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Introduction: Wearable assistive devices for the visually impaired whose
technology is based on video camera devices represent a challenge in rapid
evolution, where one of the main problems is to find computer vision algorithms
that can be implemented in low-cost embedded devices.

Objectives and Methods: This work presents a Tiny You Only Look Once
architecture for pedestrian detection, which can be implemented in low-cost
wearable devices as an alternative for the development of assistive technologies
for the visually impaired.

Results: The recall results of the proposed refinedmodel represent an improvement
of 71%working with four anchor boxes and 66%with six anchor boxes compared to
the original model. The accuracy achieved on the same data set shows an increase
of 14% and 25%, respectively. The F1 calculation shows a refinement of 57% and
55%. The average accuracy of the models achieved an improvement of 87% and
99%. The number of correctly detected objects was 3098 and 2892 for four and six
anchor boxes, respectively, whose performance is better by 77% and 65% compared
to the original, which correctly detected 1743 objects.

Discussion: Finally, the model was optimized for the Jetson Nano embedded
system, a case study for low-power embedded devices, and in a desktop computer.
In both cases, the graphics processing unit (GPU) and central processing unit
were tested, and a documented comparison of solutions aimed at serving visually
impaired people was performed.

Conclusion: We performed the desktop tests with a RTX 2070S graphics card, and
the image processing took about 2.8 ms. The Jetson Nano board could process
an image in about 110 ms, offering the opportunity to generate alert notification
procedures in support of visually impaired mobility.

KEYWORDS

Tiny YOLOv3, deep learning, visual impaired, image processing, graphic processing unit,
pedestrian detection

1 Introduction

According to the World Health Organization (WHO), More than two hundred million
people worldwide have vision impairment problems WHO Noncommunicable Diseases
Team (2019), like cataract, trachoma, refractive error, and other affections. Although these
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health problems are irreversible in some cases, in some others,
visual impairment can be improved by treatment or rehabilitation.
Projections show that global demand for eye care is set to surge in the
coming years due to population growth, ageing, and lifestyle changes.
For people in which the visual impairment is irreversible or requires
rehabilitation, there are some assistive devices and health technologies
that seek to improve their degree of independence, and well-being
WHO Noncommunicable Diseases Team (2015).

In the arena of requirements fulfillment for assistive solutions for
the visually impaired/blind, the work of Ntakolia et al. (2022) provides
other example of assisted navigation for visually impaired individuals,
focusing on outdoor cultural environments. Recent work made by
Valipoor and de Antonio (2022) provide a rich survey highligthing the
challenges in the field and systematic mapping of different approaches
of computer vision-based assistive solutions. We recommend to take a
look at this reference.

Tapu et al. (2018) state that the wearable assistive devices for
the visually impaired can be divided into two main groups. The
first one involves sensorial networks with electronic travel aids
(ETAs), including technology-based infrared sensors, ultrasound
sensors, global positioning system, radio frequency identification,
and low-energy Bluetooth. The second group is composed of video
camera-based ETAs,which aremonocular video-based systems, stereo
camera-based systems, and RGB-D camera-based systems.

Video camera-based ETAs result from the rapid evolution of low-
cost wearable cameras, computer vision/machine learning algorithms,
and embedded devices. In the work proposed by Cheng et al. (2018),
the authors introduce a pedestrian crossing lights detection algorithm
implemented in a portable computer with a colour camera as an
aid for the visually impaired. Lin et al. (2018) propose a visual
localizer for assisted navigation of the visually impaired; the system
consists of a Realsense Camera, a GNSS processor, and a pair of
earphones. Afif et al. (2020) developed an indoor detector for the
visually impaired. The system is based on a deep convolutional neural
network. In all these cases, the algorithms in charge of assisting the
visually impaired are based on object detection (OD).

During the last decade, systems that perform OD have improved
because it is one of the main computer vision tasks. OD it serves as
the basis of many of its applications, such as semantic segmentation
Xie et al. (2017), instance segmentation Cai and Vasconcelos (2019),
pose estimation Ge et al. (2019), and object tracking Mahalingam and
Subramoniam (2018). OD used specifically for pedestrian detection
is the base of different tasks like person identification Li et al. (2018),
person re-identificationWu et al. (2019), action recognition Mabrouk
and Zagrouba (2018), and behavior analysis Yi et al. (2016), among
others. Consequently, many applications that impact our daily lives
can use pedestrian detection systems from intelligent surveillance
systems to autonomous vehicles Arnold et al. (2019), and lately in
medical devices Sathyamoorthy et al. (2020).

