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A few years ago, powered prostheses triggered new technological advances in
diverse areas such as mobility, comfort, and design, which have been essential
to improving the quality of life of individuals with lower limb disability. The
human body is a complex system involving mental and physical health, meaning a
dependant relationship between its organs and lifestyle. The elements used in the
design of these prostheses are critical and related to lower limb amputation level,
user morphology and human-prosthetic interaction. Hence, several technologies
have been employed to accomplish the end user’s needs, for example, advanced
materials, control systems, electronics, energy management, signal processing,
and artificial intelligence. This paper presents a systematic literature review on
such technologies, to identify the latest advances, challenges, and opportunities
in developing lower limb prostheses with the analysis on the most significant
papers. Powered prostheses for walking in different terrains were illustrated and
examined, with the kind of movement the device should perform by considering
the electronics, automatic control, and energy efficiency. Results show a lack of
a specific and generalised structure to be followed by new developments, gaps
in energy management and improved smoother patient interaction. Additionally,
Human Prosthetic Interaction (HPI) is a term introduced in this paper since no other
research has integrated this interaction in communication between the artificial
limb and the end-user. The main goal of this paper is to provide, with the found
evidence, a set of steps and components to be followed by new researchers and
experts looking to improve knowledge in this field.

KEYWORDS

powered prostheses, complex systems, human-prosthetic interaction, control systems,
artificial intelligence, lower limb amputation, innovative education, higher education

1 Introduction

Lower extremity amputation is the most common type of amputation in the world, causing
a high physical and physiological impact on all patients as the lower extremities carry weight
and control locomotion (Ebnezar et al., 2017). Even though amputations can occur at any stage
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of life, recent statistics (WHO, 2022) indicate that the three groups
with higher prevalence of amputation are between 45 and 59 years of
age. Also, it is important to note that amputation can be the result of
not only an accident but also of disease or congenital deficiency. By
2019, 57.7 million people were registered to have undergone a lower
limb amputation (McDonald et al., 2021).

Amputations are performed in patients looking not only to save
their lives but also to allow them retain the samemobility/functionality
as before (Espinoza andGarcia, 2014). A specialist determines the level
of amputation to be performed, looking to keep the patient’s life safe
and a functional limb for prosthesis; for the lower limb, the level of
amputation can be classified as follows (Ebnezar et al., 2017):

• Hemipelvectomy or trans-pelvic amputation: Since it is
proximal to the core of the body, it can affect a person the most
to be adapted in their previous lives.
• Above the knee or transfemoral amputation:At the femur level.
• Knee-level amputation.
• Below the knee or transtibial amputation: between the knee and

the ankle.
• Partial foot or ankle amputation.

To determine whether a patient is suitable for amputation, a
specialist and, in some scenarios, software, such as the Amputee
Mobility Predictor, must consider two factors (Mduzana et al., 2018):
first, if the candidate has some pre-existing conditions that can reduce
the probability of adaptation to a prosthetic device; second, if the
prosthetic device could benefit the patient’s life.

Lower limb prostheses focus on helping recovery from lower-body
locomotion, such as walking or running. To recreate this movement
with a prosthesis, it is imperative to understand the biomechanics of
steps.

To take a single step during walking, the human body must
recognise the ground beneath them and decide how to move. In
the case of an artificial limb, this information will be used to get
the required level of kinematics prediction and movements to be
performed. In a regular walk, as in humans, there is no need to
think about how body balance works; the body does it by itself.
However, in prosthetic development, the artificial lower limb must
work together to obtain the correct balance without damaging the
residual limbs (Rodrigues et al., 2021). One step is divided into two
stages:

• Stand:Defined as themomentmeasured by the Ground Reaction
Force equal to the weight of a person or during walking when this
is greater than 50 N (Hunt et al., 2021). The step-demarcation of
the ankle defines the limits of balance during this position, and
theweight between the twohumanhemispheresmust be balanced
(Rodrigues et al., 2021).
• Swing: Starting when the foot leaves the ground and ending when

touching it again, making it 40% of the gait cycle (Filho et al.,
2021).

Most studies focus on the following areas of the study of
movement: locomotion change, control of gait speed, and control
of the direct ankle or knee joint. In addition, research focuses on
improving control, giving the patient a more natural feeling of control
that is easier to learn and intuitive, to lower the previously mentioned
lowusage percentage. A prosthesis is designed according to the activity

performed by the patient. For this research, twomain classifications of
prostheses have been identified.

1. Passive: Movements performed by the prosthetic system are
created by using an external force (Maat et al., 2018).

• Aesthetical: Provides the appearance of the organic limb with
no extra functionality.
• Tool: Device adapted to perform specific movements

according to the desired activity.

2. Active: Defined as prostheses with external power and movement
provided by actuators, offering high performance and functionality,
at the cost of complexity (Windrich et al., 2016).

The development of active prostheses is a growing field of research,
leading to the design of new and robust control systems and methods
of interaction between artificial limbs and human intention. The main
contributions of this study to the scientific community regarding
active prostheses are the following:

• Definition of the term “human–prosthetic interaction”:
Definition of a concept to be used in future literature to
describe methods in which humans and artificial, active limbs
communicate.
• A view of trending technologies used in lower-limb bionics
technologies: How human interfaces can affect the movements
of a patient and the control methodologies used to help a patient
perform daily activities.
• The research of a control structure and a design scheme for
the design of new lower-limb prosthetic systems: Researchers
should follow the proposed structure as a generalised guide for
new technologies developed in the field, giving the option to focus
on the improvement of one of the subsystems to contribute as a
whole.
• Define the challenges and future direction of the technology:

Highlight the future work from different works being carried out
by authors around the world. The current limitations and what
needs to be improved.

