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In the domain of planetary science, novelty detection is gaining attention

because of the operational opportunities it offers, including annotated data

products and downlink prioritization. Using a variational autoencoder (VAE), this

work improves upon state-of-the-art novelty detection performance in the

context of Martian exploration by > 7% (measured by the area under the

receiver operating characteristic curve (ROC AUC)). Autoencoders, especially

VAEs, perform well across all classes of novelties defined for Martian

exploration. VAEs are shown to have high recall in the Martian context,

making them particularly useful for on-ground processing. Convolutional

autoencoders (CAEs), on the other hand, demonstrate high precision making

them good candidates for onboard downlink prioritization. In our

implementation adversarial autoencoders (AAEs) are also shown to perform

on par with state-of-the-art. Dimensionality reduction is a key feature of

autoencoders for novelty detection. In this study the impact of

dimensionality reduction on detection quality is explored, showing that both

VAEs and AAEs achieve comparable ROC AUCs to CAEs despite observably

poorer (blurred) image reconstructions; this is observed both in Martian data

and in lunar analogue data.
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1 Introduction

In the past 20 years, exploration missions to the Moon and Mars1 have borne

abundant, high-resolution images (among other data products) to the research

community, paving the way for future exploration to be conducted more

autonomously and more robustly. Several factors are increasingly driving the need for

autonomy in planetary science operations. In Mars rover operations, visual surface

investigation and decision-making currently takes place in day-long tactical cycles with a
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desire for faster turnaround Gaines et al. (2016). Upcoming

commercial lunar rover missions will have short lifetimes and

severely constrained bandwidth shared across several payloads.

This will result in a need for rapid tactical decision-making

processes with limited or even omitted data Raimalwala et al.

(2020). In the domain of planetary exploration, bandwidth is a

scarce resource and high cadence telemetry is not always

(perhaps even rarely) practical. Autonomous onboard novelty

detection offers a way to prioritize data downlink and, in the

future, achieve autonomous science targeting altogether.

Novelty detection is part of a well-established set of

techniques used to detect samples or features from within a

set of data that are either unique or statistically uncommon. In

nomenclature, anomaly detection is an umbrella term that covers

both outlier detection and novelty detection. Although the

definitions of these methods differ slightly, it is often

appropriate to use them interchangeably (Xu et al., 2019).

Autoencoders have been applied to the problem of novelty

detection since the early 2000s (Thompson et al., 2011).

However, interest in the approach picked up in the mid 2010s

when several teams released research demonstrating the

applicability of autoencoders to image-based novelty detection

(Pimentel et al., 2014; Chen et al., 2017).

Extensions to the standard fully convolutional autoencoder

(CAE) have been proposed that use probabilistic encoders and

decoders—that is, they output parameters of the encoding

distribution instead of the encoded pixel values themselves.

Two primary extensions have been proposed (An and Cho,

2015; Leveau et al., 2017; Beggel et al., 2019):

1) Variational autoencoders (VAEs) leverage the Evidence Lower

Bound and KL-divergence to map the latent space

representation to a prior distribution, typically a unit

Gaussian (Doersch, 2016). The latent representation is

found by sampling from the encoded distribution, while

the final data product is obtained by decoding the latent

representation back to the original dimensionality.

2) Adversarial autoencoders (AAEs) leverage an adversarial

procedure to obtain reconstructions. They calibrate the

aggregated posterior of the latent distribution by matching

it to an imposed prior distribution (Makhzani et al., 2015).

Novelty detection as applied to the domain of planetary

exploration images was spearheaded by Kerner et al. (2018)

and Kerner et al. (2020). These works established a dataset of

the Martian terrain for the purpose of developing and testing

novelty detection algorithms. They implemented and analyzed a

swath of techniques, including Principal Component Analysis

(PCA), Reed-Xiaoli (RX) detectors, Generative Adversarial

Networks (GANs), and CAEs. Various loss functions and

novelty scores were used to compare the advantages and

disadvantages of each detector. It was determined that, while

autoencoders only performed on par or marginally better than

other methods, they were easier to visualize and thus could be

used to add more meaningful context to detections than

alternative approaches. Since the training objective of an

autoencoder is to reproduce the input image from a lower

dimensional (latent) representation, once an autoencoder has

been trained, error maps can be created to visualize how the

reconstructed outputs and the original inputs differ. These error

maps supply spatial and spectral information about the location

and magnitude of novel features.

