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The safe and reliable operation of autonomous agricultural vehicles requires an
advanced environment perception system. An important component of perception
systems is vision-based algorithms for detecting objects and other structures in the
fields. This paper presents an ensemble method for combining outputs of three
scene understanding tasks: semantic segmentation, object detection and anomaly
detection in the agricultural context. The proposed framework uses an object
detector to detect seven agriculture-specific classes. The anomaly detector detects
all other objects that do not belong to these classes. In addition, the segmentation
map of the field is utilized to provide additional information if the objects are
located inside or outside the field area. The detections of different algorithms are
combined at inference time, and the proposed ensemble method is independent
of underlying algorithms. The results show that combining object detection with
anomaly detection can increase the number of detected objects in agricultural
scene images.
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1 Introduction

In the next few decades, agricultural production and the pressure to meet food demand
are expected to rise due to global population growth. As a result, global food production
needs to increase by 60 per cent by 2050 to feed the growing population (Alexandratos and
Bruinsma, 2012). Technological development will play a vital role in the more efficient use of
natural resources and sustainable agricultural practices (FAO, 2018). As the focus on farming
productivity and efficiency has grown over the past few decades, more sophisticated and
intelligent agricultural machinery has been developed. With the technological advancements,
farming solutions will evolve from providing decision support to vehicle operators to in-field
supervision of unmanned vehicles and eventually to fully autonomous vehicles.

The development of self-driving agricultural vehicles has attracted attention in
the last few decades (Case, 2016; Kubota, 2017; New Holland Agriculture, 2017;
YANMAR AGRIBUSINESS, 2019; AGROINTELLI, 2020; ASI, 2020). Nevertheless, the current
self-driving agricultural vehicles have limited environment perception capabilities. Agricultural
fields are dynamic and unstructured environments that change throughout different cycles. For
autonomous agricultural vehicles to meet the safety requirements, they must be equipped with
robust and real-time environment perception algorithms. Such an environment perception
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system needs to extract relevant knowledge from the environment and
provide a contextual understanding of the vehicle’s surroundings.

In the last few decades, obstacle detection for agriculture attracted
the attention of researchers. Several approaches to obstacle detection
in agriculture leverage homogeneous characteristics of the agricultural
field to detect obstacles in the foreground. Ross et al. (2014) proposed
an anomaly detection system for obstacle detection in the agricultural
field. The anomalies are identified in images, and stereo-matching is
used to determine the obstacle’s location. An approach for detecting
static and dynamic obstacles in the agricultural environment is
proposed by Campos et al. (2016). In the approach, spatial-temporal
analysis is applied to a video sequence.Theobstacles are detected based
on colour and texture features, while temporal information is used to
capture the object’s movement. This method is able to extract obstacle
areas from the image background and discriminate between static and
non-static obstacles. The work presented in Christiansen et al. (2016)
combines convolutional neural network (CNN) and background
subtraction algorithms for anomaly detection in grass fields. This
approach showed success in detecting heavily occluded, distant and
unknown objects.

Another approach combines information obtained from image
data with depth information to detect obstacles and produce
obstacle maps in 3D. Korthals et al. (2018) proposes a multi-modal
approach to detecting and mapping static and dynamic obstacles
for grass-mowing operations. Four detection algorithms are applied
to data from the stereo camera. Locally Decorrelated Channel
Features (LDCF) (Xu et al., 2021) and You Only Look Once (YOLO)
(Redmon et al., 2016) are applied for object detection, DeepAnomlay
(Christiansen et al., 2016) is applied for anomaly detection, and fully
convolutional network (FCN) (Long et al., 2015) is used for semantic
segmentation.The algorithms are trained onpublicly available datasets
by remapping general classes of objects to classes relevant to the
agricultural context. The detections are aligned using 2D occupancy
grid mapping. Suvei et al. (2018) proposes a vision-based method
to detect protruding objects in front of the agricultural robot. The
method fuses data from LiDAR and stereo cameras to generate a
dense and accurate point cloud representation of the environment.The
point cloud is then used to detect and label the obstacles by applying
PointNet (Qi et al., 2017). The work presented in (Skoczeń et al.,
2021) proposes an obstacle detection and mapping system for a lawn
mower robot based on RGB-D cameras. The semantic mask of the
environment obtained on the RGB image is combined with the depth
image to project obstacles on 2D occupancy grid.The determined grid
is then utilized by the navigation algorithm for obstacle avoidance
planning.

