
Computationally efficient and
sub-optimal trajectory planning
framework based on
trajectory-quality growth rate
analysis

Reiya Takemura* and Genya Ishigami

Faculty of Science and Technology, Graduate School of Integrated Design Engineering, Keio
University, Tokyo, Japan

A planetary exploration rover has been used for scientific missions or as a

precursor for a future manned mission. The rover’s autonomous system is

managed by a space-qualified, radiation-hardened onboard computer; hence,

the processing performance for such a computer is strictly limited, owing to the

limitation to power supply. Generally, a computationally efficient algorithm in

the autonomous system is favorable. This study, therefore, presents a

computationally efficient and sub-optimal trajectory planning framework for

the rover. The framework exploits an incremental search algorithm, which can

generate more optimal solutions as the number of iterations increases. Such an

incremental search is subjected to the trade-off between trajectory optimality

and computational burden. Therefore, we introduce the trajectory-quality

growth rate (TQGR) to statistically analyze the relationship between

trajectory optimality and computational cost. This analysis is conducted in

several types of terrain, and the planning stop criterion is estimated.

Furthermore, the relation between terrain features and the stop criterion is

modeled offline by a machine learning technique. Then, using the criterion

predicted by the model, the proposed framework appropriately interrupts the

incremental search in online motion planning, resulting in a sub-optimal

trajectory with less computational burden. Trajectory planning simulation in

various real terrain data validates that the proposed framework can, on average,

reduce the computational cost by 47.6% while maintaining 63.8% of trajectory

optimality. Furthermore, the simulation result shows the proposed framework

still performs well even though the planning stop criterion is not adequately

predicted.

KEYWORDS

trajectory planning, planetary rover, computationally efficient, sub-optimal algorithm,
RRT, anytime algorithm

OPEN ACCESS

EDITED BY

Jekanthan Thangavelautham,
University of Arizona, United States

REVIEWED BY

Vivian Suzano Medeiros,
Pontifical Catholic University of Rio de
Janeiro, Brazil
Hiroki Kato,
Japan Aerospace Exploration Agency
(JAXA), Japan

*CORRESPONDENCE

Reiya Takemura,
rereon@keio.jp

SPECIALTY SECTION

This article was submitted to Space
Robotics,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 14 July 2022
ACCEPTED 16 September 2022
PUBLISHED 28 October 2022

CITATION

Takemura R and Ishigami G (2022),
Computationally efficient and sub-
optimal trajectory planning framework
based on trajectory-quality growth
rate analysis.
Front. Robot. AI 9:994437.
doi: 10.3389/frobt.2022.994437

COPYRIGHT

© 2022 Takemura and Ishigami. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2022
DOI 10.3389/frobt.2022.994437

https://www.frontiersin.org/articles/10.3389/frobt.2022.994437/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.994437/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.994437/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.994437/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.994437/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.994437&domain=pdf&date_stamp=2022-10-28
mailto:rereon@keio.jp
https://doi.org/10.3389/frobt.2022.994437
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.994437

1 Introduction

In an extreme environment such as Mars or a volcanic area,

mobile robots have been used in scientific missions or as

precursors for a future manned mission. The robot calling a

planetary exploration rover is mainly commanded from Earth

with its autonomous mobility system. However, the

communication latency between Earth and the rover often

impedes the mission; therefore, autonomous mobility has been

an essential system for the rover. The autonomous mobility

system consists of the following three major processes: first,

the rover recognizes an environment with its onboard

cameras or light detection and ranging (LiDAR) sensors in

order to create a geometrical terrain map. Subsequently, the

rover plans a path or trajectory as motion set to reach a local goal

specified on the map. Finally, the rover successively executes the

planned motion based on its navigation and control subsystems.

These processes are managed by a space-qualified, radiation-

hardened onboard computer. The processing performance for

such a computer is often limited, owing to the limitation to power

supply. Hence, a computationally efficient algorithm in the

autonomous system is favorable.

Motion planning is an important process for the rover to avoid

many risks in challenging terrains, such as vehicle rollover on a

sloped terrain, collision with obstacle rocks, or becoming stuck on

wheels in loose soil. These issues are addressed by the grid-based

path planning method (Carsten et al., 2007; Pivtoraiko et al., 2009;

Ishigami et al., 2013). Most of the methods have been basically

derived from a regular discretization of robot state space, such as

state lattice. The grid-based planner generates a graph whose

vertices are a discretized set of reachable states of the robot and

whose edges are feasible motions. Then, an optimal path is

calculated based on a cost function composed of several indices,

such as the wheel slip in loose soil, posture angles on rough terrain,

and path length. Here, a grid-based search algorithm is often used

to find a path that provides the minimum value of the defined cost.

However, the path is a resolution-optimal path, which largely

depends on the resolution of the grid. Additionally, the

computational effort of this approach often exponentially

increases the dimension of the problem or the resolution of

the grid.

As compared with the grid-based method, an incremental

search using a random sampling method is often used to avoid

requiring a discretization of the state space. For example, Rapidly

exploring Random Trees (RRTs) have been widely applied in

sampling-based motion planning of a mobile robot (LaValle and

Kuffner, 1999). This method can efficiently find a sub-optimal

solution even in high-dimensional planning problems, although

it does not find the completely optimal solution. There are many

related works focusing on the improvement of its optimality. An

extension of the basic RRT toward an anytime algorithm can

generate a more optimal solution as the number of iterations

increases, where it evaluates whether a new path is more optimal

than the previous ones (Ferguson and Stentz, 2006). The RRT* is

also proposed as an asymptotically optimal planner that can

guarantee the optimality of the path generated (Karaman and

Frazzoli, 2011). Gammell et al. (2014, 2018) proposed a method

that can improve the convergence rate and final solution

optimality. In this method, once a path is found from the first

trial, the method retries sampling only from the subset defined by

an admissible heuristic to potentially improve the solution. A

primary advantage of these algorithms is that they can solve the

motion planning problem as long as they continue their

incremental search.

With applications to planetary exploration, recent studies

have addressed motion planning under uncertainty, which solves

the planning problem under stochastic constraints (Ghosh et al.,

2018; Inotsume et al., 2020; Mizuno and Kubota, 2020; Candela

et al., 2022). These works plan robotic motions so that the

probability of the worst-case situation is less than a specified

tolerance, resulting in the robust path/trajectory generation for

mobility risks. Although they contribute to safe and reliable

robotic navigation, the issue of computational cost still

remains when integrated with an incremental search algorithm.

Overall, the trade-off problem between the optimality/

robustness of a solution and computational burden is still

inevitable. Practically, the rover does not always need to

obtain an optimal solution but a valid solution as quickly as

possible. Although a compromise metric to determine the

terminal point for the planning is developed (Hansen and

Zilberstein, 2001), the relationship between terrain features

and the metric is an open issue. Intuitively, challenging

terrains are potentially less likely to improve the trajectory

optimality than flat terrains, even if computational resources

are used sufficiently. For each terrain type, the incremental search

algorithm needs to stop its process appropriately while

maintaining a certain degree of optimality.