Figure 1, shows the general classification of technologies
employed in the development of lower-limb prosthetic devices. Used
as a base for the structure of the manuscript and describing active
prostheses, Figure 1A shows the digital systems of intelligent active
prostheses and Figure 1B the interaction between the patient and the
robotic device, while describing a short analysis on the materials
used, as shown in Figure 1C. Section 2 presents the conducted
systematic literature review methodology (protocol, search, selection,
and revision). Section 3 presents the elements of the lower limb
prosthetic device, the human–prosthetic interfaces, and the elements
that allow the correct movement of the prosthesis challenges and
trends. Section 4 discusses the progress and application of the current
technologies in a prosthetic system. Section 5 presents the trends
in the areas of control, human signal reading, and environment
interaction. Finally, Section 6 presents the conclusion.

2 Search methodology

At looking at the human body as a complex system and the
interaction with artificial limbs in an environment where daily
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FIGURE 1
Lower-limb prosthetic system: showing the structure of the document and the subsections for each technology involved. (A) Shows the digital systems
used on any active prosthesis, including sensing capabilities for devices with environment interaction. (B) Sensors used for constant communication with
the patients. (C) Common materials used in prosthesis development.

activities are involved with mental and physical wellness, it is
important to follow a systemic approach (Baena-Rojas et al., 2022).
For this analysis, a systematic literature review (SLR) method is
employed, guided by Kitchenham and Charters. (2007), consisting of
three phases: planning, conducting, and reporting, finally showing the
results.

2.1 Research question

Considering the objective of this review, a research question was
defined, followed by the subquestions shown in Table 1 to assist in
the analysis of the literature and detect key components of intelligent
control, prosthesis types and trends, or future work.

These questions lead to the use of strings and search terms in
Table 2, with the selection criteria in Table 3, applied on September
20, 2021, in two scientific citation databases, Web of Science and
Scopus.

RQ.What is the state of the art in intelligent lower-limb prosthetic
devices and their design structure?

By selecting 194 relevant articles using the PRISMA methodology
criteria given in Figure 2, the systematic review is structured to be
applied by other researchers carrying out an automated string search.

Table 4 shows that the journal identified with the highest number
of articles published was IEEE Transactions on Neural Systems
and Rehabilitation Engineering and Frontiers, which, by the use of
different specific issues, provides a wide variety of data belonging to
this area.

3 Prosthetic elements

Once a patient is found suitable for a prosthetic device, the device
is tailor-made according to the patient’s needs. Figure 3A a shows a
visual representation of the parts on a general lower limb prosthetic
device (Ebnezar et al., 2017).

• Socket: Crucial for prosthetic performance since it encapsulates
the residual limb or stump, offers comfortability, and
disperses the body’s weight into different pressure tolerance
areas to create a distributed weight on the residual limb
for different activities during the day (O’Keeffe and Rout,
2019).
• Suspension: Part used to keep the prosthesis attached to the body.
• Liner: The removable inner part of the socket is used to provide a

soft feeling to the skin.
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TABLE 1 Research questions and expected answers based on research.

Questions Type of answer sought

How many studies are in the Scopus and WoS databases between 2016 and 2021 and what is their design?

No. of articles in Scopus

No. of articles in Web of Science

Prosthetic design structure

Which journals have the greatest number of publications on this topic? Q1, Q2, Q3, or Q4, ESCI, No rank

How are the studies classified?

Hardware

Computer science

Biomechanics

Robotics

What are the trends and topics addressed by the articles?

Energy management

Hardware improvements

Control techniques

Sensors and signal reading improvements

TABLE 2 Strings created on the Scopus andWoS databases.

Search strings in Scopus Search string inWoS

KEY (brain AND computer AND interfaces) TS = (biomechanics OR myoelectric OR eeg

AND [biomechanics OR eeg OR myoelectric OR (body AND signals)] OR (Body Signals) OR (haptic feedback))

OR (haptic AND feedback) AND (prosth*) AND TS = (Brain–Computer Interfaces) AND TS = (Prosthe*)

TABLE 3 Inclusion/exclusion criteria for selected articles.

Inclusion criteria Exclusion criteria

Studies indexed in the Scopus and WoS databases Conference, early access, or proceeding papers

Articles published between 2016 and 2021 Articles from emergent sources

Articles related to robotics, computer science or control Articles not published between 2016 and 2021

English or Spanish language Articles published in Russian

Field categories: physics, engineering, materials neuroscience, computer science and maths, and multidisciplinary

• Shank: The body of the prosthesis, which is usually made of
aluminium, titanium, or carbon fibre, works as the main body of
the prosthesis.
• Foot or end-point: simulates the foot of a human and is to

be used for support and shock absorption during standing or
walking.

This manuscript shows a representation of two extra components
that must be present in active intelligent prosthetic devices: a
human–prosthetic interaction layer (Figure 3B) and a method of
interaction with the environment to predict required movements
(Figure 3C).

To be considered a smart prosthetic device, these components
must be able to provide movement independently; therefore, research
has focused on controlling brushless DC motors or pneumatic and
hydraulic actuators. A control structure shown in Figure 4 is used,
indicating the requirement of two mechanisms consisting of an
interface for human–prosthesis interaction and an artificialmovement
method that is coupled with natural human reactions.

3.1 Human–prosthetic interaction

Based on this review, there were some terms found that refer
to active prosthetic devices acting on human orders. Terms such
as human–mechatronics interaction, by Clites et al. (2018), define
a relationship between human and machine, or human–robot
interaction, according to Sheridan (2016), and focus the concept on
four areas: Human supervisory control of robots in routine operations,
remote control of autonomous vehicles, automated vehicles with
human passengers, and social robotics. However, the definitions
are very extensive, and a new term was necessary to refer to
the communication between an artificial limb and a human user;
this study proposes the term human-prosthetic interaction (HPI).
Depending on the level of the interaction, the usermight feel like using
their own limb.