Pedestrian detection systems have the desirable characteristics of
robustness while efficient in processing a large amount of data. Deep
learning computational models have been used to achieve these goals.
A deep learning model extracts a hierarchical representation from
large-scale dataWang and Sng (2015). ConvolutionalNeuralNetworks
(CNNs) are among the most popular deep learning architectures
due to their ability to exploit spatial or temporal correlation in data
Liu et al. (2019). Therefore, CNNs are ideal for image processing
due to their high performance response in image segmentation,
detection, retrieval-related tasks, and classification. A CNN adds

convolutional layers to fully connected networks, typically consisting
of convolutional operations, a batch normalization layer, a pooling
layer and an activation function.The parameters and hyperparameters
setup of a CNN model is essential to fit the application scenario.

There are two approaches in the object detection task using CNNs:
one-stage methods and two-stage methods. In the latter, the models
propose a set of regions of interest through a selective search. Then,
a CNN classifier processes only the candidate regions. These include
the family of Region-based Convolutional Neural Networks (R-CNN)
Girshick et al. (2014). R-CNN was improved by unifying the input
image with the Region of Interest (RoI), used as a Deep CNN input.
The improved visual geometry group (VGG-16) network outputs the
softmax probabilities, and the bounding box coordinates per RoI.
Girshick (2015). Then, a Faster R-CNN was proposed by Liu et al.
(2016). Even with these improvements, the inference time is around
0.32 s running on a desktop computer with a dedicated GPU.

In counterpart, one-stage methods are characterized by skipping
the part of the proposed region, and instead, they directly provide the
detected bounding box and the class to which it belongs. In general,
these methods are more straightforward and faster but less robust
than two-stage methods. The most representatives architectures of
this type of models are the YOLO which is considered to be the first
attempt to build a real-time object detection system Redmon et al.
(2016), the Single Shot Detector (SSD) model Liu et al. (2016) which
uses a pre-trained VGG16 as a feature extractor and uses the idea of
pyramidal features for the efficient detection of objects at different
scales. YOLOv2 is a Fully Convolutional Neural Network (FCNN),
an architecture that can process images from different sizes and
includes a batch normalization layer Ioffe and Szegedy (2015) on all
the convolutional layers.

One of the significant disadvantages of themodels presented is the
need for a GPU to process images in ms, It was therefore necessary to
apply new models or architectures or modify existing ones to mitigate
this problem. That is why MobileNet was proposed by Howard et al.
(2017). It is designed for mobile and embedded applications; Google
released an improvement in 2018 called Mobilenet V2 Sandler et al.
(2018). Tiny YOLO is a variant of the previously mentioned YOLO,
and the release of an improvement over YOLOv3 was derived in
Tiny YOLOv3, which is a simplified version architecture. YOLO-LITE
Huang et al. (2018) is a real-time object detection model designed to
run on portable devices with no GPU/TPU processors, based on the
YOLOv2 model.

In summary, state-of-the-art CNN-based architectures such as R-
CNN, VGG, Mobilenet, and YOLO series combined with SSD benefit
OD and segmentation systems. Non-etheless, not every proposed
model achieves the specific requirements for wearable devices that are
robust and low-energy consumption. Therefore, this work considers
the assessment of the well-known Tiny YOLOv3 architecture fitted
for pedestrian detection. This assessment’s contribution has essential
relevance for incorporating that model into embedded devices such as
wearables for the visually impaired.

The rest of this document is organized as follows: Section 2,
presents the Tiny YOLOv3 architecture that was employed in
this work. Section 3 presents the mathematical background of the
technique that enables the fitting of the Tiny YOLO architecture.Then,
Section 4 outlines different embedded hardware platforms available to
implement deep learning for pedestrian detection. Section 5, shows
the experimental results achieved in this work. At last, Section 6
discusses the obtained results, concluding with Section 7.
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FIGURE 1
Tiny YOLOv3 architecture.