Vision-based obstacle detection has been researched for rice
farming in paddy fields. The work presented by Qiu et al. (2020)
combined YOLOv3 (Redmon and Farhadi, 2018) and deep Simple
Online and Realtime Tracking (Deep SORT) (Wojke et al., 2017) to
detect and track obstacles in paddy fields using RGB images. The
algorithm is applied to RGB images to track moving obstacles in
the paddy fields. An obstacle detection algorithm for rice combine
harvesters is proposed by Li et al. (2020). The obstacles are detected
by a semantic segmentation algorithm that is obtained by applying
Network Slimming method (Liu et al., 2017) to ICNet (Zhao et al.,
2018).

The lack of labelled datasets for obstacle detection in agriculture
poses a major challenge to applying deep learning architectures in

the agricultural scene understanding.The dataset presented in (Kragh
and Underwood, 2020) contains annotated images, point clouds and
navigation data intended formulti-modal object detection.Thedataset
was collected in various orchard environments and dairy farms in
Australia. A large-scale dataset for human detection in an apple
orchard and orange grove is introduced in (Pezzementi et al., 2018)
and addresses the challenges of occlusion and non-standard poses. A
multi-modal dataset for obstacle detection in agriculture is presented
in (Kragh et al., 2017). The dataset is collected for the grass-mowing
scenario and contains 2 h of raw sensor data, including data from
the multiple cameras (stereo camera, thermal camera, web camera,
360 °camera), LiDAR, radar, IMU andGNNS.Thedataset is annotated
for GPS position and object labels.

This paper focuses on vision-based scene understanding and
application in the agricultural environment. The paper presents
a framework for combining the detection of multiple scene
understanding tasks. The proposed ensemble method is an extension
of the author’s previous work on semantic segmentation (Mujkic et al.,
2020), anomaly detection and object detection (Mujkic et al., 2022).
Deep-learning based-algorithms for semantic segmentation, object
detection and anomaly detection are trained individually. The model
for semantic segmentation is based on SegNet (Badrinarayanan et al.,
2017) architecture and trained to detect the field area in an image.
In the case of agricultural vehicles driving in the field, the detected
field area is considered a broad region of interest for detecting
potential collision risks.The YOLOv5 (Jocher, 2020) object detector is
applied to detect and classify objects belonging to seven agriculture-
specific classes: ‘tractor’, ‘combine’, ‘trailer’, ‘combine header’, ‘baler’,
‘square bale’ and ‘round bale’. The anomaly detector based on the
semi-supervised convolutional autoencoder is used to identify other
objects that do not belong to previously mentioned classes and assign
them with the class ‘unknown’. The detection results from different
algorithms are combined at inference time, and the proposed ensemble
method is independent of underlying algorithms for each task. In the
proposed ensemble method, detections from the object detector and
anomaly detector are combined, and a segmentation map of the field
is used to identify if objects are inside the field area or not.

The main contributions of this paper are the following:

• An ensemble method for combining object detection and
anomaly detection with a semantic segmentation map of the
agricultural field.
• Evaluation of the algorithms and ensemble method on
agricultural dataset

The paper is structured as follows. The individual models used in
the paper are introduced in Section 2 and the proposed ensemble
method is presented. In Section 3, the performance of the proposed
ensemble method is evaluated. This is followed by the conclusion in
Section 4.

2 Materials and methods

This section briefly describes datasets and models used for
semantic segmentation, object detection and anomaly detection.
This is followed by the description of the proposed ensemble
method.
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TABLE 1 Overview of datasets.

Task Annotation Classes # Images Resolution

Semantic segmentation Pixel level field, other 818 2048 × 770

Object detection Bounding box tractor, combine, trailer, combine header, baler, 14.3k Varying

square bale, round bale

Anomaly detection Normal data None None 1408 3206 × 1898

Abnormal data Pixel level anomaly 300 3206 × 1898

Evaluation Bounding box tractor, combine, trailer, combine header, baler, 7.9k 3206 × 1898

square bale, round bale, human, truck, car

FIGURE 1
Illustration of SegNet architecture applied to a field area segmentation in the agricultural scene. The input of the network is an RGB image of a field scene.
The output is the corresponding segmented image.

2.1 Datasets

The lack of labelled datasets poses a major challenge to applying
deep learning architectures in the agricultural scene understanding.
In order to address this challenge, the models were trained on several
datasets collected specifically for the operation of agricultural vehicles
in multiple agricultural fields.The overview of the datasets is provided
in Table 1.

The dataset for semantic segmentation was collected during the
harvester’s operation in the fields. The dataset consists of 818 RGB
images with the corresponding pixel-wise labelled ground truth
images annotated for classes ‘field’ and ‘other’.