For a successful interaction, the extraction of data from the human
body and a method of interpretation are required. Two techniques are
used in the literature to extract data on the intention of movement;
Table 5 shows an overview of their advantages and disadvantages.
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FIGURE 2
Selection process based on the PRISMA methodology, and the specific search string and inclusion/exclusion criteria can be seen in Tables 2, 3.

1. Electromyogram signals: Described as a technique to evaluate
and record electrical activity produced by muscles (Cabral et al.,
2018).These can be of two types: surface (sEMG) and intramuscular
electromyography (iEMG).

• iEMG: Signals are detected with special needles or wires
inserted directly into specific muscles. This technology is used
on prostheses attached surgically to the body. However, it is
not commonly used because it is highly invasive (Merletti and
Farina, 2009).
• sEMG: Signals are detected with sensors placed on the

muscle surface, usually with two or more electrodes since it
measures the electrical difference between activated muscle
and a reference point (Cabral et al., 2018). Several studies
(Luu et al., 2017; Yu et al., 2017; Su et al., 2019; Peng et al.,
2020b) use the described method of interaction due to its
almost instant response, non-invasive technology, and ease of
use. However, the disadvantage of this method is the noise
produced by close muscles (Nieveen et al., 2020), so it requires
an analysis of the residual limb activation when performing
different activities (Gupta and Agarwal, 2019; Su et al., 2019;
Wang et al., 2022). To overcome this limitation, Clites et al.

(2018) used sEMF in combinationwith a surgerymethod called
agonist–antagonist myoneural interface (AMI) amputation,
using sensory feedback, making the signal clearer for
use.

2. Brain–Computer Interfaces: The technique used to record brain
activity to determine a desire to move, control, or interact with
the environment. Most BCIs are based on electroencephalography
(EEG) signals; EEG records the brain’s electrical activity and
is popular in the BCI due to its portability, low cost, and
spatiotemporal response, allowing the BCI to act as a real-
time projection of brain activity during multiple actions.
(Shafiul Hasan et al., 2020). According to the purpose of the BCI,
the EEG electrodes are selected taking into account the brain
lobes associated with the movement task; also, EEG signals are
classified by their rhythmic activity into mu, delta, theta, alpha,
beta, and gamma based on signal frequencies ranging from 0.1 Hz
to more than 100 Hz. McFarland (2000) found an association
between movement and motor imagery with mu and beta rhythm
resynchronization; however, Chen et al. (2021); Wriessnegger et al.
(2018) worked with the different frequencies mentioned to detect
activities such as playing tennis or squeezing a ball, and depending
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on the skills, the activity varied. The HPI method has been
widely used in different works (Lu et al., 2017; Su et al., 2019;
Yokoyama et al., 2021) due to the high precision that might be
obtained by volitional control or motor imagery.

3. Intention prediction based on environment interaction: A third
option to be used by prosthetic systems is for sensors to interact
with the external environment, and based on it, the nextmovements
are predicted; however, IMU, force plates and force sensors, and
cameras are some of the most commonly used equipment, and a
more detailed review of these systems is covered in the Sensing
subsystem (Section 3.2.1).

Data must be interpreted to perform the user-desired action. First,
the obtained signalsmust be preprocessed to remove any noise coming
from the position of the electrodes, cables, etc.Then,machine learning
techniques (feature extraction, feature selection, and classification) are
employed to detect patterns related to themovement intention in these
biopotentials (Table 6).

To take lower-limb active prostheses as a separated device from
the human body shows higher cognitional load on the users and
acts as a limitation for devices with only one-way communication
(Raspopovic et al., 2021). As a complement, some researchers are
working on feedback to enable communication from the prosthesis
to the human cognition system, with the hypothesis of increasing
accuracy and improving control. The use of vibrotactile actuators
Shi et al. (2019); Chen et al. (2016) allows the residual limbs to
feel what the actual prosthesis is touching. Surgery performed
to restore the muscle relationship between agonist and antagonist
muscles (AMI) (Srinivasan et al., 2020) has shown higher ankle
control, reshaping the nerves to adapt an electrode (Leventhal
and Durand, 2002) has shown higher equilibrium capabilities, and
electrode insertion into peripheral nerves (Badia et al., 2011) has
provided confidence in the users by avoiding falling probabilities
to walk on uneven terrains (Raspopovic et al., 2021), which restores
the muscle relationship to improve motor control Srinivasan et al.
(2020).

3.2 Movement development of a prosthetic
device

After obtaining and classifying the desired movement,
the performance of the actual movement starts. For this, the
prosthetic device must have a sensor subsystem in charge of
interacting with the environment, electronic components consisting
of power and a digital interface, and an automatic control
method.

3.2.1 Sensing subsystem
This subsystem works both as a method to collect data from the

environment to be used in the calibration and control of the prosthetic
device and to evaluate its level of performance. One of the most
common sensors is the inertial measurement unit (IMU), a device
capable of measuring the angular rate, acceleration, andmagnetic field
surrounding the system. The device IMUs can help optimize the user
fitting and alignment and track changes in gait speed over time via
different algorithms (Bastas et al., 2018).The sensor can help track and
estimate the locomotion trajectory on the knee or ankle depending
on the type of terrain where the user is walking (Chang et al., 2019;

Su et al., 2019; Elery et al., 2020; Gaetani et al., 2020; Pi et al., 2020;
Khademi and Simon, 2021; Lee et al., 2021).