This study aims to develop a computationally efficient and

sub-optimal trajectory planning framework for a planetary

exploration rover. We introduce the trajectory-quality growth

rate (TQGR) to explicitly analyze the relationship between

trajectory quality and computational cost. For each type of

terrain, the TQGR is collected and statistically processed in an

offline manner. The TQGR-based analysis can show an

appropriate number of iterations that may potentially improve

the trajectory optimality. Then, the analysis module is exploited

for online trajectory planning; therefore, the proposed

framework appropriately interrupts the incremental search

and generates a sub-optimal trajectory for the rover with less

computational burden. Numerical simulation studies are

performed to validate the proposed framework.

The remaining of this article is organized as follows: Section 2

explains the trajectory planning framework with the TQGR-

based analysis. Section 3 shows the trajectory planning algorithm

with a quasi-dynamic vehicle model in loose and rough terrains.

Section 4 shows the LiDAR-based terrain mapping system.

Frontiers in Robotics and AI frontiersin.org02

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

Section 5 discusses the simulation results using the proposed

framework. Section 6 draws the conclusion and presents a

direction for future studies.

2 TQGR-based trajectory planning
framework

2.1 Overview

Figure 1 illustrates an overview of the proposed trajectory

planning framework. The framework mainly consists of a map

generator, an anytime trajectory planner, and a TQGR-based

analysis module. The terrain map is generated by the conversion

of LiDAR point cloud into a digital elevation map (DEM) as

described in Ishigami et al. (2013). The scanned terrain data are

also classified based on its roughness. The details are described in

Section 4. The anytime trajectory planner employs our

traversability-based trajectory planning (Takemura and

Ishigami, 2021), where the closed-loop RRT (CL-RRT)

(Kuwata et al., 2009) is used as an incremental search

algorithm. The CL-RRT algorithm is suitable for a high-

dimensional problem space being subjected to multiple

constraints, such as robotic traversability and non-holonomic

vehicle. Our previous work validated that the CL-RRT based on a

quasi-dynamic vehicle model contributes to the reduction of

vehicle slip risks in loose soil. Section 3 reemphasizes the detail of

the trajectory planner. In this study, the CL-RRT is iteratively

executed in an anytime approach to improve the trajectory

quality defined by the cost function. The TQGR-based

analysis module, which is statistically modeled offline,

terminates the iteration of the CL-RRT. The following

subsection explains the TQGR-based analysis.

2.2 Trajectory evaluation using TQGR-
based analysis

As proposed by Ferguson and Stentz (2006), the trajectory

generated by the RRT converges to an optimal solution, but the

number of iterations gradually increases. To appropriately

terminate the iteration for each terrain type, the TQGR is

introduced based on the trajectory cost and computational

effort. When a new trajectory with less cost Ci is found at the

i-th iteration, the TQGR ηi is defined as follows:

ηi �
Ci−1 − Ci()/Ci−1
Ei − Ei−1()/Emax

, (1)

where E indicates the computational cost, which can be given by

the calculation time or the number of sampling trials of the RRT

algorithm. Emax is the maximum computational cost and is

defined based on the number of iterations. The TQGR

indicates the degree of improvement in trajectory quality

relative to the computational cost. Then, the iteration for

anytime planning is terminated when the TQGR at the i-th

iteration is less than the expected value:

ηi < q, (2)

where q is the planning stop criterion. Figure 2 depicts the

intuition of the planning termination based on the TQGR and

q. q can be given for each terrain type as follows:

FIGURE 1
Proposed trajectory planning framework.

FIGURE 2
Intuition of the planning stop criterion (Eqs. 1, 2).

Frontiers in Robotics and AI frontiersin.org03

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

q � f Mlabel(), (3)
where Mlabel is the classified terrain information. Eq. 2 indicates

that the i-th iteration has a low expectation to improve the

trajectory quality.

The function f (·) is modeled offline by the statistical analysis

of the TQGR. In each type of terrain, the TQGR can be acquired

at every iteration of the anytime planning. It should be noted that

the trajectory planner is inherently subjected to the randomness

of the RRT. To mitigate the randomness, the anytime planning is

repeatedly executed, and, a series of TQGRs is calculated. The

geometric mean of TQGRs is defined as the planning stop

criterion:

qlabel � m+1 �����������η0 · η1 · · · ηm√
, (4)

where m is the number of TQGRs. Once qlabel is calculated

offline for each type of terrain such as flat, rocky, and slope, the

TQGR-based analysis module can determine the feasible

number of iterations for online planning. To simply model f

(·), terrain roughness is used asMlabel, and the Gaussian process

regression (GPR), which is one of the machine learning

algorithms (Rasmussen and Williams, 2006), interpolates the

dataset of Mlabel and qlabel. This enables the TQGR-based

trajectory planning framework to achieve a sub-optimal

solution with a less computational burden even in unknown

environments. Furthermore, to stop the planning before the

trajectory with Ci is found at the i-th iteration, Eqs. 1, 2 are

extended as follows:

Ei >Ei−1 + 1 − α

q
Emax,

α � Ci

Ci−1
,

(5)

where α is the heuristic parameter, which shows the ratio

between the possible cost Ci and the current cost Ci−1. As

shown in Figure 2, Estop becomes large as α increases. The α

assumption contributes to the appropriate termination of

anytime planning, even during the i-th iteration. In practice,

Eqs. 2, 5 are both used for online trajectory planning.

3 Anytime trajectory planner

3.1 Algorithm

The proposed anytime trajectory planner basically iterates a

single procedure of the traversability-based CL-RRT (Takemura

and Ishigami, 2021). The primary difference between the basic

RRT and the anytime RRT is that the total cost Ci found at the i-

th iteration is used for the tree expansion phase of the RRT at the

next iteration phase. In order to find a new trajectory with a

smaller cost than Ci−1, the tree expansion phase at the i-th

iteration should meet the following condition:

cstart,near + cnear,new + hnew,goal <Ci−1, (6)

where cstart, near is the cost between the start state and the state

nearest to the new state in the tree, cnear,new is the cost between the

nearest state and the new state, and hnew, goal is the heuristic cost

for the given goal area. In this article, the Euclidean distance is

used for the heuristic cost. This cost assessment can exclude the

useless tree extension, which leads to efficiently find a new

trajectory with a smaller cost if it exists. The total cost

exponentially decreases and converges to an optimal solution

as the number of iterations increases.

Input: Goal region: Xgoal

Input: Terrain map: M

Input: Planning stop criterion: q

Output: Trajectory: T subopt

1: Ygoal ←GetHeight(Xgoal ,M)
2: S ← (Gy, Gσ) ←Initialize(xinit, Ygoal)

3: while i++ do

4: while 1 do

5: yrand ←Sample(k, Ygoal)

6: (Gynew , Gσnew) ←Extend(S, yrand)

7: if Traversability Assessment(Gσnew) and Check Eq.