2 The Tiny YOLOV3 architecture

TheTiny YOLOv3 architecture, proposed by Redmon and Farhadi
(2018) is designed for low-power devices based on novel ideas from
object detection models as YOLOv2, YOLOv3, and FPN. The model
was trained using MS COCO Dataset and VOC Dataset. It has a little
over eight million trainable parameters and uses the same idea of
YOLOv3 anchor boxes. The model uses six anchor boxes calculated
with a k-means algorithm on the bounding boxes of the dataset. The
complete architecture is shown in Figure 1.

The network comprises two essential parts, which are named
feature extraction and detection. Feature extraction is performed by
a series of convolutional layers that progressively increase the number

of filters to extract more complex features. Each layer in this task uses
Batch Normalization before the activation function Leaky ReLU, and
usesmax pooling for dimensionality reduction purposes.The network
uses pyramidal feature extraction (block 13) concatenating the output
of a convolution layer (block 8) with another (block 5) closer to the
input layer as seen in Figure 1.

3 Adaptation of Tiny YOLOv3 using
transfer learning

The transfer learning technique allows a trained model to be
adapted for its use in a new scenario. In this case, the Tiny YOLOv3
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is set up to detect 80 different class objects and trained initially with
the COCO dataset. It is necessary to adjust some parameters to fit the
Tiny YOLOv3 to detect only pedestrians more accurately. The fine-
tuning process in the transfer learning technique involves retraining
the model with a specific dataset and adjusting the loss function and
the anchor boxes for pedestrian detection.

The dataset for the fine-tuning task collects people-related
images from the COCO dataset and the Pascal VOC dataset. In
this configuration, the collected dataset contains annotations with
normalized pedestrian bounding boxes. A new set of anchor boxes
for the only pedestrian class has to be determined; the following
subsection presents its calculation. Finally, for the fitting process, a
data augmentation methodology is employed to increase the accuracy
of the model on different datasets (see Section 3.3 for details).

3.1 The training loss function

The loss function of the fitting process is an adaptation of the
original model, omitting the minimization error for different objects.
The loss function, presented in Eq. 1, optimizes the dimensions of the
bounding box over each cell weighted by λcoord when the function 1objij
aligns a cell i with an anchor box j, plus the balanced prediction of
the object in the cell i. The balanced prediction is weighted by λobj and
λnoobj decreasing the effect of the unbalanced number of objects and
no objects (background) in the dataset. The oi takes the value of one
when an object is in the cell i.

L(tx, ty, tw, th,o, ̂tx, ̂ty, ̂tw, ̂th, ô)

= λcoord
S2

∑
i=0

B

∑
j=0

1objij [(txij − ̂txij)
2 + (tyij − ̂tyij)

2]

+ λcoord
S2

∑
i=0

B

∑
j=0

1objij [(twij − ̂twij)
2 + (thij − ̂thij)

2]

+
S2

∑
i=0

B

∑
j=0
[λobjoi ∗ log(ôi) + λnoobj (1− oi) ∗ log(1− ôi)] (1)

3.2 The anchor boxes for pedestrian
detection

The fine-tuning process requires a new set of anchor boxes fitted
to pedestrian detection. To this aim, the filtered training dataset
with people-related clips gave the bounding boxes annotations with
pedestrians. Figure 2 shown all the boxes in the dataset that localize
pedestrians. Each point in the figure represents a bounding box, and
the coordinates represent the normalized width and the height of each
box.

Following the Tiny YOLO v3 methodology for fitting, K-means
clustering helped find the new normalized centroids of the anchor
boxes. The purpose of this process is to maximize the intersection
over union (IoU) measurement between the bounding boxes in the
dataset and the anchor boxes according to Eq. 2. The number of
clusters (k) and other initial parameters were empirically selected by
experimenting five thousand times with different initial conditions.

k−meansd = 1− IoU (bounding box,anchor box) (2)

FIGURE 2
Bounding boxes in the training set.

FIGURE 3
IoU for different number of clusters.