The main contributions of this paper include autoencoder

implementations that outperform state-of-the-art methods by

> 7% on a dataset from NASA’s Curiosity rover’s Mastcam. We

also introduce the first (known) implementation of both a VAE

and an AAE to the field of rover-based planetary novelty

detection and gauge their performance against CAEs. We

identify specific operational applications where the different

types of autoencoders are most useful by investigating their

predictive capabilities in terms of recall and precision,

probability of detection, and statistical metrics for model

selection, when possible expanding the analysis to the viability

of such models in an operational setting. We introduce a new

metric, precision at capacity, for novelty detection in bandwidth-

constrained applications. Details of algorithmic methodology

and a code repository are also contributed.

This study represents strides that have been made to date

towards an end-to-end detector that can be integrated into future

rover missions on the systems level. It builds significantly upon

prior work published by the authors (Stefanuk et al., 2020), and

comprises an important part of the first author’s MASc thesis

(Stefanuk, 2021), which also includes additional related work that

may be of interest to the reader.

2 Materials and methods

This research is in the domain of machine learning for image

processing. The relevant methodological elements for such

problems include the datasets, computing hardware and

software, and algorithmic implementation details.

2.1 Datasets

The results of this research are based principally upon data

from the Curiosity rover operating on the Martian surface.

However, an analogue lunar dataset that was developed as a

collaborative effort between the authors and Mission Control

Space Services is used to further investigate key observations.

2.1.1 Curiosity mastcam
This dataset—targeted for the problem of novelty detection

on the Martian surface—was introduced and then later updated

by Kerner et al. (2018) and Kerner et al. (2020); the updated form
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is the one used herein. Images for this dataset are sourced directly

from data collected by the Mars Science Laboratory (MSL)

Curiosity rover’s mast camera (Mastcam). The Mastcam is

equipped with two focusable CCD cameras and is capable of

capturing stereoscopic, multi-spectral images. Both cameras

sport a filter wheel with 8-channels, six of which are narrow-

band filters ranging from 400 to 1,100 nm (Bell et al., 2017). To

create the dataset, all images acquired with the six narrow-band

filters from sols (Martian days) 1–1,666 were considered. Since

the first image products available on-ground during MSL

operations are the uncalibrated thumbnails of full-resolution

images, expert analysts inspected these thumbnails for the

presence of novelties (Kerner et al., 2020). If found, a novelty

was annotated with a 64 × 64 pixel bounding box. Using a sliding

window approach, each image in the set of available images

(477 in total) was cropped into 64 × 64 pixel sub-images

(Figure 1). After this process was complete, 9,302 and

1,386 typical images were allocated to the training and

validation sets respectively. The test set consists of 426 typical

images and 430 novel images.

Eight novelty classes were used for this dataset: DRT spot,

dump pile, broken rock, drill hole, meteorite, vein, float rock, and

bedrock. While the first four classes are created by the rover itself,

the remaining four classes are due to natural processes on Mars:

meteorites are sporadically found by Martian rovers and serve as

either obstacles or scientific targets; bedrock enables elemental

analysis of the underlying material; veins are hard-packed

granules that fill fractures through a variety of processes, and

float rocks are detached rock fragments that have been

transported due to geologic activity.

While the Curiosity Mastcam dataset is valuable in terms of

its ability to test the behaviour of novelty detection routines in for

planetary exploration, it simplifies many intricacies that must be

resolved to use novelty detection for autonomous science in an

operational setting. This dataset is used in this research as a

benchmark in the context of planetary exploration. One

advantage that this dataset offers is that each image has six

multispectral channels, allowing insight into the advantages

provided by greater spectral resolution for novelty detection.

Since this dataset was prepared for the research community,

only minor preprocessing need to be conducted. First, each image

was converted from unsigned integer data type with intensities

between 0 and 255 into 32-bit floating-point values, then they

were standardized to mean zero and unit standard deviation

before being used for training, validation, and testing.

2.1.2 Lunar analogue
The Lunar Analogue dataset developed and presented in

(Stefanuk et al., 2021) was also used in this research. In contrast

to the CuriosityMastcamdataset, which is already curated into small

selected patches, this Lunar Analogue dataset starts with high-

resolution images of whole landscapes. Due to the nature of the

Lunar Analogue dataset it was important to implement a

preprocessing pipeline that resulted in images that were as robust

as possible to illumination conditions, imaging perspectives, and

different levels of zoom. First, the full-resolution images (1,242 ×

2,208) were resampled using pixel-area relocation to a resolution of

248 × 441, one-fifth the original size; the aspect ratio was retained in

this process. Histogram equalization was then conducted by first

converting the RGB image into YCrCb format, equalizing on the

intensity channel, and converting back to RGB. Minor median

blurring with a 3 × 3 kernel was conducted and images were

standardized to zero mean with unit standard deviation.