(6) then

8: S ←UpdateTuple(S, Gynew , Gσnew)
9: if ReachGoal(Gσnew) then

10: T ←GetTrajectory(S, Ygoal)

11: if CostCheck(T) then
12: T subopt ← T
13: ηi ←CalcTQGR(T subopt)
14: break

15: if ηi < q then

16: break

17: Return T subopt

Algorithm 1. Anytime trajectory planning.

Algorithm 1 shows the procedure of the anytime trajectory

planner. Our trajectory planner incorporates the traversability

assessment into the CL-RRT algorithm (Kuwata et al., 2009).

Before starting the trajectory planning, GetHeight calculates the

z coordinate for each goal position in Xgoal using terrain

information (Algorithm 1, Line 1). The sample function

randomly samples a node yrand including x, y, and z

coordinates (Algorithm 1, Line 5). The extend function returns

two graphs: reference trajectories Gynew and state trajectories Gσnew

(Algorithm 1, Line 6). As in Kuwata et al. (2009), the reference

trajectories are extended toward the sampled node. The state

trajectories are simulated by the quasi-dynamic vehicle model

with the trajectory tracking controller (Figure 3). The quasi-

dynamic vehicle model accurately predicts the robot motion

and successively updates the state even in loose soil while

tracking the reference trajectories. The traversability assessment

examines the returned state trajectories to avoid mobility hazards

Frontiers in Robotics and AI frontiersin.org04

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

for the rover on 2.5-dimensional rough and loose terrains

(Algorithm 1, Line 7). Additionally, the constraint of the

anytime approach in Eq. 6 is also checked. When the

trajectories are traversable, the algorithm updates the tuple S

(Algorithm 1, Line 8). The CostCheck function calculates the

cost throughout the trajectory of reaching the goal (Algorithm 1,

Line 11), considering the traversability index as follows:

Ci � ∫te

ts

Wϕ
ϕ t()
Nϕ

()2

+Wθ
θ t()
Nθ

()2{
+Ws

s t()
Ns

()2

+Wβ
β t()
Nβ

()2

+Wl
l t()
Nl

()2}dt, (7)

where i indicates the i-th iteration, te − ts is the elapsed time for a

mobile robot to travel, l is the length of the trajectory segment, ϕ

and θ are the roll and pitch angles of the robot, s is the slip ratio in

the longitudinal direction of the robot, β is the sideslip angle of

the robot, Nl, Nϕ, Nθ, Ns, and Nβ are the normalization factors

that render each index dimensionless, and Wl, Wϕ, Wθ, Ws, and

Wβ are the weighting factors that provide a specific priority for

each index. In general, the weighting factors are user-defined

parameters and constant throughout the trajectory planning.

They are adjusted to have an equal influence on the cost

function. If a new trajectory is more optimal than the

previous ones, the TQGR is calculated (Algorithm 1, Line 13).

Then, the TQGR is assessed if the anytime planning (Algorithm

1, Line 3–16) needs to terminate its iteration (Algorithm 1,

Line 15).

3.2 Quasi-dynamic vehicle model

The quasi-dynamic vehicle model was proposed in our

conference article (Takemura and Ishigami, 2021). We validated

that the planner with the quasi-dynamicmodel guarantees that the

vehicle slippage is less than a prescribed threshold throughout the

trajectory. This subsection only highlights the vehicle model since

it is necessary to calculate the cost function. The rover considered

in this study is assumed to be a four-wheeled mobile robot with a

differential suspension and with front steerable wheels as shown in

Figure 4. The proposed quasi-dynamic vehicle model contains five

modules (Figure 3). First, the 2.5-dimensional kinematics with the

vehicle slippage updates the vehicle state with regard to the vehicle

position and heading. Subsequently, the suspension mechanism

estimates vehicle roll and pitch on a sloped terrain. Given the roll

and pitch angles, the wheel–soil interaction model based on

terramechanics (Wong, 2008) calculates wheel contact forces

for each wheel. Summing all contact forces provides the

cornering and thrust of the vehicle. Additionally, for the

summation, the commanded velocity and steering are given by

FIGURE 3
Consecutive calculation modules for the quasi-dynamic
vehicle model.

FIGURE 4
Schematic view of the vehicle model with a differential suspension. (A) Top view, (B) Side view.

Frontiers in Robotics and AI frontiersin.org05

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

the trajectory tracking controller. Using the cornering and thrust

forces, the characteristic diagram of vehicle slippage (CDVS)

estimates the vehicle slip ratio and sideslip angle. The following

subsections carefully explain the five modules of the quasi-

dynamic vehicle model.

3.2.1 Kinematic formulation
The motion prediction on rough terrain is expressed based

on the 2.5-dimensional kinematic vehicle model. First, a state of a

rover is described as follows:

x � x y ϕ θ ψ s β[]T, (8)

where x and y are the coordinates of the center of gravity of the

robot, and ψ is the heading angle of the robot. As in the study by

Rajamani (2012), the robotic motion can be described in the

robot’s body frame (Figure 4A) as follows:

vx � vcmd 1 − s(), (9)
vy � vx tan β, (10)

ωz � vx tan δ
Lf + Lr

, (11)

where vx and vy are the longitudinal and lateral velocities of the

robot, respectively, ωz is the heading rate of the robot, Lf and Lr
are the distances from the center of gravity of the robot to the

front and rear wheel axles, respectively, vcmd is the command

velocity along with the x-axis in the robot’s body frame, and δ is

the steering angle of the front wheels of the robot. The steering

angle is specified to the front wheels as a single scalar value, but it

is appropriately decomposed to left and right steering angles

based on the Ackermann steering geometry (Rajamani, 2012).

vcmd and δ are given by the trajectory tracking controller defined

in Section 3.2.5.

The robot motion in the inertia frame is calculated by

transforming the traveling velocity and heading rate in the

robot’s body frame with the Euler angles (Howard and Kelly,

2007) as follows:

_x
_y
_ψ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � R
vx
vy
ωz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (12)

R �
cosψ cos θ cosψ sin θ sin ϕ − sinψ cos ϕ 0
sinψ cos θ sinψ sin θ sin ϕ + cosψ cos ϕ 0

0 0 cos ϕ/ cos θ⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Additionally, the longitudinal and lateral velocities for each

wheel vxi and vyi are calculated by the geometrical constraint:

vxi
vyi
vzi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � vx
vy
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + 0
0
ωz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × ri, (13)

where the subscript *i denotes each wheel number, as shown

in Figure 4A; ri is the vector from the center of gravity of the

vehicle to that of each wheel. Focusing on a single wheel rotating

on loose soil, the wheel experiences a certain amount of slippage

that is quantified by the variables of a wheel slip ratio si and slip

angle βi:

si � 1 − vxi/rωi, (14)
βi � tan−1 vyi/vxi(), (15)

where r is the radius of the wheel and ωi is the angular velocity of

the wheel, which is determined based on vcmd.