Figure 3 shows the different values of IoU with the selected
bounding boxes from the COCO and the VOC datasets and the
combination of both COCO + VOC bounding boxes. Although the
IoU increases significantly with k > 4, a good balance between the
value of k and the number of parameters in the final layers of the
model is to use k = 6. Figure 4A shows the clustered dataset with
k = 4 centroids while Figure 4B shows the four anchor boxes found.
Figure 5A shows the dataset clustered with k = 6 centroids whilst
Figure 5B shows the six anchor boxes found.
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FIGURE 4
(A) Anchor boxes obtained with k = 4. (B) Clustered dataset with these anchor boxes.

FIGURE 5
(A) Anchor boxes obtained with k = 6. (B) Clustered dataset with these anchor boxes.

3.3 Dataset augmentation

One of the most common techniques to avoid overfitting in deep
neural networks is data augmentation. Data augmentation consists
of applying different transformations to the images of the original
dataset creating a new training dataset. The image transformations
available are geometric (rotations, axis translations, horizontal or
vertical flips, among others) and pixel-level (addition of noise, color
transformations and others). For object detection, changes must be
applied to the bounding boxes when necessary; for example, the
rotation of the bounding box is similar to the rotation of the image.

The strategy for data augmentation used in this work is proposed
by Zoph et al. (2020); they used reinforcement learning to find which
transformations are the ones that improve themost in the performance
of object detection. Figure 6 is a diagram that explains this strategy
and Table 1 provides the type of operations applied to the images,
where.

1) X Translation: Translates the images along the horizontal
axis. The number of pixels translated was chosen
uniformly at random in this application, from −60 to 60
pixels.

2) Equalization: Perform an equalization on the histogram of the
image.

3) Bbox Y translation: Translate only the bounding box section along
the vertical axis, from −75 to 75 pixels.

4) Cutout: Fill a square section of the image with L = 48 pixels with
(128,128,128) pixels of grey level, and then place it randomly in

the image.
5) Y Shear: Apply shear mapping along the vertical axis; the range

could be from −30 to 30 pixels
6) Rotation: Rotates the image; the number of degrees of rotation

ranges from −30 to 30.
7) Saturation: Multiply the saturation in the HSV colour space by a

factor between .54–1.54.
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FIGURE 6
Data augmentation strategy from Zoph et al. (2020).

Figure 7 displays different images of the training set with the
annotations provided for the dataset; while Figure 8 shows the
examples of the applied transformations.

4 Hardware selection: Devices for
embedded AI applications

Deep learning models usually require enormous computational
resources for training and implementation. Most of the model
inference process has to be run on specialized hardware or by using
clusters allocated on cloud services with powerful GPUs or TPUs.The
best results achieve inference but at low frame rates (a few frames per
second). However, many edge, IoT and mobile applications require
processing large amounts of data without sacrificing the accuracy
of model inference. Therefore, high performance inference and low
power consumption are critical.

The availability of novel low-power and specialized equipment,
combined with lighter but sufficiently accurate models, makes it
possible to implement them in small devices. Many technical
specifications are taken into account when selecting a suitable board
for development. The most important technical specifications are
the specific type of hardware to process and accelerate AI (GPUs,
TPUs, or both): the memory available on the board (RAM and
storage), the number of operations per cycle for integer (measured
in GOPS, the number of Giga Operations per Second using 8-
bit integers) and floating-point representation data, measured with
an order of magnitud 109 Floating-point Operations per Second
(abbreviated as Giga-FLOPS or GFLOPS), the available embedded
cameras and other sensors depending on the application, compatibility
with frameworks, and power consumption levels. Table 2 shows a
revision of current boards specialized for AI embedded systems. The
Dev Boards presented in Table 2 are all compatible with Tensorflow
or Tensorflow Lite and specialized for DNN inference in real-
time, according to the information provided by the manufacturers.
On the one hand, the price of different boards varies from 100
to 699 USD in the time of the searching. However, the trade-
off between price and number of possible operations per cycle
is best for NVIDIA Jetson Nano 4.8 GFLOPS/USD, followed by
the NVIDIA Jetson TX2 with 3.3 GFLOPS/USD. For the Bitmain
Sophon Edge and the Google Coral Dev Board, the ratio is 15.5
GOPS/USD and 26.8 GOPS/USD, respectively. On the other hand, the
power consumption is lower for the NVIDIA Jetson Nano (5–10 W),
followed by NVIDIA Jetson TX2 (7.5 W), Google Coral (10–15 W),
Bitmain Sophon (24 W), and then NVIDIA Jetson AGX Xavier
(30 W limit).