Also used as complementary data for othermeasures is the ground
reaction force (GRF) exerted by the ground on a body at contact.
By Newton’s third law, when a person is standing, the GRF will be
weight; however, acceleration forces change when moving, usually
when working together with a treadmill with plaques or force sensors,
such as flexiforce (Peng et al., 2020b) and M3715C (Gao et al., 2021),
on the feet of users (Jiang et al., 2019; Lee et al., 2021) to detect
torque changes with gait variations. GRF has been used to analyse the
biomechanics of a non-amputee and compare it with how locomotion
changes after amputation when walking with different prostheses
(Chang et al., 2019; Jiang et al., 2019; Zhang et al., 2019; Peng et al.,
2020b; Mendez et al., 2020; Pi et al., 2020; Gao et al., 2021; Lee et al.,
2021; Leestma et al., 2021).

Calculating muscle effort has also been described using force
analysis with inverse or forward dynamics and using EMG or centre
and point of mass models (Chiu et al., 2020). With these data,
metabolic usage can be obtained to compare the use of different
prostheses and how degrees of freedom (DoF) and control help
the patients (Zhao et al., 2019; Elery et al., 2020; Kim et al., 2020;
Hunt et al., 2021).

A big improvement found on the transtibial prosthesis carried
out by Clites et al. (2018) and others was the capability to get neural
feedback, in their words, like the prosthesis was alive. To create similar
behaviour, with no need of anAMI surgery, is to provide the prosthetic
system with the ability to see their surroundings, improving the track
of motion and kinematics of steps at different speeds; cameras and
depth cameras have been used (Jiang et al., 2019; Zhang et al., 2019;
Dimitrov et al., 2020). Encoders and current sensors are closely related
to methods of angle control and energy management (Bartlett et al.,
2021; 2019; Chiu et al., 2020; Mendez et al., 2020; Keemink et al.,
2021), and the same power consumption has been used as a way to
measure the performance of control methodologies to minimize it
Dong et al. (2020); Jiang et al. (2019); Khademi and Simon (2021);
Sutawika et al. (2021) since batteries can cause an increase in the
cost and weight of a prosthetic device, making it harder to use for
the patient on a regular basis. However, power management comes
with an issue; control methodologies can only reduce consumption by
tweaking the parameters of the control algorithms, but actuators may
be physically modified to find the best performance at a lower energy
cost.

3.2.2 Electronic subsystem
The electronics component is composed of an external power

supply, its electronic power stage, a digital embedded system, and
actuators.

For all the parts involved, a power supply is required when
not tested in a controlled laboratory environment; for most
microelectronic systems, the energy consumption can range from
3.3 V to 10 V, depending on the internal capabilities. However,
actuators require high torque (>80 Nm) (Sup et al., 2008), which
comes with high current demand, meaning high power in the range of
12–200 W (Dong et al., 2020; Zagoya-López et al., 2021), depending
on the number of motors being used and creating the requirement of
using an isolated energy source for them.

A power driver must be used for communication to isolate the
energy used in the controller and actuators. For most of these designs,
market-available hardware has been used, and Gao et al. (2021) and
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TABLE 4 Journals with at least three articles.

Articles Database Source title Quartile Country

43 Scopus IEEE Transactions on Neural Systems and Rehabilitation
Engineering

Q1 The United States

19 Scopus Journal of Neural Engineering and Rehabilitation
Engineering

Q1 The United Kingdom

7 WoS Frontiers in Neuroscience Q2 Switzerland

7 WoS Biomedical Signal Processing and Control Q1 The Netherlands

6 Scopus IEEE Access Q1 The United States

4 Scopus Sensors Q2 Switzerland

4 Scopus IEEE Transactions on Biomedical Engineering Q1 The United States

4 WoS Journal of Neuroengineering and Rehabilitation Q1 The United Kingdom

3 Scopus Frontiers in Neurorobotics Q2 Switzerland

FIGURE 3
Parts of lower-limb prosthetic system (suspension and liner are not shown). (A) shows the physical components of general lower-limb prosthesis, where
the shank is separated by knee artificial joint and by ankle joint. (B) How the communication components need to interact with the user, a small sketch of
brain–computer interface (BCI) and electromyogram (EMG) sensor position is shown. (C) With embedded sensors, the prosthetic device needs to be aware
and detect the features of the surroundings.

Pi et al. (2020) used an Elmo Driver at the knee and ankle level, or
Elery et al. (2020) used the Solo God Driver. In the case of electronic
actuators, the most widely used motor is brushless DC motors,
showing good performance, short response timewith high torque, and
low energy consumption compared with the torque they can generate
(Cheung, 2002). The most used motor found during the review is the
Maxon RE40 DC motor with no gearbox (Dong et al., 2020; Pi et al.,
2020) or EC-30 (Zagoya-López et al., 2021) and theElmo servomotors
(Gao et al., 2021). As previously discussed, the power supply must be
separated, using 48 V DC power supply, either directly mounted on

the prostheses itself (Cherelle et al., 2017; Dong et al., 2020; Ottobock,
2021) or even connected on a continuous energy source when still
on development (Kim and Collins, 2017; Jiang et al., 2019; Elery et al.,
2020; Kim et al., 2020), and a smaller lithium battery (Azocar et al.,
2020; Dong et al., 2020) 5–7 V for the smaller electronics.

Finally, a digital system processor or microcontroller is required
to receive, interpret, and perform actions. Bartlett et al. (2021);
Chang et al. (2019) used an interface between the prosthetic system
and a computer to perform easier debugging. However, for more
advanced systems such as the ones in Figure 5, an embedded
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FIGURE 4
Generalised hierarchical structure of control. Proposed framework
adapted from Tucker et al. (2015). HPU module and pattern recognition
define locomotion mode and gait selection. Low level direct control the
joints on the device.

microcontroller or processor is required for online sensing and
control.

3.2.3 Lower-limb biomechanics control
To define how a prosthetic device moves in combination with the

user, a series of angles must be performed on the actuators using a
control method. Different control schemes can be used, such as direct
volitional, path tracking, motion, and impedance control.