3.2.2 Pose estimation
Once the position and the yaw angle are determined by the

kinematic formulation, the roll and pitch angles are

calculated. The calculation is based on the geometrical

constraint between the differential suspension mechanism

and terrain surface, as shown in Figure 4B. First, let us

represent each wheel height for the four-wheeled rover as

{pz1, pz2, pz3, and pz4}, as shown in Figure 4A. The height

coordinate of each wheel is derived by a DEM node

surrounding each wheel’s contact point. The roll and pitch

angles are geometrically calculated as follows:

ϕ � arcsin
zjl − zjr

T
(), (16)

θ � θl + θr
2

, (17)

where zjl and zjr are the heights of the left and right joints of the

suspension system, respectively. T is the distance between the left

and right joints. θl and θr denote the angles of the left and right

joints, respectively, as shown in Figure 4B. zjl and zjr are

calculated as follows based on the wheel contact points and

geometric constraints of the rover:

zjl � pz2 + H + 2r()cos θl − Lr sin θl, (18)
zjr � pz3 + H + 2r()cos θr − Lr sin θr, (19)

where H, r, and Lr are the lengths defined in Figure 4B. θl and θr
are given by the following equations:

θl � arcsin
pz2 − pz1

L
(), (20)

θr � arcsin
pz3 − pz4

L
(), (21)

where L is the wheelbase, which represents the length between

the front and rear wheel axles.

3.2.3 Wheel contact model based on
terramechanics

The wheel–soil interaction mechanics is described based on

the Wong–Reece terramechanics model (Wong, 2008).

Generally, wheels sink into loose soil while traveling on a

slope, as shown in Figure 5. Beneath the wheels, the normal

stress σ and the shear stress τ{x,y} are distributed. A general force

model for the x-axis Fxi, y-axis Fyi, and z-axis Fzi of each wheel

is subsequently calculated as follows (Ishigami and Yoshida,

2005):

Frontiers in Robotics and AI frontiersin.org06

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

Fxi � rb∫θf′

θr′
τx θ′()cos θ′ − σ θ′()sin θ′(− Rb θ′()cos βidθ′, (22)

Fyi � rb∫θf′

θr′
τy θ′() + Rb θ′()sin βi()dθ′, (23)

Fzi � rb∫θf′

θr′
τx θ′()sin θ′() + σ θ′()cos θ′()dθ′, (24)

where Rb is calculated based on Hegedus’s bulldozing resistance

estimation (Hegedus, 1960), b is the wheel breadth, and θf′ and θr′
are the entry and exit angles, respectively. θf′ and θr′ are defined as
follows:

θf′ � arccos 1.0 − h/r(), (25)
θr′ � −arccos 1.0 − κh/r(), (26)

where h is the wheel sinkage and κ is the wheel sinkage ratio. Each

wheel sinkage hi is estimated by the following equation:

hi � argmin
h

Fzi −Wi ϕ, θ()(), (27)

where Wi is each wheel load determined by the roll and pitch

angles of the vehicle. Furthermore, the cornering and thrust

forces are defined as sum of the wheel forces as follows:

FC � ∑nw
i�1

Fxi sin δi + Fyi cos δi(), (28)

FT � ∑nw
i�1

Fxi cos δi − Fyi sin δi(), (29)

where nw is the number of wheels. These forces are highly related

to the steering motion of the vehicle.

3.2.4 Characteristic Diagram of Vehicle Slippage
Our study assumes that the wheel slip effect in loose soil highly

depends on the cornering and thrust forces of the vehicle. Hence,

the vehicle dynamics and terramechanics elaborate the CDVS,

which can fairly predict the vehicle slip motion in loose soil with

less computational burden. To model the CDVS, first, a number of

dynamic simulations (Ishigami and Yoshida, 2005) are conducted

with different input values on the front steering angle and traction

loads, while the target body velocity vcmd for the vehicle is constant.

The traction loads Flat and Flon are given in the lateral and

longitudinal directions of the vehicle, which are the directions

opposite to vy and vx, respectively. The dynamic simulation

outputs the wheel–soil interaction forces and the vehicle state

variables such as vx and vy. These output variables subsequently

draw a two-dimensional diagram that varies s and β in accordance

with FC, FT, and the steering angle, as illustrated in Figure 6. Once

the CDVS is modeled by a regression approach such as support

vector regression (Smola and Schölkopf, 2004) as offline

processing, the vehicle slip ratio and the sideslip angle can be

estimated based on the wheel–soil interaction forces. In the

trajectory planning phase, FC, FT, and the front steering angle

are used as an input to calculate s and β as follows:

s, β � g FC, FT, δ(), (30)

where the function g (·) expresses the modeled CDVS. The

calculated s and β are directly exploited to update Eqs. 9, 10 in

accordance with Figure 3. The quasi-dynamic vehicle model,

therefore, can predict the vehicle state variables for robotic

motions in loose soil with less computational burden as

compared with the dynamic simulation (Ishigami and Yoshida,

2005). Similar approaches are reported by Sutoh et al. (2015) and

Seegmiller and Kelly (2016), where wheel slippage is estimated

based on the wheel–terrain interaction forces. The validity of the

quasi-dynamic vehicle model using the CDVS is evaluated in our

previous work (Takemura and Ishigami, 2021).

3.2.5 Trajectory tracking controller
A trajectory tracking controller is realized by steering and

driving actuators such that the robot can compensate for the

wheel slip effect and smoothly follow reference trajectories within

its maneuverability. The wheel slip compensation control

proposed by Ishigami et al. (2009) is exploited. The desired

steering control for the i-th wheel is expressed as follows:

FIGURE 5
Wheel–soil contact force on a sloped terrain.

FIGURE 6
Characteristic diagram of vehicle slippage (δ =10°).

Frontiers in Robotics and AI frontiersin.org07

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

δdi � arctan
vd sinψd − _Yi _ψd()
vd cosψd − _Xi _ψd()() − ψd − βi, (31)

where vd represents the desired linear velocity of the robot, and Xi

and Yi are the distances between the i-th wheel and the center of

gravity of the robot in the x and y directions of the robot body frame,

respectively. ψd represents the desired heading angle of the robot.

Subsequently, the command velocity compensating the

longitudinal slip is written as

vcmd � vd
1 − s

. (32)

In this study, the desired velocity vd is expressed as follows:

vd � vmin + G

Gmax
vmax − vmin(), (33)

where vmax and vmin are the maximum and minimum traveling

velocities, respectively, which are defined by the driving

actuator’s limitation. G is the power generated by the robot.

Gmax is the maximum of G. The power generation was calculated

using the method presented in Sakayori and Ishigami (2016). Eq.

34 indicates that the desired velocity decreases when the robot

can potentially generate a large amount of power.

3.3 Traversability assessment

The new trajectory segment is examined based on the robot

traversability. This assessment consists of two criteria, namely,

posture angle and vehicle slippage, which are calculated based on

the quasi-dynamic vehicle model. The roll and pitch angles should

be less than their threshold angles throughout the trajectory.

Additionally, the vehicle slippage including the wheel slip ratio

and slip angle should be less than their threshold values. These

threshold values can be predetermined by practical experiments

such as slope traversability or mobility tests (Ishigami and Yoshida,

2005; Inotsume et al., 2012). This assessment limits the tree

extension within the traversable regions on the terrain; hence, it

guarantees that the trajectory is traversable for the vehicle in rough

and loose terrains. It is noteworthy that the threshold value

correlates safety of the trajectory and rover motion; larger values

will generate a challenging trajectory with aggressive maneuvers for

the rover, while smaller ones will generate a safe trajectory with a

modest motion of the rover.

