2 increments between conditions.

As we have observed, the human gaze changes during the
interaction. An avenue of gathering more data across multiple GAR
parameters would be to change the GAR of the robot continually
during the interaction and interpret the associated gaze responses of
the participants. This method might produce detailed insights into
continuous ranges of GAR.
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As we did explore our hypotheses without prior assumptions,
comparing all groups to each other could produce arbitrary
relationships, as opposed to linear regression. However, post hoc
group comparisons for even five groups lead to a very strict alpha-
level correction. Thus, further increasing the granularity of the
independent variable seems infeasible for the empirical topic of our
work.

Another difficulty of the granularity of data was the
interpretation of gaze sequences. With five conditions and three
ROIs, the resulting table of statistical test results is only useful for
researchers if a pattern can be extracted. However, this allowed
different groupings of ROIs to answer different questions (i.e., the
split of gaze averted or top/bottom). Additionally, the granularity
of gaze sequences is adequate as a basis for learning robot gaze
behavior from human data.

Other factors concern the ecological validity of the interaction as
the study occurs in a controlled laboratory setting and the relatively
homogenous participant sample, namely, persons spending time in
the TU Wien library. Populations with different age ranges and
cultural backgroundsmight give different ratings and show different
gaze behavior than the participants of this study.

6.3 Design recommendations

In this study, we wanted to determine whether human-
inspired gaze settings are the only way to provide agreeable HRI
robot behavior parameters. We found that on a conscious level,
participants did not distinguish between the different GAR settings,
but there were significant behavioral differences.

Designers who aim for long robot interactions with users should
aim for a higher GAR setting (i.e., avert the gaze more often).

Designers should be aware that users will start to imitate the gaze
behavior of the robot with respect to the overall amount of gazing at
different ROIs, which might impact interaction goals.

For robot platforms adhering to the honest anthropomorphism
principle (Kaminski et al., 2016), it should be unproblematic to
incorporate additional gaze behavior during a conversation with
a specific user. For example, in an elderly care home, the robot
could have a conversation with one resident while performing fall
detection monitoring on its surrounding.

We observed that although the robot gaze behavior was not
inspired by human parameters, in some aspects, participants
reacted as if the robot was a social agent. Thus, sticking to
human-inspired values might be a good starting point for a
social behavior implementation. However, when technological
aspects demand a deviation from these settings, this does not
necessarily lead to a worse perception of the robot by the
users.

The research results also warrant considerations in other
human-computer interaction settings, such as eye gaze
correction in video conferencing software.6 Computationally
changing the gaze target of human conversation partners

6 NVIDIA Eye Contact: https://www.nvidia.com/en-us/geforce/news/jan-2023-
nvidia-broadcast-update/.

might affect the naturally occurring turn-taking behavior
of the participants or lead to different interaction
durations.

7 Conclusion and future work

We conducted an experiment in a controlled laboratory setting
where a robot asked participants to talk about their favorite films.
While listening to the participants, the robot used different GARs
between condition groups, from 0.1 (gazing away only 10% of the
time) to 0.9 (averting the gaze to the side 90% of the time). We
measured how this factor influenced the UX through eye-tracking,
behavioral measures of interaction duration and word count, and
self-reported attitudinal data. By varying the independent GAR
parameter over a broad range of values that were intentionally
not human-inspired, we observed that human participants adjusted
their GAR to the robotic GAR, but not by mere gaze following.
Participants showed gaze aversion behavior usually associated with
uncomfortable interactions when the robot also averted the gaze
most of the time. However, the freely chosen interaction duration
was the shortest when the robot stared (GAR 0.1) at the participants.
As the interaction duration has previously been used as a proxy
for comfort in social interaction, this is not an intuitive finding
and suggests that adapting the GAR in interaction is a stronger
mechanism than gaze aversion to regulate the level of intimacy in an
uncomfortable interaction. Regarding the self-reported attitudinal
measures, participants did not rate a single GAR setting significantly
better or worse than others with respect to the attention or capability
of the robot or the comfort in the interaction. However, there
are behavioral indicators that the GAR settings on both ends
of the parameter range were more uncomfortable than medium
parameters.These findings suggest that robot behavior designers can
use the robot GAR to influence the interaction duration if necessary,
with the caveat that intense robot staring might be uncomfortable.
In some situations, robots might have tasks that are concurrent
with social interaction (e.g., fall detection and reception work). This
might require the robot to avert its gaze to gather information from
its surroundings. Our work suggests that in such cases, the robot
designers can quite freely adjust the GAR to suit the parallel task,
as it does not affect the conscious UX. To summarize, humans seem
to apply social gaze behavior toward robots, even if the robot gaze
behavior is not implemented by relying on predetermined human
gaze parameters.
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