The mid-level control is described as a transition level, as
referenced in Figure 4, where the HPI signals are used as input to
perform a mapping function of the human intentions to states in
the system. Locomotion and gait are the common transition schemes
based on FSMs, which give low-level direct joint control as output.
Error minimisation control techniques are then used to perform these
actions.

• Locomotion: Described in this context as the ability of a human
to move from one place to another. For lower limb prostheses,
six different locomotion modes have been found (Huang et al.,
2011): level-ground walking, stepping over an obstacle, stair
ascent, stair descent, ramp ascent, and ramp descent. The
intention recognition and smooth transitions between them
have been a work of research among different studies (Su et al.,
2019; Zhang et al., 2019; Peng et al., 2020b; Pi et al., 2020;
Khademi and Simon, 2021; Lee et al., 2021; Leestma et al.,
2021). One of the most used schemes is direct volition control,
which uses EMG or EEG signals to perform a volitional
intention; in this case, the methodology used tries to predict
behaviour.
• Gait: Refers to the movements performed inside the locomotion,

the series of steps to perform an actual step in any locomotion
type, usually composed of the swing and stance phases, with the
transition between them, such as “heel on the ground, heel off the
ground, toe on the ground, and toe off the ground” (Filho et al.,
2021). These movements and the speed depending on the user’s
intention have been tracked by BCIs, EMGs, and IMUs to get a
more natural feeling of walking in different terrains (Gao et al.,
2021), but this type of research uses Finite State Machines
(FSMs) to focus on the whole trajectory tracking to minimise the
studies on the dynamics of the movement (Mai and Commuri,
2016; Whitmore et al., 2016; Cao et al., 2018; Adamczyk, 2020;
Peng et al., 2020a; Mendez et al., 2020; Shafiul Hasan et al., 2020;
Sutawika et al., 2021; Welker et al., 2021; Yokoyama et al., 2021).
Since the movement is a whole complex trajectory, instead of
specific points to be reached by a single actuator, the schemes
that are used must be robust against disturbances, and, in the case
of multiple actuators, actions must be performed at coordinated
times. Coordinated motion control, where joints are connected
to each other and a range of motion is determined, could be
used to avoid unwanted muscle activity; path tracking control
determines a path to follow, adapting to any disturbance in the
system (Hernandez and Yu, 2021).
• Direct joints: Taking the locomotion types and gait phases

more accurately, this type of control focuses on how the
actuators need to move independently to get specific angles,
using an impedance/admittance control scheme. This scheme
can be defined as a method to control the relationship between
angular velocity and torque (Hernandez and Yu, 2021). When
a user travels on different surfaces (Chang et al., 2019), the
method allows small changes to occur in the swing phase of

TABLE 5 Advantages and disadvantages of methods for reading humanmovement intentions.

Human–robotic interface Pros Cons

Neurological signal control (motor imagery)

High movement accuracy High computational cost

Not much training required High monetary cost on the hardware required

Uncomfortable caps or invasive technology required

Myoelectrical signal Control

Fast response Depends on the level of amputation

Requires simple interface Requires more training

More economical Movements might be limited

Low computational cost Much noise on the signal reading
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FIGURE 5
From left to right: Ottobock prosthetic ankle Ottobock (2021), Vanderbilt Shultz et al. (2015), and OpenSource Leg project Azocar et al. (2020).

the gait, minimising energy consumption (Dong et al., 2020) by
controlling the exact torque required in the joints to maintain
balance in the human body. Related, the option to control more
than a single degree of freedom to improve dynamic balance on
real-world terrain (Kim and Collins, 2017; Huang and Huang,
2019; Dimitrov et al., 2020; Harper et al., 2020; Kim et al., 2020;
De Vree and Carloni, 2021).

The number of articles categorised by the objective of the control
used, as described, is shown in Figure 6, where direct joint control
is found to be the most common since it can help create precise
movements for specific areas.

The PID controller (proportional–integral–derivative) was the
most implemented in the literature. (Cherelle et al., 2017; Dong et al.,
2020; Widhiada et al., 2020; Xie et al., 2020; Hongsheng et al., 2021),
controlling power and torque directly on ankle actuators or following
the gait trajectory by using torque and power consumption as the
controller’s outputs(Sutawika et al., 2021). In the mentioned works,
the advantages shown were low response time and steady-state error
zero, making it helpful in controlling both fast and slow process
variables.

A proportional derivative (PD) controller has the advantage
of being easy to stabilise due to low dampening at the tracking
set-point and the disadvantage of amplifying high-frequency noise,
although it is not recommended for slow-moving process variables.
The proportional integral (PI) controller has the advantage of no
steady-state error but the disadvantage of a narrower range of stability
andwind-up (Effiong andObot, 2018), even though the type of control
will depend on the activity to be controlled.

The PD controller is used in the classification of motion intention
and the prediction of the trajectory (Gao et al., 2021), with less than
0.1 radians of error in detecting the expected gait before reaching the
desired change based on the difference in terrain (slopes and stairs).
On the other hand, it has been used in hydraulic actuators due to the
PDcontroller’s response typeBartlett et al. (2019).Thederivative value
helps predict the values, with softer changes, which is very helpful for

the discussed application. Lastly, proportional (P) controllers, even
when simpler, mean that fewer values need to be tweaked, trying to
control direct joint angles while performing stand and swing phases
of walking (Hunt et al., 2021). The ankle stiffness was adapted to
follow swing motion by using a camera system to track the trajectories
of a step, using values from a P controller on (Dimitrov et al.,
2020).