4 Terrain data processing

4.1 LiDAR-based 3D terrain mapping

To generate a DEM on real rough terrain, an experimental

setup for a gimbaled LiDAR scanning system is first introduced.

The plane-scanning LiDAR (UTM-30LX-EW developed by

Hokuyo Corp.) is mounted on the gimbal, as shown in

Figure 7, enabling the three-dimensional scanning for the

terrain features. The laser emitter and acceptance point inside

the LiDAR rotate 270° in the yaw direction, and then, the LiDAR

can achieve the 2D plane scanning. Controlling the tilting motion

of the LiDAR mounted on the gimbal along with the 2D plane

scanning, 3D terrain mapping can be achieved. The LiDAR

provides a 3D terrain feature as a dataset of a point cloud.

A geometrical analysis of the LiDAR system is illustrated in

Figure 7. In this figure, one single point p is scanned by the

LiDAR. Here, the coordinates of the point in the robot coordinate

system pR are given as follows:

pR � r′
sin θL
0

cos θL

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + d
cosψL cos θL

sinψL−cosψL sin θL

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + lx
ly
lz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (34)

where the offset distance between the tilt rotation center and the

light acceptance point is represented by r′, d is the distance from
the LiDAR to the point, ψL is the scanning angle around the yaw

of the LiDAR, θL is the tilting angle with 0.0° being horizontal,

and lx, ly, and lz are the distances between the center of gravity of

the robot and the tilt rotation center in x, y, and z directions of the

robot body frame, respectively. pR needs to be transformed from

the robot coordinate system to an inertial coordinate system

based on a rotation matrix. The matrix is composed of the robot

configuration: roll, pitch, and yaw angles can be measured by an

onboard IMU. The inertial coordinate pI is given by the rotation

matrix of the Euler angles as follows:

pI � RzRyRxpR. (35)

Then, a DEM is generated by downsampling the number of point

cloud data, as presented in Ishigami et al. (2013) and Rekleitis

et al. (2013). The DEM represents terrain elevations for ground

positions at regularly spaced intervals.

FIGURE 7
Geometrical analysis of LiDAR’s mapping.

Frontiers in Robotics and AI frontiersin.org08

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

4.2 Experiment for terrain map acquisition

The experiment of terrain mapping was conducted in a

volcanic area at Mt. Mihara, Japan. In this area, the terrain is

mainly covered with dark volcanic basalt rocks called scoria.

Additionally, the terrain feature is mostly composed of slopes,

ditches, and volcanic bombs (huge rocks), as shown in

Figure 8. In the experiment, first, the robot posture was

measured by the IMU at scanning positions. The LiDAR

scanning starts from 0 to 80° in the tilt axle of the gimbal

unit. The range of ψL is given as [− 90.0°, 90.0°]. The LiDAR

provides 721 points in every line scanning and repeats this line

scanning about 150 times while the gimbal rotates. Therefore,

one complete 3D scanning contains about 100, 000 points. The

LiDAR used in this experiment can usually measure a distance

of about 30 m. However, the scoria terrain barely reflects the

light emitted from the LiDAR, and the reflected light becomes

weaker as the distance gets further. Therefore, the work in this

article assumes that the data obtained from 0.0 to 6.0 m are

reliable enough to be exploited for DEM generation. Figure 9

shows the typical result of the LiDAR scanning experiment

and the conversion to a DEM.

4.3 Terrain classifier

The LiDAR scanning data are classified based on terrain

roughness for the statistical analysis of the TQGR. The terrain

roughness is defined as follows:

B �

��������������
1
np

∑np
i�0

zIi − zI()2√√
, (36)

where B is the roughness of the area with the tree expanded by the

planner, zIi is the height of the point cloud data, zI is the average

of zIi, and np is the number of the point cloud.

Another method to classify surrounding terrain types is to use

machine learning-based approaches (Filitchkin and Byl, 2012;

Rothrock et al., 2016; Higa et al., 2019; Iwashita et al., 2019).

These works have achieved the terrain classification to accurately

predict vehicle slippage or estimate energy consumption. Given

that detailed terrain classification is not the core of our

contribution here, we used Eq. 37 in our planning framework.

For instance, Figure 9 shows terrain roughness 0.149 m.

5 Simulation study

In this study, offline and online trajectory planning

simulations are conducted. The offline planning models the

TQGR-based analysis module, and the online use case

validates the performance of the TQGR-based trajectory

planning framework. Simulation parameters are summarized

in Table 1.

FIGURE 8
Gimbaled LiDAR scanning system for 3D terrain mapping.

FIGURE 9
Example of a 3D terrain map scanned by LiDAR. The terrain
surface is scanned from the location of the illustration of the rover
testbed. (A) Raw point cloud data scanned by LiDAR, (B) DEM
converted from the raw point cloud dataset.

Frontiers in Robotics and AI frontiersin.org09

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

5.1 Offline trajectory planning for learning
TQGR-based analysis

We obtained 11 types of terrain data through the field

experiment in Section 4.2. For the statistical analysis of the

TQGR, nine of the 11 datasets were exploited so that the terrain

roughness is widely distributed. Four typical terrainmaps are shown

in Figure 10. For each terrain, two or three goals were randomly

sampled within a range from 5.0 to 6.0 m, and we defined a set of

one goal and one terrain as a scenario. Each initial positionwas set in

the LiDAR scanning point, as shown in Figure 10. The anytime

trajectory planning was repeatedly executed 20 times for each

scenario. Each repetition has 15 iterations of the anytime

planning. Typical results of TQGRs are summarized in the

histogram illustrated in Figure 11.

According to the results, we observed that the TQGR was

frequently divided into small (< 0.2) or large (0.5 >) values in

all terrain types. This implies that the improvement of the trajectory

quality occurs either exceedingly or slightly. Given the geometric

mean q for each scenario, the trend of the TQGR is separated into

two groups, namely, flat/sloped terrains and rocky/rough terrains.

The first group acquired a smaller q, and the second group acquired

the larger one. We deduce this because the trajectory quality varies

scarcely with lower local terrain roughness. The cost function (Eq. 7)

mainly consists of rover posture angles and slippage; therefore, flat

and sloped terrains have a low expectation to reduce the cost. On the

other hand, in rocky and rough terrains, the planner can frequently

improve trajectory quality; hence, a larger q is obtained.

As described, q seems to correlate with the terrain features. Then,

the GPR algorithm generates the TQGR-based analysis module by

modeling the relationship between the terrain roughness and the

planning stop criterion, as shown in Figure 12. The GPR not only

outputs the predicted value but also 95% confidence intervals. As the

characteristics of GPR, the prediction accuracy is worse where there is

no dataset. In this study, the upper and lower boundaries are defined

as q+ and q−, respectively.