From a lunar geology perspective, any terrain feature that can

be used to trace the history of the region is of interest. For

example, features with steep inclines, such as lava channels or

craters walls, can provide access to the lunar bedrock where

spectroscopic methods can be used to characterize the

composition of the substratum. In certain areas of the Moon

that were prone to volcanic activity, dark-toned cobbles can be

found that inform scientists about the region’s volcanism.

Similarly, fragments of mantle rock that are encased within

larger rocks formed through volcanic activity. Light-toned

ejecta that extend from craters (crater rays) can be helpful

when inferring the approximate age of the crater. There also

exist cases of pyroclastic deposits that appear following fountain-

style volcanic eruptions, they have been documented to exhibit

green and orange hues NASA (2017). With consultation and

validation from lunar geologists (Stefanuk et al., 2021), Table 1

outlines the novelty labels used in the dataset.

All novelties are labeled with bounding box labels and all

typical images are unlabelled (the lack of label explicitly

indicating that they are entirely typical). In this dataset,

4,809 images are used for training and validation, 854 are

FIGURE 1
Images from the Curiosity Mastcam dataset; (A–C) shows
typical images, (D–F) shows novel images. All images in this
dataset have a height and width of 64 pixels with six spectral
channels. For viewing purposes, only the first three channel
are shown.
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used for testing, of which 426 are typical and 428 contain at least

one novelty.

Within the scope of this present study, the intent is to

identify whether novelties are present in small images cropped

from landscapes. Such a dataset was not explicitly prepared

from the Lunar Analogue data. One could imagine applying

the windowed cropping method used in the Curiosity

Mastcam dataset (Kerner et al., 2020), or applying warping

to the already-labeled novelty bounding boxes within the

Lunar Analogue data (alongside randomly selected boxes

within unlabeled typical regions of the landscape images).

On the other hand, the authors had already generated useful

data in the course of doing separate research on unsupervised

intelligent novel region extraction from the Lunar Analogue

landscape images. As the Lunar Analogue data is not the

principal focus in this work, but rather is used for secondary

TABLE 1 List of novelties used in Lunar Analogue dataset.

Novelty Description

Rille Channel-like depression in the terrain, formed by old lava flows.

Volcanic rock Either (i) rocks with dark outer crust (fusion crust), or (ii) smaller fragments of mantle encased in larger rocks, formed during
volcanic activity (mantle xenolith).

Exposed bedrock Visible underlying substratum surrounded by regolith.

Green soil Pyroclastic deposit exhibiting green hues, produced by fountain-style eruptions.

Orange soil Pyroclastic deposit exhibiting orange hues, produced by fountain-style eruptions.

FIGURE 2
(A–E) Composition of the region proposal system used for novel region extraction.
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support of some observations, such existing data is sufficient

for our purposes.

For completeness, the process by which the Lunar Analogue

cropped regions were produced is described here, and shown in

Figure 2. Region proposals within a landscape image of the Lunar

Analogue data were based on saliency detection using the

binarized normed gradients (BING) method, pre-trained on

PASCAL VOC 2007 to be receptive to generic image features

such as edges and textures (Cheng et al., 2019). This algorithm

was designed for high frame-rate saliency detection in videos, so

it is well-suited for the domain of planetary exploration where

computational cost is a primary concern. Examples of region

proposals resulting from BING are shown in Figure 3.

Regions with small sizes or large aspect ratios were removed, as

shown in Figure 2C. Since the regions extracted from the system are

warped before being used for training, it was important to imbue

some sense of consistency into the data. Regions with large aspect

ratios, uponwarping, would fail to resemble actual objects within the

scene. Similar reasoning led to the exclusion of small bounding

boxes. Small areas below the 90th percentile were filtered as were

large aspect ratios (most-elongated in either height:width or its

inverse) above the 70th percentile; these percentiles were held as

controls. After the filtering step, k-means clustering was used to

maximize image coverage, minimize bounding box overlap, and

limit the proposals to a static number of regions. To achieve this,

clustering was done on 4-dimensional parameter space consisting of

the x, y positions (top left) of each proposed region’s bounding box

as well as the box’s width w and height h. This effectively clustered

regions based on both their size and position within the image. Once

the clusters were fit, the cluster centroids (xi, yi, wi, hi) were used as

the final region proposals. For the BING-RP system, 16 clustered

regions were used as we found that this to be a good control that

managed both image coverage and computer resources well. The

final step was to crop each region, warp them to a size of (3, 64, 64),

and pass them on to the different novelty detection algorithms.

Implementing k-means clustering into the overall region

proposal system was most important when preparing the data

for training. Since the regions are cropped and warped directly

from the output of the region proposal system, it was in our

interest to eliminate redundant training samples and reduce

overlap between extracted regions.