3.2.4 Machine learning control modelling
Machine learning techniques were primarily used to get patterns

and predict intentions from the user, as seen in Table 6. However,
in locomotion control, movements were first classified in 2017
(Chmura et al., 2017), but more studies were carried out from in 2019
as a method to predict locomotion modes (Su et al., 2019; Peng et al.,
2020a; Khademi and Simon, 2021) and obtain movement dynamics
(Li et al., 2021) with less computational real-time power. This was
combined with the classical control of artificial joints to obtain
almost instantaneous reactions to the environmental characteristics
recognised by the system (Zhang et al., 2019). Classical linear control
methods require a high understanding of the dynamics of the
mechanical components, such as with Hongsheng et al. (2021) in
Figure 7A, where the pneumatic actuators are controlled by a series
of highly complex equations with changes depending on the expected
movement and the lengths of the bars, creating the problem of a
great method of control for a very specific task, which is not the
case for everyday use. By using a hybrid model seen in Figure 7B,
combining the inertia matrix (M(θ), Coriolis and centripetal values
(C(θ)), gravitational force vector (G(θ)), and a fuzzy neural network
to estimate the time estimation values, Peng et al. (2020a) were
capable of calculating the required torque and angle in the knee
movement capable of handling disturbances affecting the swing
trajectory.

Complexity increases widely when adding degrees of freedom;
however, as seen with Leestma et al. (2021) and Jiang et al. (2019),
values obtained from the sensors used, as seen in Figure 7C, can be
used as input values in a machine learning algorithm such as in neural
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FIGURE 6
Articles divided as per the different control technologies identified, such as locomotion changes, gait or trajectory of swing tracking, and direct joint control.

FIGURE 7
(A) Pneumatic artificial muscle structure: shows angles of movement and length of the bars. (B) Flexible prosthetic knee composition inertia and ground
force reaction matrices give torque and angle. (C) Dynamic mean ankle movement arm different force and momentum values obtained by load cells are
used as input for ML algorithms to classify different terrains.

networks (Keleş and Yucesoy, 2020) to control the kinematics of every
step; however, the limitations of Leestma et al. (2021) reside on the test
being performed, used in very controlled level ground scenarios with
some speed variations.

Finally, machine learning has also been used as a simulation
method in which non-amputee walks have been recorded to
compare them with the values collected from movement with a
prosthesis, capable of obtaining the constraints and parameters of a
healthy human walk in different terrains without an explicit model
(Welker et al., 2021).

4 Discussions

Regarding the development of hardware and software for a lower-
limb prosthetic device, the structure of Figure 4 was determined to
work best, dividing the system into HPI and movement mechanisms.
To develop a prosthetic system, different areas of study must be
combined, including medical and engineering expertise, as shown in
Figure 8, which shows how the literature is divided into biomechanical
analysis, control, hardware development, and understanding human
signals.
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FIGURE 8
Categories of technologies identified in the literature. For this purpose only, the articles that made a contribution in lower-limb human prostheses, or
human–prosthetic interaction (HPI), were counted.

TABLE 7 Available prosthethic hardware on themarket Lawson et al. (2014), Ottobock. (2021), Azocar et al. (2020).

Vanderbilt Ottobock OpenSource Leg

Knee range of motion 120° 120° 120°

Ankle range of Motion 70° 45° 30°

Weight 5 kg 4.7 kg 3.7–4.2 kg

Cost (U.S. dollars) 40,000 to 120,000 10,000 to 30,000

Materials Aluminium and carbon fibre Wood, plastic, foam, and carbon fibre Aluminium and carbon fibre

Extras Transtibial (ankle) prosthesis is available as
separate design

Differentmodels can be selected variating
the activity to be performed and level of
amputation

Customizable for sensors and other
actuators

A major focus must be on the biomedical area, combining the
expertise of engineers in mechanical work with that of healthcare
workers to understand the basics and more advanced techniques
of human locomotion, including balance techniques and muscle
reactions to different external disturbances. Section 3.2.3 describes
the method in which a prosthesis can be controlled, and Section 3.1
can progress the understanding of the patterns of intentions of human
signals.

Progress on technologies used in communication between
humans and prostheses has shown that a new concept is required,
proposed in this paper as HPI, used in this context as how a user
sends the desired intentions for the artificial limb to perform the actual
movement. It was found through the literature that even though EMG
technology has been in operation for a longer time, only 25 articles
use this method as an HPI method or perform further signal analysis
research. EEG technology has been shown in 57 articles, showing that
there are still many opportunities for research in this field. The data
of EEG are more complex and require more computational cost and
the use of caps or invasive technology. However, it provides accurate
movements once decoded, and the actual process of think-to-move

is more intuitive than those of EMG-controlled devices. Even with a
fast response, the latter is more economical and, with simpler human
interfaces, depending on the level of amputation, will require non-
orthodox movements of the residual muscles to reach a simple desired
location. Using both has improved the accuracy and natural feeling of
the expected movements (Hu et al., 2018; Ruhunage et al., 2019).

Similar methodologies were found in the experiments using the
HPIs discussed. By using a similar number of amputated and non-
amputated subjects (Twardowski et al., 2019) to perform the same
movements and comparing the results, experimentation was possible,
as with Idowu et al. (2021) and Ruhunage et al. (2019), which used
only amputees and healthy subjects, respectively. An institutional
review board had to approve the study in any of these scenarios.
The advantages and disadvantages of the different methods of reading
human intentions are shown in Table 5. By using a different type
of approach, volitional control/intent recognition, it is possible to
lower the pressure on the pattern and motion recognition algorithms;
however, as discussed in Redkar and Bhat G (2018) and Tucker et al.
(2015), this method requires high precision and focus from the user’s
site.Overcoming this issue requires a combination of volitional control
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on high-precisionmovements and pattern recognition for locomotion
and gait changes. The output of this subsystem goes directly to the
type of control in which knowledge of human locomotion is necessary
from an engineering perspective to be able to follow the kinematics
and trajectories of a single step in different scenarios.