To maintain a reduced cost ratio of the platform, Jetson Nano
has 4 GB of main memory which is not enough to run AI-intensive
applications. Many times, when working with Jetson Nano, the screen
freezes for amoment. Despite thismemory size condition, it is possible
to solve this problem by using swapfile, a feature of the Linux kernel
used in the Jetson Nano. Swap space is the available storage area
on a hard disk. It is a part of the Jetson Nano’s memory. The swap
contains memory pages that are temporarily inactive. Swap space is
usedwhen the operating systemdecides that it needs physicalmemory
for active processes and the amount of available (unused) physical
memory is insufficient. When this happens, the inactive pages of
physical memory aremoved to the swap space, freeing up that physical
memory for other uses, improving the response time of the Jetson
Nano.

According to the information compiled, the NVIDIA Jetson AGX
Xavier has the best performance, almost 20 times better than the
Jetson TX2; however, the price ratio of Jetson is better for the
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TABLE 1 Image transformations used in the data augmentation process.

S Operation 1 Th 1 Range Operation 2 Th 2 Range

0 X Translation 0.6 (−60,60) Equalization 0.8 —

1 Bbox Y Translation 0.2 (−75,75) Cutout 0.8 48

2 Y Shear 1 (−25,25) BBox Y Translation 0.6 (−75,75)

4 Rotation 0.6 (−30,30) Saturation 1 (0.54,1.54)

5 No Operation — — No Operation — 0

FIGURE 7
Different images from the COCO dataset and their annotations without any data augmentation technique.

Nano model. The NVIDIA Jetson Nano design is aimed at low-
power implementations, is the cheapest of the five boards, supports
many frameworks, and is intended for computer vision applications.
Therefore, in this work the experimental section included theNVIDIA
Jetson Nano as the hardware architecture to integrate the inference
model.

5 Experimental results

The Transfer Learning process to fit a proposed model to a new
scenario involves changing some initial and final layers, as well as
adjusting parameters and hyperparameters in a training task. The

training task employs Tensorflow Abadi et al. (2016), an end-to-end
open-source machine learning platform, is employed in the training
task. TensorRTNVIDIA (2020) improves high-performance inference
on NVIDIA GPUs directly with models trained with Tensorflow.
To increase performance, TensorRT converts the model to a half-
precision 16-bit floating-point format; this reduces the size of the
model and thus the processing time.

5.1 Pretrained model as feature extractor

The first experiments use the pre-trained model as a feature
extractor, freezing all the model layers except the final one.We trained
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FIGURE 8
Different images from the COCO dataset and their annotations with data augmentation techniques.

TABLE 2 Technical specifications comparison of four popular embedded systems for artificial Intelligence applications. Information obtained from the
manufacturers official website.

Dev

board

GPU-cores and

TPU-cores

CPU RAM

(GB)

Storage

(GB)

AI performance Camera

support

NVIDIA Jetson
AGXXavier

512/64 Eight-core ARM
v8.2

32 32 GB eMMC 5.1 32 TOPS Yes up to 6 CSI

NVIDIA Jetson TX2 256 Quad-core ARM
A57

8 32 GB eMMC 5.1 1.33 TFLOPs Yes up to 6 CSI

NVIDIA Jetson Nano 128 Quad-core ARM
A57

4 16 GB eMMC 5.1
Flash

472 GFLOPs Yes up to 4 CSI

Bitmain Sophon Edge Edge TPU Quad-core A53 1 8 2 TOPS (int8) No, supports USB
Camera

Google Coral Dev Board GC7000 Lite
Google Edge TPU

coprocessor

Quad-core A53 1 8 eMMC 4 TOPS (int8) No, supports HDMI
Camera

the model using four anchor boxes (Experiment 1) and six anchor
boxes (Experiment 2) and without any data augmentation technique.
Table 3 shows the results that were obtained in experiments 1 and 2.
The metrics shown are the Precision (P), Recall (R), F1 Score, Objects
Detected Correctly (ODC) and the Average Precision (AP) calculated
for the COCO Validation set filtered with the “Person” class.