5.2 Online trajectory planning scenario

To validate the effectiveness of the proposed planning stop

criterion in online planning scenarios, the sub-optimal trajectory

planning is compared with the nearly optimal planning in LiDAR-

based terrain maps. Two typical terrain maps were used, and goals

greater than 5 m (A and B) were selected for the trajectory planning

simulation. The terrain maps are given by the LiDAR-based

mapping in Section 4.2, but they are not used for GPR

modeling. Terrain roughnesses are 0.207 and 0.281 [m], and

their q values are predicted as shown in Table 2 and used for the

sub-optimal trajectory planning. It should be noted that it needs too

much computational time to find the optimal trajectory; hence, the

trajectory found at the 15-th iteration is defined as a nearly optimal

solution. To consider the randomness of the planner, 20 trials of

trajectory planning simulation are conducted. The proposed

trajectory planning framework was implemented in Python and

ran on a computer with an Intel i5 CPU 2.0 GHz processor and

16 GB RAM. The typical result of the sub-optimal and nearly

optimal trajectories is illustrated in Figure 13. The typical time

history of the total cost is shown in Figure 14. Tables 3–6 summarize

the average and standard deviation throughout the 20 trials for

computational time, final cost, and its improvement rate. The cost

improvement CI is calculated as follows:

CI � 1 − Cfin

C0
, (37)

where Cfin is the final cost.First, we observed that both total costs

largely decreased until about 100 s, as shown in Figure 14. The cost

of the sub-optimal trajectory is 38.1, resulting in a difference of

only 4.3% from the nearly optimal one. Subsequently, the proposed

planner was terminated at 208 s, while the nearly optimal

trajectory was found around 310 s and its planner continues

around 420 s. This means that the TQGR-based analysis

module appropriately outputs the planning stop criterion,

enabling the planner to save the computational cost by 50.5%.

We observed the nearly optimal trajectory conducted useless

iterations because the TQGR around 200 s is relatively low.

Therefore, we can conclude the proposed planner avoided the

useless calculation.

Based on the results in Tables 3–6, two metrics were calculated

to evaluate the performance of the proposed framework:

• Time improvement ratio: how much time is improved as

compared with the nearly optimal planner? This can be

calculated as follows:

TABLE 1 Parameters used in the simulation.

Parameter Value Unit

ϕth, Nϕ 20.0 Degrees

θth, Nθ 20.0 Degrees

sth, Ns 0.90 -

βth, Nβ 45.0 Degrees

NL 1.0 M

WL 0.20 -

Wϕ, Wθ 0.30 -

Ws 0.05 -

Wβ 0.15 -

Emax 700 S

α 0.9 -

Lf, Lr 0.30 M

L 0.60 M

T 0.50 M

H 0.30 M

r 0.10 M

m 38.5 kg

Frontiers in Robotics and AI frontiersin.org10

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

It � 100 1 − tqp

topt
(), (38)

where t. is each average time in Tables 3–6, and q* is replaced

by q, q+, and q−. It is noted that we evaluated the planner using

It instead of computational time since our implementation

does not assume the CPU power and programming language

required for actual operation.

• Cost improvement ratio: how much better CI is as

compared with the nearly optimal planner? This can be

calculated as follows:

IC � 100
CIqp

CIopt
(), (39)

where CI. is each cost improvement in Tables 3–6.

FIGURE 10
Typical terrainmaps for simulation. The initial position is set at the scanning point illustrated by the 2Dmodel of the rover testbed. (A) Flat terrain:
roughness 0.083 m, (B) Rocky terrain: roughness 0.123 m, (C) Rough terrain: roughness 0.234 m, (D) Sloped terrain: roughness 0.257 m.

FIGURE 11
Histogram of the TQGRs for each terrain. Red lines show the geometric mean of TQGRs. (A) Flat terrain: roughness 0.083 m, (B) Rocky terrain:
roughness 0.123 m, (C) Rough terrain: roughness 0.234 m, (D) Sloped terrain: roughness 0.257 m.

Frontiers in Robotics and AI frontiersin.org11

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

Figure 15 shows two metrics for each terrain map and each

goal and the benchmark for the evaluation.

In the terrain with 0.207 [m] roughness, the sub-optimal

trajectory planning with q observed cost improvements of

45.9% and 67.2% compared with the nearly optimal planning.

Additionally, the sub-optimal planner improved computational

time by 64.4% and 63.1%. These results show the sub-optimal

trajectory planningwith q terminated the planning iterationwhile

exceeding the benchmark. The cases for q+ and q− still

outperformed the benchmark except for q+ in goal A. It is noted

that the deterioration in q+ in goalA is only 3.4%.This pointwould

be improved if the GPR modeling is elaborated further by an

increase of the dataset.

FIGURE 12
GPR model for the TQGR-based analysis module, which
shows the terrain roughness vs. the planning stop criterion.

TABLE 2 Planning stop criterion.

Roughness q− q q+

0.207 0.302 0.545 0.788

0.281 −0.435 −0.074 0.288

FIGURE 13
Illustration of the difference between the sub-optimal and
nearly optimal trajectories. The two trajectories are quite different,
but the costs are almost the same because of the rough and loose
terrains.

FIGURE 14
Time history of computational time vs. cost.

FIGURE 15
Summary of two metrics (IC vs. It) in the simulation results.
The legend shows a set of terrain roughness, goal, and planning
stop criterion. The dashed line describes the benchmark of the
relationship between IC and It. For instance, if the trajectory
planning stops at an 80% cost improvement of the nearly optimal
trajectory planner, it stands to reason that a 20% time
improvement would be observed.

Frontiers in Robotics and AI frontiersin.org12

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

In the terrain with 0.281 [m] roughness, q and q− are minus

values; hence, Eq. 5 does not work well. This is because this

terrain roughness is an extrapolation for the GPR modeling,

resulting in a less accurate prediction. According to Figure 15, we

observed that the computational times of the case with q+ were

only reduced by 14.3% and 20.0%, while their cost improvements

were 90.6% and 83.3%. The performance of q+ did not

significantly exceed the benchmark as compared with the case

for 0.207 [m] roughness. This point would also be improved if the

number of dataset for the GPR model increases.

Overall, we observed an average reduction in a computational

time of 47.6%, with a cost improvement of 63.8%. Therefore, the

TQGR-based analysis module could suggest the appropriate time

to terminate the iteration of the anytime planning for each terrain

type, resulting in less computational burden. The problem of the

lack of dataset would be solved by an informativemotion planning

algorithm (Viseras et al., 2017), which allows the rover to identify

unexplored environments. This approach contributes to efficient

data collection for the GPR modeling, and this issue will be

addressed as a future work.

6 Conclusion and future work

This study introduced TQGR analysis, which contributes to

solving the trade-off problem between the optimality and

computational burden for the incremental search algorithm.