The different techniques of control, as seen with the analysis,
depend on the level of movements to be performed, either direct
joint control or whole trajectory tracking. These values need to be
tweaked based on a biomechanical analysis and specific activities to
be performed. Machine learning techniques, on the other hand, are
used to reduce the effort required to learn this exact dynamic model,
providing a faster response, adaptation to unknown disturbances, and
the use of less computational power to tweak certain parameters.

These control techniques depend on the hardware being
used, requiring mechanical engineering expertise. The most used
mechanisms are electromechanical actuators, using DC brushless
motors such as Robodrive and Maxon (Elery et al., 2020; Pi et al.,
2020), due to the benefits of power management, control properties,
and working directly by electrical current. Using pneumatic muscles
(Li et al., 2016; Mrazsko et al., 2020; Xie et al., 2020; Hongsheng et al.,
2021) has advantages in the amount of force-to-weight ratio it
can offer, providing results of performance similar to that of
an organic leg, although lacking the ability to produce accurate
movements and an interface between electrical-air action. Hydraulic
actuators (Chmura et al., 2017; Cao et al., 2018; McGrath et al., 2018;
Bartlett et al., 2019) are similar to pneumatic actuators, with the
difference of using liquid instead of air. These allow for even higher
peak power and lower foot-to-ground shocks. However, the cost
increases, requires more maintenance in the actuators, and requires
multiple additional components to get accurate desired positions.
BiOM (Rouse et al., 2015) andOttobock (Mosler, 2021) prostheses are
some examples of market available advanced systems used for specific
activities. Table 7 shows the characteristics of the models available
in the current market, while Figure 5 shows a visual representation.
Unfortunately, most of them are unavailable for researchers to use
with their current controller technologies. To address this issue,
different universities developed the open-source robotic leg project
(Rouse et al., 2015), in which every researcher can get the files to create
the same version of the prosthesis for further development in the area,
giving them the opportunity to only focus on methods of controlling
and improving the same hardware.

Since the artificial limb is a device a patient uses, it must interact
with the environment to take actions on its own, as a natural limb does
it unconsciously, an activity performed by a sensing subsystem. IMU
sensors are themostwidely used in the literature to collect information
from the environment, the movement of a non-amputated user
to understand and study biomechanical data (Jiang et al., 2019), or
directly in a prosthetic device for real-time control (Mendez et al.,
2020). They are a versatile option for the benefits of price and size. The
problem with this technology is that the papers shown do not explain
how the data were gathered, and it is important to reliably extract
the specific parameters of step-demarcation with existent algorithms
for lower limb prosthetic users Bastas et al. (2018). GRF sensors have
fewer problems with data gathering and analysis since they depend
directly on the user’s weight and how they vary according to the
terrain, locomotion type, and gait. This can be carried out by using
two different sensors: plaques on the floor, which can gather more
reliable data but can only be used in biomechanical analysis directly
on treadmills or in highly controlled and built environments, or

pressure sensors directly on the prosthetic foot (Gao et al., 2021).
The benefit of this technology in biomechanical analysis is that it
can detect anomalies or excessive residual muscle effort that could
create future problems in a patient with a new prosthetic device. To
measure the performance of the prosthetic device, camera motion
tracking systems, muscle effort and metabolic usage calculations, and
even the power consumption of the prosthesis have been carried out.
Camera tracking systems can compare trajectories between different
prosthetic systems being used and non-amputee walking; on different
works, it has been shown to excel at identifying small changes and
how terrain changes can variate variables in human biomechanics,
such as torque, metabolic cost, and angles in the body (Zhang et al.,
2019;Mendez et al., 2020; Xiu et al., 2022),TheViconmotion tracking
system has been widely used in different occasions (Thomas, 2018;
Dimitrov et al., 2020; Slade et al., 2021). Metabolic usage has been
used as a method to compare the performance between different
prostheses, just as with Jeon et al. (2022); Takahashi et al. (2015),
where the use of active prostheses made the patients show less
metabolic cost than using passive prostheses, or with Ingraham et al.
(2018) and Askew et al. (2019), which demonstrated that the correct
selection of a prosthesis could lead to less energy expended by the
user; however, by increasing degrees of freedom, metabolic cost has
shown little change since the isolation of specific factors could not
be determined (Kim and Collins, 2017). Muscle effort, on the other
hand, has been used to determine how the risk of damage to a patient’s
residual limbs can be lowered (Bellmann et al., 2019; Elery et al., 2020;
Hunt et al., 2021). Finally, power consumption has been the focus of
research to reduce the amount of energy used to optimise the use
of batteries in the prosthetic device (Sup et al., 2008; De Pauw et al.,
2018) since larger batteries mean higher weight, so optimally, a
prosthetic leg should provide a similar amount of steps taken by a
regular human being every day [5,000–7,000 according to Berko et al.
(2016)].

The limitations of the review are related to details on the EEG and
EMG methodologies, including where electrodes must be located and
the databases used. The electronics scope did not cover the specific
microcontrollers and processors used and the programming language.
Lastly, the review was carried out from an engineering perspective,
which did not cover the institutions and procedures involved for an
amputee to be selected as a candidate for a prosthetic device since it
could vary depending on the country and economic capacities.

5 Future direction

The trends in the literature are divided into categories covering
the future work for either the upper or lower limb, HPI, and
hardware development. The analysis identified a gap in generalised
machine learning models as the largest area of opportunity. This
technique is widely used in the area of pattern recognition for EMG
and BCI; however, as shown with Shafiul Hasan et al. (2020), real-
time projection of brain activity is still being investigated, and the
techniques require more work to identify parameters and increase
processing speed. Closely related to body signals, the use of EMG or
BCI has disadvantages, such as the quantity of training and limitations
or failure to identify certain movements due to high noise in real-time
situations.The results obtained byHu et al. (2018) and Ruhunage et al.
(2019) have shown that the use of both sources or even using
EMG signals from different places can lower uncertainty and provide
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higher precision on intention classification. Used in combination with
volitional control, all these methods can be used for either high-level
control of the locomotion and gait selection ormore dexterous control
in crowded places or uneven terrains.