5.2 Fine tuning process

The following experiments used the model obtained in the
previous step andused theweights as initial parameters for the training
process. We experimented using four and six anchor boxes. Table 4
shown the results obtained with the percentage improvement.
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TABLE 3 Results obtained with step 3 experiments.

No. Number anchor boxes P R F1 score ODC AP

1 4 0.7060 0.1854 0.2938 2041 0.1486

2 6 0.7282 0.1687 0.2740 1857 0.1386

Original 6 0.5330 0.1584 0.2443 3273 0.1080

Results obtained with the experiments of step 3 (the best results obtained are shown in bold).

TABLE 4 Improvement of the best models with respect to the original model.

No. Number anchor boxes P R F1 score ODC AP

3 4 0.612 0.2815 0.3856 3098 0.2026

+14% +71% +57% +77% +87%

8 6 0.6744 0.2628 0.3782 2892 0.2149

+25% +68% +55% +65% +99%

Original 6 0.533 0.1584 0.2443 1744 0.108

Improvement of the best models with respect to the original model (the best results obtained are shown in bold).

FIGURE 9
Average precision curve of our best results vs. original implementation.

TABLE 5 Performance results in CPU.

i7 9700k ARM Cortex M53

Inference time (ms) Images/sec Inference time (ms) Images/sec

Refined 21 47 470 2.1

Original 750 1.3 3000 0.33

TABLE 6 Performance results in GPU.

Tegra X1 RTX 2070S

Inference time (ms) Images/sec Inference time (ms) Images/sec

Refined 110 9 2.8 360

Original 1200 0.8 4 250
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FIGURE 10
(A) Original image with ground truth annotations. (B) Detected bounding boxes by the original model. (C) Detected bounding boxes by the four anchor box
refined model. (D) Detected bounding boxes by the six anchor box refined model.

Using the results obtained previously and employing four and six
anchor boxes, we plot the precision vs. recall curve (Figure 9).

5.3 Detection results

In this section, we show different images that were tagged
manually an placed on Figures 10–13. Each figure shows the original
annotated image, the image with the original predictions of the
network, the image with the predictions of the best result of the four
anchor boxes, and the image with the predictions of the best result of
the six anchor boxes.

5.4 Inference process

For the training and testing process, we used a desktop computer
with the following hardware specifications.

1) CPU: Intel i7-9700k 8 cores at 3.6 GHz
2) GPU: NVIDIA RTX 2070 SUPER
3) RAM (GB): 32 GB at 2666 MHz.
4) OS: Ubuntu Linux 18.04

The following results are obtained using 416 × 616 × 3 dimension
images and the reported time is in ms. Using the frozen graph,
we test our refined model and the original implementation on
different systems. Table 5 shows the results obtained using the
CPU from the desktop computer and the CPU from the Jetson
Nano.

We can observe an improvement in the inference time compared
with the original implementation, both on the desktop CPU and on an
embedded CPU.

Using the TensorRT library, we optimized the model for a
Desktop GPU and for the Jetson nano GPU. Table 6 shows the results
obtained.

5.5 Power consumption measurement

We used Jetson Nano as a case study of a low power consumption
embedded system. Measuring consumption is important because
the application will be used in mobile computing for visually
impaired users, where managing the energy consumption values
used will allow adjustments to be made to the device’s operating
time.

To perform the power consumption evaluation for object
detection in a video, the JetsonNanoperforms the entire preprocessing
task: it reads the video frame, resizes it to the image size used for the
neural network, performs the neural network operations, makes the
bounding box predictions, draws the rectangles in the video frame,
and finally sends it to a web browser for display.

Power consumption monitoring (POM) was performed when
Jetson Nano was processing the object detection task in a video.
The measurement is performed using the tegrastats command-line
utility which reports CPU, GPU and memory usage for Tegra-based
devices like the Jetson Nano Bonghi (2020); Figure 14 shows the total
power consumption of the Jetson Nano (blue) and the individual
consumption of the CPU (green) and GPU (orange).
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FIGURE 11
(A) Original image with ground truth annotations. (B) Detected bounding boxes by the original model. (C) Detected bounding boxes by the four anchor box
refined model. (D) Detected bounding boxes by the six anchor box refined model.