The dataset for object detection consists of 14.3k RGB images
annotatedwith 2Dbounding boxes.The annotated classes are: ‘tractor’,
‘combine’, ‘trailer’, ‘combine header’, ‘baler’, ‘square bale’, and ‘round
bale’.

For the training of a semi-supervised autoencoder, a dataset
consisting of 1408 normal images and 300 images with anomalies
annotated at the pixel level is used. The images were collected for the
harvesting scenario over 9 days.

The dataset for evaluation of the ensemble method consists
of 7.9 k images collected by two agricultural vehicles over
13 days. The annotated classes include agricultural vehicles
and implements, road vehicles, static objects like bales, and
humans.

2.2 Semantic segmentation model

This paper applies a deep architecture SegNet to solve semantic
segmentation tasks for the agricultural environment. The architecture
of the network is illustrated in Figure 1. The SegNet architecture was
selected because it allows for the efficient storage of encoder feature
maps. In contrast to architecture presented in (Ronneberger et al.,
2015) that stores the full encoder network feature maps, SegNet
stores the max-pooling indices of the feature maps and uses them to
upsample feature maps in the decoder network. The work presented
in (Noh et al., 2015) uses a similar technique for upsampling in
the decoder network. However, the proposed architecture has a
significantly larger number of parameters and longer training and
inference time. Furthermore, SegNet is a fully convolutional network
that can take images of any size as input. SegNet architecture consists
of symmetrical encoder and decoder networks. The topology of the
encoder network corresponds to the first 13 convolutional layers of the
VGG16 (Simonyan andZisserman, 2015) network. Each encoder layer
in the network is composed of convolutions, batch normalizations,
and Rectified Linear Unit (ReLU) nonlinearity, followed by a non-
overlapping max-pooling layer.Themax-polling indices of the feature
map in the encoder are stored and used to upsample the corresponding
feature map in the decoder network. The layers in the decoder
are composed of unpooling layer, convolutions, batch normalization
and ReLU nonlinearity. Finally, the upsampled feature maps are
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FIGURE 2
Illustration of the anomaly detection method. The convolutional autoencoder is applied for the image reconstruction task. The input of the network is an
RGB image of a field scene. The output is the corresponding reconstructed image. The anomaly map is generated by applying relative-perceptual- L1 loss
to the input image and the corresponding reconstructed image.

FIGURE 3
Diagram of proposed ensemble method.

convolved to produce dense feature maps. The feature map produced
by the decoder network is fed to a soft-max classifier that generates
class probabilities for each pixel. For N classes, the output of the
softmax classifier is an N-channel image of pixel-wise probabilities.
For each pixel, the predicted class is the one with the highest
probability.

2.3 Object detection model

The YOLOv5m was chosen for the object detection task. YOLOv5
is a real-time object detector composed of a backbone network,
neck, and detection head. The backbone network extracts the
input image features. In Yolov5 the Cross-Stage Partial Connections
(CSP) network (Wang et al., 2020) is used as the backbone. Path
Aggregation Network (PANet) (Liu et al., 2018) is applied to extract
feature pyramids. The detection head generates the final output
vector of class probabilities, objectness score and bounding boxes.
YOLOv5 uses the same detection head as proposed in YOLOv3.
The activation function in hidden layers is Sigmoid Linear Units
(SiLU), while the final detection layer uses the sigmoid activation
function.

2.4 Anomaly detection

In this paper, a semi-supervised convolutional autoencoder is used
to detect anomalies in field scene images. The anomaly detection
concept and the architecture of the network are illustrated in
Figure 2. The network consists of encoder and decoder parts with six

convolutional layers. The encoder network has an increasing number
of filters (64, 128, 256, 512 and 1024), while the decoder has a
decreasing number of filters (1024, 512, 256, 128 and 64).The encoder
network and decoder network share a bottleneck with 16 channels.
Each convolutional layer, except the final layer, is followed by batch
normalization and LeakyReLU as an activation function. The final
convolutional layer is followed by sigmoid activation.

Autoencoders for anomaly detection are often trained in an
unsupervised manner. Using normal data without anomalies to train
the autoencoder enables the model to learn to reconstruct the normal
data instances from low-dimensional feature space. However, the
anomalies are much harder to reconstruct from the same low-
dimensional feature space. Therefore, they result in significantly
larger reconstruction error than normal data. This difference in the
reconstruction error can then be used to identify anomalies.

The loss function of semi-supervised autoencoder consists of two
terms that handle normal and abnormal data. The loss function is
given by:

L (x,y) = 1
N

N

∑
i
‖xi − yi‖2 +max(0,a0 −

1
M

M

∑
i
‖xi − yi‖2), (1)

whereN is the total number of normal pixels in the image,M is the total
number of abnormal pixels, xi is ith pixel value in the input image, and
yi is the value of the corresponding pixel in the reconstructed image.
Threshold a0 is the margin that separates normal and abnormal pixels.
The optimal value is determined experimentally as a0 = 0.2.