For locomotion prediction, as seen with Welker et al. (2021),
humans can adapt to different techniques ofmanual selection, showing
less than 8% in the error between expected versus actual position on
ankle angle. An improvement can be seen with Peng et al. (2020a),
in which by using autonomous locomotion prediction, the user does
not have to emulate the same movement with another limb nor
specify a manual change to the desired terrain. The results of these
experiments show a high percentage of accuracy (more than 80% on
most of the predictions), with the problem appearing when defining
an initial certainty value of the possible next terrain, in which the
manually selected values can increase detection errors (Stairs Down
locomotion mode, with 67% of detection rate). To overcome the issue
of prediction with only the previous and current states, machine
learning and specifically deep reinforcement learning techniques for
human locomotion have been used to improve detection based on
repetitive learningHuang et al. (2011); Peng et al. (2020b); Meng et al.
(2021), and using a combination of sensors to view the environment
Zhang et al. (2019), it is possible to adapt to complex environments
and motions to perform on uneven terrains (Song et al., 2021).

There is still a gap in neural networks or deep-reinforcement
learningmethods that work in conjunction withmathematical models
of leg biomechanics to improve reaction time and locomotion
prediction with no manual human intervention. The research focuses
mainly on knee movement and ankles with 1 degree of freedom on
lower-limb prostheses. Understanding that the balance of the human
body uses techniques based on hip–ankle movements (Kuo et al.,
1993) on more than one axis, research on two or three DoF could be
a path to follow while keeping between limits in the weight and size
of the whole prosthesis. Research on ankle movement is an emerging
topic because of its capability to keep the balance of the human body by
adapting to the terrain and the activity being performed. Although it
is not feasible for an all-terrain prosthesis at this point, further studies
are needed on uneven ground to adapt to the human leg.

Section 3.2.2 discusses the importance of energy consumption
in prostheses. As a result, the task will demand less or more energy,
and a prosthetic device that can perform complex movements will
need the largest batteries, increasing the size, weight, and cost of these
technologies. The works of Chiu et al. (2020), Cherelle et al. (2017),
and Bartlett et al. (2021) show how future work requires a focus on the
development of energy management techniques to minimise power
usage to perform simple tasks. At this moment, prosthetic systems
weigh between 2.27 kg (Xu et al., 2021) and 5 kg as shown in Table 7,
while in terms of power, Ottobock devices, which have been identified
as the longer running prosthesis, can run up to 8 h, compared with
13 h that healthy amputees walk in average, even when the exercise
wasminimised after the amputationHalsne et al. (2013); Diment et al.
(2022). To achieve these improvements, it is necessary to develop
design-specific actuators that could achieve peak performance at lower
energetic cost, extend the usage time, andmaintain balance in difficult
areas to move.

Identification of surroundings in the prosthetic device and patient
is a work in development in the literature; the usage of cameras and
IMUs to detect uneven terrains and obstacles that could harm the
user depends on the capacity of the processor being used and has
a limitation on the weight of the whole system. When compared,

autonomous vehicles, such as Tesla. (2022) and Mercedez. (2022), use
similar sensors such as radars, lidars, IMUs, and cameras, leading to
different advantages or disadvantages in being used on a small device.
The results have created an opportunity for a search for guidelines on
using these sensors on portable systems.

6 Conclusion

This systematic literature review establishes a prosthetic system’s
structure and state of the art. Research focuses on improving the
control used, energy consumption, and HPI accuracy. A design
structurewas proposed based on the parts involved in any new systems
looking to be developed, and based on it, the structure of control
was modified and proposed to be followed by new researchers in this
area. This review contributes by following the proposed structure and
focussing on the trends and gaps found in the literature.

In addition to a state-of-the-art review, the contribution of this
article differs from that of previous articles by showing prosthetic
systems as a whole, combining the HPI, environment interaction, and
the electronics and digital systems. It is necessary to see prosthetic
systems similar to natural limbs, constantly interacting with human
intentions and the environment around them, which led us to
define the term human–prosthetic interaction as this communication,
either by direct control of brain waves or indirectly through muscle
movements. Each of these methods, with different characteristics,
provides an area of opportunity in pattern recognition, data fusion,
accuracy of intention recognition, and development of less complex
and more comfortable devices.

For a lower-limb prosthesis, the elements described in Section 3,
HPI, sensing the external environment, electronics and digital
systems, and control methods, must be considered at the same level
of importance, but research must focus on improving them one at a
time. Physical requirements such as weight, size, and materials are the
first layer of interaction with a person, meaning the materials must be
comfortable and durable. The same characteristics are directly related
to the amount of energy used by an external power source and user
effort, meaning engineers must take care to keep them lower.

Interaction with the environment and methods of measuring the
performance of a prosthetic device are still being tested. Variables
such as the kinematics for each person can variate metabolic cost and
energy consumption, disregarding the prosthesis’s composition and
developing a generalised prosthetic device at a lower cost. As with
interaction with the environment, the prosthesis depends on the level
of autonomy and the place where the artificial limb will be used.

Researchers who read this paper in the future should rely on
this work to follow a structured design focussing on characteristics
that could help amputees improve their quality of life and the
option to perform leisure and everyday activities. Researchers can
determine what is missing in the field by focussing on the trends
found in this paper and combining efforts of engineers and healthcare
workers.
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