FIGURE 12
(A) Original image with ground truth annotations. (B) Detected bounding boxes by the original model. (C) Detected bounding boxes by the four anchor box
refined model. (D) Detected bounding boxes by the six anchor box refined model.

6 Discussion

Looking for the best performance in inference run-time on GPU
devices, the selected network is suited to execute the pedestrian
detection routine. Table 6 shows the performance of the original
model and the tuned model for pedestrian detection; the original

implementation performed worse on a CPU. Also, for devices
with GPUs (e.g., the Jetson series or data centers where it is
possible to rent a GPU cluster), the tuned model may give the best
performance. However, if we want a model for a similar purpose
(pedestrian detection) but for mobile or embedded devices where
no GPU is available (e.g. Raspberry Pi, digital signal processors or
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FIGURE 13
(A) Original image with ground truth annotations. (B) Detected bounding boxes by the original model. (C) Detected bounding boxes by the four anchor box
refined model. (D) Detected bounding boxes by the six anchor box refined model.

FIGURE 14
Jetson Nano power consumption measurement.

high-performance microcontrollers), a different base model must be
selected.

In order to make a comparison of solutions related to the
implementation of assistive devices for visually impaired people,
a search for articles with the perspective addressed by this work
was carried out. After the use of author’s keywords, paper selection

strategy use the following exclusion criteria elements: 1) Papers are
not relevant to the primary research goal (by reading of abstract,
introduction and conclusion). 2) Papers published in personal
blogs, patents or non-academic web pages. 3) Documents without
solution for obstacle detection and/or object recognition, 4) Solutions
that are not implemented, and 5) Not written in English. Table 7
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TABLE 7 Comparison of related reported implementations, with the following keywords abbreviations: pedestrian detection (PD), visually impaired (VI), Tiny
YOLOv3 (TY), deep learning (DL), wearable assistive devices (WAD), graphic processing unit (GPU), powermanagement (PM), image processing (IP).

References Title of related work References keywords Strong relationship Weak relationship

Xu et al. (2022) An Efficient Pedestrian Detection for Realtime
Surveillance Systems based on Modified
YOLOv3

YOLOv3, CNN, K-means - Pedestrian
detection, Shuffle unit video surveillance

TY, DL VI, WAD, PM

Khan et al. (2020) An AI-Based Visual Aid With Integrated
Reading Assistant for the Completely Blind

Blind people, completely blind, electronic
navigation aid, Raspberry Pi, visual aid,
visually impaired people, wearable system

VI, WAD, IM TY, DL, GPU, PW

Tapu et al. (2017) A computer vision-based perception system
for visually impaired

Obstacle detection, BoVW/VLAD image -
representation, relevant interest points, A-
HOG descriptor, visually impaired people

VI, WAD,IP, PD TY, DL, GPU, PM

Shen et al. (2022) A Wearable Assistive Device for Blind
Pedestrians Using Real-Time Object Detection
and Tactile Presentation

Wearable devices, object detection,
SMA, tactile display, model compression,
assistance for visually -impaired people

TY, VI, WAD, IP PD, GPU, PM

provides the output of such comparison, where pedestrian detection
is touched from different perspectives, considering the computer
vision technologies to analyze and understand a scene as the
main element of discernment. Correlation column indicates the
weakness or strong relationship of the research reported on those
manuscripts placed on Table 7 with the one provide here, based on
the declared contributions and author keywords. In this way, the
focus was determined to seek solutions to meet the visually impaired
requirements.

The work of Xu et al. (2022) focus on a model to solve real-
time pedestrian detection, using YOLOv3 models and modified
ShuffledNet to attend security. Correlation with this manuscript deals
with themanage ofYOLOv3models only. In terms of visually impaired
users assistance, Mancini et al. (2018) reports a mechatronics and
haptic systems, whose operations are supported by a monocular
vision-based system to assist people during walking, jogging, and
running in outdoor environments. To assist visually impaired people,
Khan et al. (2020) describe the use of wearables for blindness by
using an embedded system, supported by Raspberry Pi 3 Model B+
and artificial intelligence. The detection of obstacles and classification
methodology, using generalization support to identify objects as
static and dynamic obstacles, is reported by Tapu et al. (2017). It is
important to note that no information was found in the articles on
how power consumption measurement intervenes in the pedestrian
detection process, an important issue to consider in mobile assistive
devices.