2.2 Hardware and software

All software used in this paper can be found in the companion

repository at github.com/brahste/novelty-detection. Our

autoencoder models were built with PyTorch while PCA was

implemented with Scikit-Learn. All models were trained on a

single GTX 1080 Ti graphical processing unit (GPU).

2.3 Algorithmic implementations

The novelty detection algorithms presented here are all

reconstruction-based, meaning that the original image is

FIGURE 3
(top) Schematic of the novel region extraction (NRE) pipeline. NREs cascade a class-agnostic region proposal system with full-image novelty
detection and can be trained like traditional reconstruction-based novelty detectors. (bottom) Sample of raw, unfiltered region proposals by the
Binarized normed gradients (BING) method.

Frontiers in Robotics and AI frontiersin.org05

Stefanuk and Skonieczny 10.3389/frobt.2022.974397

http://github.com/brahste/novelty-detection
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974397


compressed into a latent (reduced-dimension) representation

and reconstructed, and then the reconstructed image is

compared to the original input. Novelties are defined by a

threshold in a metric comparing reconstructed and original

images, in this case the mean squared error (MSE). The

algorithmic differences depend on the details of the

dimensionality reduction and reconstruction, i.e. the

architectures of the autoencoders (or other analogous

algorithm) used.

2.3.1 Principal component analysis
Principal Component Analysis (PCA) is treated first because

it a well-established linear transformation that can be used for

dimensionality reduction and reconstruction. It differs in nature

from the nonlinear autoencoder-style novelty detection

algorithms that form the predominant point of analysis in this

research. PCA serves primarily as a benchmark to monitor the

performance of other architectures discussed throughout this

research. Our PCA implementation applied to Curiosity

Mastcam datasets employs a conventional, whole-dataset

approach that encodes all of the dimensions of the input

dataset. For a training set X and a learned representation Y,
both of sizem, and each sample having dimensions d = w × h × c,

PCA is applied pixel-wise on flattened images such that the

learned transformation maps T: Xm×d → Ym×d.

Subsequently, we truncate the learned set at the kth principal

component. Given that the first principal component (PC)

explains the most variance in the data, followed by the

second, and so on, we dynamically select the value of k by

using only the first components needed to explain 60% of the

variance. Using the learned representation from the retained PCs,

we evaluated the reconstructions on the test set and scored each

sample as the mean squared error between the input and

reconstruction.

It is worth mentioning that the choice to retain 60% of the

components was made heuristically based on benchmarking

evaluations. These evaluations and other detailed training

information for all PCA models can be found in the logs at

the companion repository under the github.com/brahste/

novelty-detection.

2.3.2 Convolutional autoencoder architectures
It is valuable to understand the behaviour of a purely

convolutional autoencoder (CAE); CAEs are useful in their

own right, and convolutional operations are fundamental to

the structure of more advanced autoencoders as well. With

this goal, two CAE architectures are explored in this study.

The first architecture, the BASELINE CAE, expands and deepens

the network from (Kerner et al., 2020), as well as adopts

alternative normalization routines. The BASELINE CAE marks the

primary convolutional architecture against whichmore advanced

networks are measured. Figure 4 displays the morphology of an

image from input to output through the BASELINE CAE along with

the channel depths resulting from each convolutional layer. The

latent representation is a 3-channel feature map that acts as the

bottleneck between the encoder and decoder. The BASELINE CAE

can be used for inputs of various size and channel depth, but in

this study we focus on 64 × 64 images (principally 6-channel

Curiosity Mastcam data, but also 3-channel Lunar Analogue

Region images). A further summary of key architecture

parameters is provided in Table 2.

During the prototyping phase of this research, it was found

that the extent of compression between the input and latent space

affected the ability of CAE networks to infer novelty. Networks

that lose little information during the encoding process have the

potential to reconstruct both training and testing data in too

much detail, resulting in poor novelty detection. In response to

this insight, another network was built to further investigate the

implications of dimensionality reduction and overall network

capacity. This network, named COMPRESSIONCAE-MIDCAPACITY,

shares the same general architecture as BASELINE CAE, but

differs in the size of the convolutional kernels, and thus the

network capacity. Most notably, it contains an extra interpolation

step compared to the BASELINE CAE, thus boosting the extent of

compression between the input and latent space. A further

summary of key architecture parameters is provided in Table 2.