Relative-perceptual-L1 loss (Tuluptceva et al., 2019) between the
input and reconstructed images is used to generate an anomaly map.
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FIGURE 4
Anomaly detection processing steps (A) Anomaly map obtained from
autoencoder. (B) Binary anomaly map. (C) Extracted bounding boxes for
detected anomlies.

2.5 Ensemble method

Figure 3 illustrates the proposed ensemble method. The method
consists of several steps for combining the detections of individual
models. First, anomaly maps are processed to extract the bounding
boxes for detected anomalies. Next, the objects detected as anomalies
that have also been detected and classified by the object detector are
removed.The remaining anomalies are assigned a class ‘unknown’ and
added to the list of detected objects. For each detected object, the
bounding boxes are compared with a segmentation map of the field to
determine if the object is inside the field or not.The following sections
describe each step in more detail.

2.5.1 Extraction of bounding boxes for detected
anomalies

The first step in converting anomaly detections to bounding box
representation is thresholding the anomaly map to obtain a binary
anomaly map. The optimal threshold is a constant value of 1.4. The
binary anomaly map is processed by connected components labelling
algorithm to extract components that exceed a certain area. A contour
extraction algorithm is applied to extract the boundaries of extracted
components and subsequently use them to compute the bounding
rectangles for each.

An example of the procedure is shown in Figure 4. Figure 4A
shows an example of an anomaly map generated by the autoencoder.
The binary anomaly map obtained after thresholding is shown in
Figure 4B. Figure 4C shows the results of applying the connected
components algorithm and computed bounding boxes.

FIGURE 5
Combining detections from object detector and anomaly detector (A)
Object detection results. (B) Anomaly detection results in bounding box
representation. Green bounding box indicates object that has not been
detected by object detector. (C) Combined detection results from object
detector and anomaly detector.

2.5.2 Combining of 2D bounding box detections
After the conversion of anomaly detections to bounding box

representation, they are combined with detections from the object
detector. Some objects in the images are detected by both anomaly
detectors and object detectors. In those cases, object detections with
class labels are prioritized. Therefore, the bounding boxes of detected
anomalies are compared with detected objects, and the anomalies that
intersect with bounding boxes of detected objects with more than
30% of their area are ignored. The anomaly detections that remain are
assigned class ‘unknown’ for consistency with detections from object
detectors.

Figure 5 illustrates combining the detections from the object
detector and anomaly detector. The detections from the object
detector are shown in Figure 5A. The algorithm detected two objects
successfully and failed to detect three objects. Figure 5B shows
detected anomalies for the same image. The green boxes indicate
objects that have not been detected by the object detector and need
to be included in detections as anomalies. Figure 5C shows combined
detection results from the object detector and anomaly detector.
Two objects are detected and classified by the object detector, while
three objects are detected by the anomaly detector and assigned class
‘unknown’.
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FIGURE 6
Illustration of method for inside/outside of field classification for
detected objects. The hashed region indicates region for evaluating
pixels segmented as field area. The red region is an example of
segmented field area.

2.5.3 Field area matching
The combined detections from the anomaly and object detector

are assigned an additional label indicating whether they are inside
or outside the field. The semantic map of the field provided by the
semantic segmentation module labels the pixels corresponding to the
surrounding field of the object. This information is combined with
the location of individual bounding boxes in the images to determine
whether the object is inside the field. The procedure involves a few
steps. First, the detected object’s bounding box is dilated by 20% in
the x and y-direction. Then, the bottom half of the region between
the original bounding box and dilated bounding box is selected. If
more than 10% of this region’s area is segmented as a field, the object is
considered to be within the field. Otherwise, the object is considered
to be outside the field.

An example illustrating the method is shown in Figure 6. In
this example, a tractor is detected by the object detector, and its
bounding box is dilated. The hashed region indicates the bottom
half of the region between the original box and dilated box. The red
area illustrates an example of an area segmented as a field by the
semantic segmentationmodule. In this example, more than 10% of the
hashed region area is segmented as a field; therefore, the object will be
classified as inside the field.

FIGURE 7
Detection examples for ensemble method (A) Parts of combine header
being detected as anomalies. (B) Shelterbelt in distance being detected
as multiple anomalies.

3 Results

The training hyperparameters for individual models are listed in
Table 2. The performance of the method is evaluated on a dataset of
7.9k images of agricultural scenes. The object and anomaly detector
results are reported using a confusion matrix. In addition, the
classification of objects as being inside or outside of the field is
evaluated qualitatively.