The TQGR-based trajectory planning framework can

appropriately terminate its planning for each type of terrain,

enabling the rover to generate a sub-optimal trajectory with less

computational burden. The TQGR analysis module was modeled

based on multiple trials of trajectory simulation in a real rough

terrain. Our statistical analysis of the TQGR revealed that the

planning stop criterion correlates with the terrain features. The

GPR algorithm models the relation, and the trajectory planning

simulation in unknown environments confirmed that on average,

the proposed framework can reduce the computational cost by

47.6% while maintaining 63.8% of trajectory optimality. Even

though the TQGR-based analysis module could not adequately

predict the planning stop criterion, the proposed framework still

worked better than the benchmark.

A possible future direction of this study is efficient data

collection to improve the accuracy of the TQGR-based

analysis module. As discussed, the informative motion

planner efficiently explores unknown environments, which

would contribute to the collection of the useful dataset for

GPR modeling.

Another future work possibly includes the implementation of

an asymptotically optimal algorithm such as RRT* (Karaman

and Frazzoli, 2011) instead of the anytime RRT algorithm. This

may efficiently find a cost-minimum trajectory, and the planning

stop criterion possibly performed better. However, the original

RRT* algorithm needs to consider an appropriate steering

TABLE 3 Simulation result in terrain roughness 0.207 (goal A):
C0=43.0 ± 3.1.

Trajectory Time [s] Final
cost [-]

Cost
imp. [%]

Ave Std Ave Std Ave Std

Sub-optimal: q+ 127.7 37.3 42.1 3.1 2.0 3.1

Sub-optimal: q 209.2 90.9 40.7 2.4 5.0 6.5

Sub-optimal: q− 373.7 111.1 39.5 2.3 7.7 7.3

Optimal 587.2 89.8 38.1 1.6 10.9 7.0

TABLE 4 Simulation result in terrain roughness 0.207 (goal B):
C0=39.6 ± 2.1.

Trajectory Time [s] Final
cost [-]

Cost
imp. [%]

Ave Std Ave Std Ave Std

Sub-optimal: q+ 154.9 53.4 38.5 1.8 2.7 3.9

Sub-optimal: q 216.8 78.6 37.8 1.1 4.3 5.4

Sub-optimal: q− 409.2 129.5 37.2 1.0 5.9 6.0

Optimal 586.8 92.5 37.0 0.9 6.4 5.7

TABLE 5 Simulation result in terrain roughness 0.281 (goal A):
C0=90.9 ± 1.7.

Trajectory Time [s] Final
cost [-]

Cost
imp. [%]

Ave Std Ave Std Ave Std

Sub-optimal: q+ 455.4 100.1 88.2 1.6 2.9 2.3

Sub-optimal: q - - - - - -

Sub-optimal: q− - - - - - -

Optimal 531.3 56.7 87.9 1.3 3.2 2.1

TABLE 6 Simulation result in terrain roughness 0.281 (goal B):
C0=92.1 ± 3.1.

Trajectory Time [s] Final
cost [-]

Cost
imp. [%]

Ave Std Ave Std Ave Std

Sub-optimal: q+ 446.0 106.2 88.8 2.4 3.5 2.9

Sub-optimal: q - - - - - -

Sub-optimal: q− - - - - - -

Optimal 557.8 79.1 88.1 1.7 4.2 3.3

Frontiers in Robotics and AI frontiersin.org13

Takemura and Ishigami 10.3389/frobt.2022.994437

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

function for a wheeled robot model. As reported in Jeon and

Frazzoli (2011), this two-point boundary value problem is

computationally inefficient, and this is why we did not use

RRT* in this study. Hence, we would need another approach

such as CL-RRT#, which does not require solving the steering

maneuver problem (Arslan and Tsiotras, 2017).

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

RT: conceptualization, simulation setup, data collection,

software, analysis and discussion of results, and

writing—original draft. GI: analysis and discussion of results,

writing—review and editing, and supervision.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors, and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

Arslan, O., and Tsiotras, P. (2017). “Sampling-based algorithms for optimal
motion planning using closed-loop prediction,” in IEEE International
Conference on Robotics and Automation, 4991–4996. doi:10.1109/ICRA.
2017.7989581

Candela, A., Wettergreen, D., and Planning, A. S.-a. (2022). An approach to
science and risk-aware planetary rover exploration. IEEE Robot. Autom. Lett. 7,
9691–9698. doi:10.1109/lra.2022.3191949

Carsten, J., Rankin, A., Ferguson, D., and Stentz, A. (2007). “Global path planning
on board the Mars exploration rovers,” in IEEE Aerospace Conference Proceedings.
doi:10.1109/AERO.2007.352683

Ferguson, D., and Stentz, A. (2006). “Anytime RRTs,” in IEEE International
Conference on Intelligent Robots and Systems. line, 5369–5375. doi:10.1109/IROS.
2006.282100

Filitchkin, P., and Byl, K. (2012). “Feature-based terrain classification for
LittleDog,” in IEEE International Conference on Intelligent Robots and Systems
(IROS) (IEEE), 1387–1392. doi:10.1109/IROS.2012.6386042

Gammell, J. D., Barfoot, T. D., and Srinivasa, S. S. (2018). Informed sampling for
asymptotically optimal path planning. IEEE Trans. Robot. 34, 966–984. doi:10.1109/
TRO.2018.2830331

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2014). “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling of an admissible
ellipsoidal heuristic,” in IEEE International Conference on Intelligent Robots and
Systems, 2997–3004. doi:10.1109/IROS.2014.6942976

Ghosh, S., Otsu, K., and Ono, M. (2018). Probabilistic kinematic state
estimation for motion planning of planetary rovers,” in IEEE International
Conference on Intelligent Robots and Systems. Madrid, Spain (IEEE),
5148–5154. doi:10.1080/0969725x.2015.1042662

Hansen, E. A., and Zilberstein, S. (2001). Monitoring and control of anytime
algorithms: A dynamic programming approach. Artif. Intell. 126, 139–157. doi:10.
1016/S0004-3702(00)00068-0

Hegedus, E. (1960). A simplified method for determination of bulldozing
resistance (land locomotion research laboratory army tank automotive
command report).

Higa, S., Iwashita, Y., Otsu, K., Ono, M., Lamarre, O., Didier, A., et al. (2019).
Vision-based estimation of driving energy for planetary rovers using deep learning
and terramechanics. IEEE Robot. Autom. Lett. 4, 3876–3883. doi:10.1109/LRA.
2019.2928765

Howard, T., and Kelly, A. (2007). Optimal rough terrain trajectory generation for
wheeled mobile robots. Int. J. Rob. Res. 26, 141–166. doi:10.1177/
0278364906075328

Inotsume, H., Kubota, T., and Wettergreen, D. (2020). Robust path planning for
slope traversing under uncertainty in slip prediction. IEEE Robot. Autom. Lett. 5,
3390–3397. doi:10.1109/LRA.2020.2975756

Inotsume, H., Sutoh, M., Nagaoka, K., Nagatani, K., and Yoshida, K. (2012). Slope
traversability analysis of reconfigurable planetary rovers. IEEE/RSJ Int. Conf.
Intelligent Robots Syst., 4470–4476. doi:10.1109/IROS.2012.6386044