Both CAE architectures share a number of attributes that

were either held static between experiments and training

sessions, acting as controlled variables, or manipulated as a

(hyper)parameter of the experiment. A Leaky Rectified Linear

Unit (Leaky ReLU) with a leak rate of 0.1 was used to activate

non-linearities in the main encoding and decoding blocks for all

CAE architectures. For those layers that used batch

normalization and drop out, a default momentum and drop

rate of 0.1 were used respectively. Mild variations to these default

values were used in some experiments. No activations, batch

normalization, or dropout were used at the encoder output. The

decoder output was transformed by a hyperbolic tangent

operation such that the resulting data would be constrained

within the range [-1,1]. For training, an automatic learning

rate determination algorithm proposed by Smith (2017) was

used. Some manually selected learning rates were also used to

assess performance changes against the learning rate that was

automatically computed. Mild weight decay was employed in all

CAE architectures using a tuning parameter of 0.01. Batch sizes

varied between experiments, ranging between 8 and 1,024 images

per batch. In all experiments 20% of the training data was

allocated for validation.

Detailed training information for all CAE models can be

found in the logs at the companion repository at github.com/

brahste/novelty-detection.

2.3.3 Variational autoencoder architectures
Variational autoencoders extend the interpretation of CAEs

to probabilities by adding a KL-divergence penalty on the latent

distribution. To explore the utility of VAEs for planetary novelty
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detection, two architectures were built and trained. The first uses

the same set of convolutional layers outlined in Table 2. This

model is aptly called BASELINE VAE. By sharing the same

convolutional structure as other BASELINE models, a control is

added to the experiments such that a more meaningful

comparison can be conducted between the two algorithms.

The BASELINE VAE is shown in Figure 5 where one can see that

the encoder computes the parameters μ, Σ of the latent

distribution, which is sampled to obtain the latent

representation itself.

Also, to expand upon the VAEs that we implemented in the

early stages of this research (Stefanuk et al., 2020), we investigate

the SIMPLE VAE architecture as also outlined in Table 2. While this

architecture also uses convolutional operations in the encoder

and decoder, the feature maps are flattened to obtain the

parameter vectors μ, Σ and subsequent latent representation z.

One key difference between the BASELINE VAE and SIMPLE VAE is

that the SIMPLE variant has a lower capacity. To accommodate this

difference the SIMPLEVAE was not regularized with dropout layers,

though weight decay regularization was retained.

Similar hyperparameters were used for all VAEs, barring the

use of dropout layers as described above. For those layers that do

use dropout, a dropout of 0.1 was used. Leaky ReLU activations

with a leak rate of 0.1 were used for all models as was weight

decay with a tuning parameter of 0.01. For the imposed prior a

multi-variate standard normal distribution was used. For all

optimizations, Adam was used with a learning rate

automatically determined by the algorithm outlined by Smith

(2017). The objective function, given in Eq. 1,

L θe, θp; xi( ) � −DKL pe zi|xi; θe( ) ‖ pp zi|xi; θp( )( )
+ Epe z|xi ;θe( ) logp xi|z; θ( )[ ] (1)

minimizes the evidence lower bound by evaluating the weighted

sum of the reconstruction loss and KL-divergence loss. However,

due to the sampling step between the encoder output and the

latent representation (Figure 5), this objective cannot be

backpropagated through without employing the

reparameterization trick. To do this, we modelled the latent

distribution as the linear expression (Doersch, 2016),

μ + νe
1
2 log diag Σ( )( ) (2)

where ν ~ e
1
2 log(diag(Σ)) acts as a dummy sample that corresponds

to a sample that would otherwise have been drawn directly from

the encoding distribution pe(z|μ, Σ).

Detailed training information for all VAE models can be

found in the logs at the companion repository under the github.

com/brahste/novelty-detection.

2.3.4 Adversarial autoencoder architectures
Adversarial autoencoders (AAEs) also have the advantage

that—due to the nature of adversarial training—they can be

interpreted probabilistically. As the latent space is constrained to

mimic the distribution imposed upon it, with AAEs, alternative

novelty ranking approaches are available beyond the

conventional reconstruction-based approach. To explore these

features of AAEs, and how they compare to other algorithms, two

AAE architectures have been implemented in this work.

Maintaining consistency with the previously mentioned CAE

and VAE architectures, a BASELINE AAE was built. The rationale

behind this is driven by the desire to explore the extensibility of

AAEs for novelty detection while sharing enough common

ground between CAE and VAE counterparts to allow for

meaningful comparison. By keeping the convolutional

operations similar between one of the AAE architectures and

one of the CAE and VAE architectures, differences in

performance can be attributed to differences in the

fundamental structure and training regime.

A graphical demonstration the BASELINE AAE is shown in

Figure 6. As can be seen from this figure, the convolutional

structure of the BASELINE AAE is the same as that outlined in

Table 2. The only difference is found upon reaching the latent

space. Here, its representation is flattened and passed either to

FIGURE 4
Architecture of the BASELINE CAE. Channel numbers are shown at the bottom of each block. Reference Table 2 for a detailed description.
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the decoder or discriminator, depending on the

optimization step.