For the purpose of evaluating the performance of object detector
and anomaly detector, objects in the testing dataset are considered
to belong to a single general class ‘object’. For the object detector,
only detections with a confidence score above 0.25 are considered.
The IoU threshold for ground truth and bounding box detections

TABLE 2 Training parameters.

Semantic segmentation Object detection Anomaly detection

Epochs 623 300 500

Learning rate (0.01, 0.001) (0.01, 0.1) 1e− 5

Optimizer SGD SGD Adam

Momentum 0.9 0.937 (0.9, 0.999)

Weight decay 0.0001 0.0005 0

Batch size 8 64 32

Image size 1024 × 385 640 × 640 800 × 160
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TABLE 3 Perfromance evaluation of object detector and anomaly detector. TP is the number of true positives, FN is the number of false negatives and FP is the
number of false positives.

Object detector Object detector and anomaly detector

TP 12759 13547

FN 6894 6106

FP 7204 13299

is selected as 0.45. The results shown in Table 3 indicate that
combining object detector and anomaly detector increases the number
of detected objects from 12759 to 13547. However, anomaly detector
also introduces a substantial number of false-positive detections.

Examples in Figure 7 provide some insights into the source of
these false-positive anomalies. Figure 7A shows an example image
where parts of the vehicle’s combine header are present at the bottom
of the image. Since the training images of normal operating conditions
did not have this, the parts of combine header are detected as multiple
anomalies. Another example is given in Figure 7B. Here distant
objects are correctly detected as anomalies. However, on the left-hand
side of the image, the shelterbelt is detected as multiple anomalies. In
this case, the training dataset for the anomaly detector had images
depicting mostly crop field areas; therefore, parts of the shelterbelt
are reconstructed poorly and falsely detected as anomalies. It is worth
mentioning that having false-positive anomaly detections is acceptable
from a safety perspective.

Figure 8 provides further examples of the ensemble method’s
performance. Figure 8A shows an example where a group of distant
vehicles in the background is detected as a single anomaly. A
farmhouse is also detected as an anomaly on the right-hand side of
the image. An example in Figure 8B shows cars not being detected by
an object detector. However, the anomaly detector was able to detect
them. Figure 8C shows an example of vehicles and persons being
detected by the object detector and anomaly detector.

The classification of detected objects as inside/outside of the field
by the proposed method was evaluated in the example images. In
Figure 7A all detected objects are correctly classified as being inside
of the field. Figure 7B shows that false-positive anomaly detections of
shelterbelt are classified as being outside of the field, while anomaly
detected in the same area as combine harvester is classified as being
inside of the field. These results are in agreement with the segmented
field area. The ‘combine’ detection is misclassified as being outside
of the field due to the poor segmentation of the field around it. In
Figure 8A detections are classified correctly as being inside of the field
despite the large areas around them not being classified as field areas.
This is due to the large size of the bounding boxes, which resulted
in a greater area considered in the calculation of field segmentation
overlap. Figure 8B shows a car on the right-hand side of the image
correctly classified as being inside the field. The two cars to the right
are classified as being outside the field. The detected tractor is falsely
classified as being outside of the field.

Both Figures 8A, B depict a similar scene fromdifferent distances.
The group of cars detected as an anomaly in the first figure and two
cars in the second figure are parked at the edge of the field. However,
this is not clearly visible in these images, and therefore the correct
classification might depend on the distance and the camera’s angle.
This illustrates one of the shortcomings of using a single camera
sensor. The example in Figure 8C shows three vehicles correctly

FIGURE 8
Detection examples for ensemble module (A) Group of distant vehicles
detected as an anomaly. (B) Object not detected by object detector is
detected as an anomaly instead. (C) Detected objects correctly classified
as being inside or outside of the field.

classified as being inside of the field. Moreover, there is one pedestrian
inside the field and one on the road.Thepedestrian on the roadwas not
detected and the one in the field is correctly classified as being inside
the field.

4 Conclusion

The proposed ensemble method combines the three scene
understanding approaches to provide contextual information about
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the detected object and anomalies. The performance of the ensemble
method is evaluated for detecting objects in agricultural scene images.
The results showed that combining object detection with anomaly
detection increased the number of detected objects in the test
dataset from 12759 to 13547. It was observed that the anomaly
detection introduced false-positive detections, and a short discussion
was provided. The semantic field map has been combined with the
detections to provide additional information regarding the detected
object’s location. However, the proposed approach is sensitive to
segmentation accuracy and the camera angle.

Future work will investigate other approaches for combining
semantic segmentation with object detection.
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