Ishigami, G., Nagatani, K., and Yoshida, K. (2009). Slope traversal controls for
planetary exploration rover on sandy terrain. J. Field Robot. 26, 264–286. doi:10.
1002/rob.20277

Ishigami, G., Otsuki, M., and Kubota, T. (2013). Range-dependent terrain
mapping and multipath planning using cylindrical coordinates for a planetary
exploration rover. J. Field Robot. 30, 536–551. doi:10.1002/rob.21462

Ishigami, G., and Yoshida, K. (2005). “Steering characteristics of an exploration
rover on loose soil based on all-wheel dynamics model,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Iwashita, Y., Nakashima, K., Stoica, A., and Kurazume, R. (2019). “TU-net and
TDeepLab: Deep learning-based terrain classification robust to illumination
changes, combining visible and thermal imagery,” in International Conference
on Multimedia Information Processing and Retrieval (MIPR) (IEEE), 280. –285.
doi:10.1109/MIPR.2019.00057

Jeon, J., and Frazzoli, E. (2011). “Anytime computation of time-optimal off-road
vehicle maneuvers using the RRT,” in IEEE Conference on Decision and Control,
3276–3282.

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for
optimal motion planning. Int. J. Rob. Res. 30, 846–894. doi:10.1177/
0278364911406761

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., and How, J. P. (2009).
Real-time motion planning with applications to autonomous urban driving. IEEE
Trans. Control Syst. Technol. 17, 1105–1118. doi:10.1109/TCST.2008.2012116

LaValle, S. M., and Kuffner, J. J. (1999). Randomized kinodynamic planning.
IEEE Int. Conf. Robotics Automation, 473–479.

Mizuno, M., and Kubota, T. (2020). “A new path planning architecture to
consider motion uncertainty in natural environment,” in IEEE International
Conference on Robotics and Automation, 2182–2188. doi:10.1109/ICRA40945.
2020.9197238

Pivtoraiko, M., Knepper, R. A., and Kelly, A. (2009). Differentially constrained
mobile robot motion planning in state lattices. J. Field Robot. 26, 308–333. doi:10.
1002/rob.20285

Rajamani, R. (2012). Vehicle dynamics and control. Springer.

Rasmussen, C. E., andWilliams, C. K. I. (2006).Gaussian processes for machine learning.

Frontiers in Robotics and AI frontiersin.org14

Takemura and Ishigami 10.3389/frobt.2022.994437

https://doi.org/10.1109/ICRA.2017.7989581
https://doi.org/10.1109/ICRA.2017.7989581
https://doi.org/10.1109/lra.2022.3191949
https://doi.org/10.1109/AERO.2007.352683
https://doi.org/10.1109/IROS.2006.282100
https://doi.org/10.1109/IROS.2006.282100
https://doi.org/10.1109/IROS.2012.6386042
https://doi.org/10.1109/TRO.2018.2830331
https://doi.org/10.1109/TRO.2018.2830331
https://doi.org/10.1109/IROS.2014.6942976
https://doi.org/10.1080/0969725x.2015.1042662
https://doi.org/10.1016/S0004-3702(00)00068-0
https://doi.org/10.1016/S0004-3702(00)00068-0
https://doi.org/10.1109/LRA.2019.2928765
https://doi.org/10.1109/LRA.2019.2928765
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1109/LRA.2020.2975756
https://doi.org/10.1109/IROS.2012.6386044
https://doi.org/10.1002/rob.20277
https://doi.org/10.1002/rob.20277
https://doi.org/10.1002/rob.21462
https://doi.org/10.1109/MIPR.2019.00057
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/ICRA40945.2020.9197238
https://doi.org/10.1109/ICRA40945.2020.9197238
https://doi.org/10.1002/rob.20285
https://doi.org/10.1002/rob.20285
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

Rekleitis, I., Bedwani, J. L., Dupuis, E., Lamarche, T., and Allard, P. (2013).
Autonomous over-the-horizon navigation using LIDAR data. Auton. Robots 34,
1–18. doi:10.1007/s10514-012-9309-9

Rothrock,B.,Papon, J.,Kennedy,R.,Ono,M.,Heverly,M., andCunningham,C. (2016).
“SPOC:Deep learning-based terrainclassification forMarsrovermissions,” inAIAAspace
and astronautics forum and exposition (SPACE), 5539–5551. doi:10.2514/6.2016-5539

Sakayori, G., and Ishigami, G. (2016). “Power-synchronized path planning for
mobile robot in rough terrain,” in International Symposium on Artificial
Intelligence, Robotics and Automation in Space.

Seegmiller, N., and Kelly, A. (2016). High-fidelity yet fast dynamic models of
wheeled mobile robots. IEEE Trans. Robot. 32, 614–625. doi:10.1109/TRO.2016.
2546310

Smola, A. J., and Schölkopf, B. (2004). A tutorial on support vector
regression. Statistics Comput. 14, 199–222. doi:10.1023/B:STCO.0000035301.
49549.88

Sutoh, M., Otsuki, M., Wakabayashi, S., Hoshino, T., and Hashimoto, T. (2015).
The right path: Comprehensive path planning for lunar exploration rovers. IEEE
Robot. Autom. Mag. 22, 22–33. doi:10.1109/MRA.2014.2381359

Takemura, R., and Ishigami, G. (2021). “Traversability-based trajectory planning
with quasi-dynamic vehicle model in loose soil,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 8388–8394.

Viseras, A., Shutin, D., and Merino, L. (2017). “Online information gathering
using sampling-based planners and GPs: An information theoretic approach,” in
IEEE International Conference on Intelligent Robots and Systems (IROS), 123–130.
doi:10.1109/IROS.2017.8202147

Wong, J. Y. (2008). Theory of ground vehicles. 4th edn.

Frontiers in Robotics and AI frontiersin.org15

Takemura and Ishigami 10.3389/frobt.2022.994437

https://doi.org/10.1007/s10514-012-9309-9
https://doi.org/10.2514/6.2016-5539
https://doi.org/10.1109/TRO.2016.2546310
https://doi.org/10.1109/TRO.2016.2546310
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1109/MRA.2014.2381359
https://doi.org/10.1109/IROS.2017.8202147
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.994437

	Computationally efficient and sub-optimal trajectory planning framework based on trajectory-quality growth rate analysis
	1 Introduction
	2 TQGR-based trajectory planning framework
	2.1 Overview
	2.2 Trajectory evaluation using TQGR-based analysis

	3 Anytime trajectory planner
	3.1 Algorithm
	3.2 Quasi-dynamic vehicle model
	3.2.1 Kinematic formulation
	3.2.2 Pose estimation
	3.2.3 Wheel contact model based on terramechanics
	3.2.4 Characteristic Diagram of Vehicle Slippage
	3.2.5 Trajectory tracking controller

	3.3 Traversability assessment

	4 Terrain data processing
	4.1 LiDAR-based 3D terrain mapping
	4.2 Experiment for terrain map acquisition
	4.3 Terrain classifier

	5 Simulation study
	5.1 Offline trajectory planning for learning TQGR-based analysis
	5.2 Online trajectory planning scenario

	6 Conclusion and future work
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