The other AAE architecture, the SIMPLE AAE, is a fully-

connected alternative to the BASELINE AAE, and was built to

understand the implications of convolutional operations on

AAE-style networks. The structure of the SIMPLE AAE is

replicated from the original paper on AAEs Makhzani et al.

(2015).

Similar to the above autoencoder architectures, the BASELINE

AAE was trained with Leaky ReLU activations with a negative

slope of 0.1, dropout with a drop rate of 0.1, and batch

normalization with a momentum of 0.1. Weight decay with a

TABLE 2 Summary of autoencoder architectures. C denotes the number of output channels.

Architecture Layer Kernel size Stride Dropout? BN? Activation?

Baseline CAE/VAE/AAE Enc-1 24, 5, 5 1 ✓ ✓ ✓
Enc-2 48, 5, 5 1 ✓ ✓ ✓
Enc-3 48, 5, 5 2 ✓ ✓ ✓
Enc-4 24, 5, 5 1 ✓ ✓ ✓
Enc-5 16, 5, 5 1 ✓ ✓ ✓
Enc-6 8, 5, 5 2 ✓ ✓ ✓
Enc-7 3, 5, 5 1 7 7 7

Dec-1 8, 5, 5 1 ✓ ✓ ✓
Dec-2 16, 5, 5 2 ✓ ✓ ✓
Dec-3 24, 5, 5 1 ✓ ✓ ✓
Dec-4 48, 5, 5 1 ✓ ✓ ✓
Dec-5 48, 5, 5 2 ✓ ✓ ✓
Dec-6 24, 5, 5 1 ✓ ✓ ✓
Dec-7 C, 5, 5 1 7 7 ✓

Compression CAE (MidCapacity) Enc-1 24, 3, 3 1 ✓ ✓ ✓
Enc-2 24, 5, 5 1 ✓ ✓ ✓
Enc-3 48, 3, 3 2 ✓ ✓ ✓
Enc-4 48, 5, 5 1 ✓ ✓ ✓
Enc-5 24, 3, 3 2 ✓ ✓ ✓
Enc-6 24, 5, 5 1 ✓ ✓ ✓
Enc-7 8, 3, 3 2 ✓ ✓ ✓
Enc-8 1, 3, 3 1 7 7 7

Dec-1 8, 3, 3 1 ✓ ✓ ✓
Dec-2 24, 3, 3 2 ✓ ✓ ✓
Dec-3 24, 5, 5 1 ✓ ✓ ✓
Dec-4 48, 3, 3 2 ✓ ✓ ✓
Dec-5 48, 5, 5 1 ✓ ✓ ✓
Dec-6 24, 3, 3 2 ✓ ✓ ✓
Dec-7 24, 5, 5 1 ✓ ✓ ✓
Dec-8 C, 3, 3 1 7 7 ✓

Simple VAE Enc-1 16, 3, 3 2 7 ✓ ✓
Enc-2 32, 3, 3 2 7 ✓ ✓
Enc-3 64, 3, 3 2 7 ✓ ✓
Enc-μ (Dense) 64 × C2

e NA 7 7 7

Enc-Σ (Dense) 64 × C2
e NA 7 7 7

Dec-z (Dense) 64 × C2
e NA 7 7 7

Dec-1 32, 3, 3 2 7 ✓ ✓
Dec-2 16, 3, 3 2 7 ✓ ✓
Dec-3 16, 3, 3 2 7 ✓ ✓
Dec-4 Cx, 3, 3 2 7 ✓ ✓
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tuning parameter of 0.01 was also used in both AAEs to reduce

the range of obtainable weights, and thus regularize the network.

As multiple optimizers have to be used to conduct adversarial

training and the automatic learning rate determination algorithm

is only realizable with single optimizer training, learning rates

were set manually for all AAE implementations; values ranged

between 0.01 and 0.0001. Early stopping was used with patience

of five epochs. Batch sizes differed between datasets; a batch size

of 256 was used when training on the Curiosity Mastcam data,

and a batch size of 32 was used for the Lunar Analogue data.

The adversarial training regime uses three optimization steps.

A variant of the Adam optimizer that decouples the weight decay

from Adam’s natural gradient descent algorithm was used for all

optimizations (Loshchilov and Hutter, 2019). Using an

alternating optimization strategy, training commenced in two

phases: the reconstruction phase and the regularization phase.

First, in the reconstruction phase, a loss was computed by

evaluating the mean squared error between the input and the

reconstruction. Second, in the regularization phase, the

parameters in the dropout and batch normalization layers of

the encoder were frozen, effectively putting the model into

inference mode. With the latent representation z computed by

the encoder, a sample of the same size z′ was drawn from the

imposed prior. Here, the prior was chosen to be a linearly

FIGURE 5
Architecture of the BASELINE VAE. Channel numbers are shown at the bottom of each block. Reference Table 2 for a detailed description.