The power consumption measurement reported in Figure 14
indicates that we should consider an average power consumption
of 6 W during pedestrian recognition operation. For a practical
use case in mobile devices, the use of a 5000 mA h battery, at a
voltage of 5 V, results in 25 W/h. For the purposes of this work, this
represents an operation of a little more than 4 h using the Jetson
Nano, which can be used in trajectories with different pedestrian
scenarios. However, other power consumption considerations must
be considered, such as the audible or mechanical guidance units
included in the assistive device for the visually impaired to review
autonomy.The base model was refined and focused on the detection
of one class. We observed an improvement in the number of detected
objects and a decrease in the number of false positives, indicating
better recall and accuracy. With the chosen metrics, we were able
to measure the performance of the model, which gives us a good

understanding of its strengths and weaknesses. It helps to understand
the differences in performance between models with four and six
anchor boxes and to choose the best model based on average accuracy.
In terms of average accuracy, six anchor boxes perform better because
objects with higher confidence get better definition of their box
dimensions. We can observe the results in Figure 9 and the real
implementation, comparing original YOLOv3 with the proposal of
this work, in a crowded pedestrian street located in Mexico City
https://youtu.be/ZnYK9ibM7kg.

The original and the refined models (with four and six anchor
boxes) were tested using the validation set of the COCO dataset,
comprising 11004 objects distributed over 2634 different images. The
evaluation of the fitted model used as a feature extractor achieved a
accuracy of 0.73 using six anchor boxes. However, type II errors (false
negatives)measured a recall of 0.17 and anF1 score of 0.27. In contrast,
fitting the model with retraining epochs results in a good balance
between the 0.67 accuracy and 0.27 recall. It is important to note that
accuracy penalizes type I error (false positives). Therefore, the best F1
score of the fitted model was achieved by using six anchor boxes in a
retraining for the pedestrian detection class.

According to the experimental results, the model tuned only
for pedestrian detection is suitable to run on different hardware
configurations. For example, we get about 44% improvement in
inference time using a desktop CPU that could be like those
found in data centers. With an embedded device, such as a Jetson
Nano, we obtained better performance than the original. In this
case, nine frames per second may not be useful in an application
requiring dense processing. However, using a sparse basis, the
adjusted model can process enough frames to achieve real time.
In addition, the fitted model is useful in embedded applications
with on-board processing. That is, applications where the system
does not request cloud services for processing or where information
protection is crucial, and all processing must be done at the edge,
which could not be possible with other embedded devices without a
GPU.

A disadvantage found in the Jetson Nano was the limitation
of RAM resources needed in the inference process to allocate the
intermediate tensors in the network. One solution to this restriction
was to change the model to work with smaller images; however,
the dimension of the intermediate tensors tends to shrink, affecting
detection performance.
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7 Conclusion

This paper presents an evaluation of the Tiny YOLOv3 network
for its implementation in low-cost wearable devices as an alternative
for the development of assistive technologies for the visually impaired.
The selected network, Tiny YOLOv3, is an architecture that is
originally capable of detecting 80 different classes. For this evaluation,
the model was adjusted to detect a single class (pedestrian) using
Tensorflow.The parameters and hyperparameters were tuned to detect
pedestrians using different anchor boxes to achieve sufficiently good
performance. The tuned model achieved an improvement of 55% in
the F1 Score compared to the original model. In addition, the tuned
model was evaluated using the standard images from known datasets
and real-world images.

The tuned model was optimized for use in the Jetson Nano
embedded system, a case study for low-power embedded devices, and
in a desktop computer. In the case of the embedded system, the original
implementation was able to process an image on the GPU of the
Jetson Nano board in 1.2 s, while the model tuned only for pedestrian
detection was able to process it in about 110 m. Furthermore, using
the embedded system CPU, the original implementation was able
to process an image in 3 s, while the tuned model completed the
same task in 470 m. Desktop tests were performed on an RTX 2070S
graphics board, the original model completed the task in 0.75 s, and
the tuned model completed the same task in about 21 m.These results
demonstrate that the tuned model can process frames acquired by a
video camerawith sufficient dispersion to achieve real-time pedestrian
detection.
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