FIGURE 6
Architecture of the BASELINE AAE. Channel numbers are shown at the bottom of each block. Reference Table 2 for a detailed description.
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independent (e.g. diagonal covariance matrix) multi-variate

Gaussian with zero mean and unit standard deviation. Both

samples were passed to the discriminator and the following loss

was used as the optimization criterion for the discriminator,

− 1
Cℓ

∑
Cℓ

k�0
log, D zk′( ) + ϵ( ),+, log, 1 −D zk( ) + ϵ( )( ). (3)

In the above equation, D(·) denotes the function approximated

by the discriminator, Cℓ denotes the number of dimensions in

both z and z′, and ϵ = 1 × 10–8 helps ensure numerical stability. By

applying logarithmic laws and then recasting Eq. (3) as a

maximization problem without the negative logarithms, one

sees that an expectation is being taken over the core criterion,

D z′( ) 1 −D z( )( ). (4)

This expression can be maximized in one of two ways: by

increasing the response of the discriminator to samples drawn

from the prior (e.g. D(z′)), or by reducing the response of the

discriminator to samples drawn from the encoder (e.g. D(z)).

Hence, by optimizing over the objective in Eq. (3), the

discriminator learns to recognize the source of each sample.

In the second step of the regularization phase, the

discriminator is put into inference mode and the encoder is

optimized alone via the criterion,

− 1
Cℓ

∑
Cℓ

k�0
log D zk( ) + ϵ( ). (5)

Again, considering the core quantity being optimized, D(z), this

step trains the encoder to produce latent representations that are

distributed similarly to the prior, in effect ambiguiating z and z′
in subsequent regularization phases.

This three-step optimization procedure, referred to herein as

adversarial training, puts a responsibility on the encoder to

simultaneously learn latent representations that are distributed

according to the prior and that can be meaningfully

reconstructed by the decoder.

The AAE implementations presented here mark the first use

of such algorithms in the domain of planetary exploration to the

best of the authors’ knowledge. Detailed training information for

all AAE models can be found in the logs at the companion

repository under the github.com/brahste/novelty-detection.

2.4 Evaluation metrics

When evaluating the performance of novelty detection

algorithms it is important to use metrics that are applicable to

such problems. One particularly powerful way novelty detection

algorithms can enhance planetary surface analysis is through

data prioritization. In an operational setting a certain false

positive rate is inherent, especially in datasets with large

amounts of uniformity. Still, there remains value in

understanding the likelihood that a model’s prediction is

correct, optimizing the model’s parameters to maximize

confidence, and with such information, prioritize the data

such that samples with higher confidence are parsed by

human analysts first.

By definition, novelties are scarcely represented in the data, as

such some evaluation metrics (such as accuracy) provide

misleading assessments of performance. Others offer some

benefit when measuring one variable, but become opaque

when measuring another. Due to the complexities of real-

world data, understanding the methods available to evaluate

model performance, and subsequently selecting specific models

for application-level software, is an important task. In the current

study, simple and robust metrics derived from traditional model

evaluation are employed (as discussed below). In addition, we

propose a new metric—Precision at Capacity, denoted

Precision(%-capacity)—that has proven invaluable when

analyzing the performance of select models for application-

level implementation (Stefanuk, 2021).

1) Receiver Operating Characteristic (ROC) curves are verbose

graphical plots that display the performance of binary

classifiers (Figure 7). An ROC curve plots the true positive

rate (TPR), also known as recall, as a function of the false

positive rate over a sequence of thresholds2. Novelty scores

falling above the threshold are considered positive (novel)

sample detections, those falling below are considered negative

(typical) samples.

i) Positive Likelihood Ratio (LR+) is a value that encodes

the relative strength between the true positive rate

(fraction of ground truth novelties correctly detected)

and the false positive rate (fraction of typical samples

erroneously detected). It is useful for application-level

evaluation because it measures the likelihood that

specific model parameters will result in the detection of

more true positives than false positives, as weighted by the

number of samples in each class.

ii) Area Under the Curve (AUC) is a useful derived metric; in

general, the greater the AUC, the better the performance. One

drawback of ROC AUC is it generalizes performance across

an array of thresholds, only implicitly providing insight into

how well a fully implemented model would work in practice.

2) Precision(k) curves are graphical visualizations of precision

(the fraction of positive detections that are correct) as a

function of the number of samples, k, under test

(Figure 7). More precisely, the plot displays the proportion

of correctly identified novel samples given the k top-ranked

samples. For example, with a model that always predicts a

sample is novel,

2 In other words, a 1-dimensional novelty boundary.
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Precision k � 2( ) �
1, if x1 ∧ x2

0.5, if x1vx2

0, if ¬ x1‖x2( )

⎧⎪⎨
⎪⎩ (6)

where x1 and x2 are the two most novel samples as predicted by

the model.

i) Precision(%-capacity) is a metric developed by the authors

that describes the precision of a select model at a distinct cut-off

of the total capacity3. In this sense, the term capacity refers to the

data transmission capacity: the percentage of data collected that

can realizably be downlinked in a given period. For example, say

100 MB of data is collected in a day but due to transmission

limitations, only 10 MB (10%) can be downlinked. This means

that the data transmission capacity is 10% of the total data

collected, thus Precision(10%) becomes the quantity of

interest. In Figure 7 one can see the implications of this

quantity for two example Precision(k) curves. Contrast this to

the calculation of Precision(k), whereby a value is determined at

increasing integers of k without regard for the size of the dataset

at large. Precision (%-capacity) bridges another conceptual gap

reported in literature (Xu et al., 2019; Kerner et al., 2020) whereby

only samples up to the known number of novelties are used. To

remain consistent with other works we also report this value as

Precision(knovel); however, this metric relies on the assumption

that the number of novelties can be known a priori. By their

nature, novelties are uncommon, found at irregular intervals, and

comprise a small, unknown fraction of the data collected.

Precision(%-capacity) clarifies the attainable performance of a

detector in bandwidth constrained environments where only a

portion of accumulated data can be downlinked over a given

duration.

3 Results and discussion

3.1 Curiosity mastcam

A state-of-the-art benchmark for novelty detection in a

Martian context is a CAE that achieves an ROC AUC of 0.65

(Kerner et al., 2020). As stated in the introduction, one of the

primary goals of this research is to investigate systems that are

able to outperform this score. Results from this dataset can

provide insights into how novelty detection is influenced by

features specific to images of the Martian surface.

Models trained on the Curiosity Mastcam dataset are

evaluated here using reconstruction-based detections. Scores

are assigned as the mean squared error (MSE) between the

reconstruction and input. ROC curves for these models are

shown in Figure 8 while Precision(k) curves are shown in

Figure 9. To better understand the nature of the novelty

scoring mechanism underpinning the performance of different

models, in Figure 10 we also plot the distributions of novel and

typical samples according to the novelty score assigned to them.

As measured by ROC AUC, the two VAEs performed the

best (0.70, 0.69) while PCA performed the worst (0.59). ROC

curves from this experiment are particularly interesting to

observe because of the variety of shapes they take. For

example, the PCA ROC curve performs nearly the same as

random until False Positive Rate (FPR) ≈ 0.40, capturing

FIGURE 7
Demonstration of the core evaluation metrics used in this research. (A) Receiver Operating Characteristic (ROC) curves with associated AUC
and LR+; here it can be seen that despite the purple line having a greater AUC, a well-selectedmodel from the red line can achieve a LR+ > 2 × larger.
(B) Precision(k) curves with representative Precision(% Capacity) values; here it can be seen that despite the purple line displaying better generic
performance across the spectrum of k values, at 10% capacity the red line is more precise.

3 Precision(%-capacity) is usually denoted with a percentage (e.g.,
Precision(10%)) or sometimes with a fraction/decimal (e.g.,
Precision(0.1).
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almost all of its AUC afterwards. Despite its lower AUC, the peak

of the PCAROC curve hits full recall at FPR ≈ 0.65 (point marked

by •), earlier than any of the other models. This means that, at the

novelty boundary that results in FPR ≈ 0.65, the PCA detector

correctly identifies all of the ground truth novelties with fewer

false positives than any of the other models.

The bulge at the bottom left of Figure 8 resulting from

BASELINE CAE marks another interesting observation (point

marked by ■). The Positive Likelihood Ratio (LR+) can be

used to mark thresholds that return good, balanced detections.

When selecting a detector to use in an operational scenario, this

ratio is important because it identifies the performance of a single

realizable detector. This metric can also be interpreted as the

derivative of the ROC curve. With a LR+ = 7.85 at the point

marked ■ in Figure 8, any predicted novel sample has a high

confidence of being truly novel.

The Precision(k) curve (Figure 9) also shows a salient bulge

when evaluating BASELINE CAE at 15% data capacity. While the

FIGURE 8
ROC curves for reconstruction-based detections with models trained on Curiosity Mastcam. At the point marked ■ the BASELINE CAE obtains an
LR+ = 7.85. At the point marked • the PCA model hits full recall earlier than any of the other models.

FIGURE 9
Precision(k) curves for reconstruction-based detections with models trained on Curiosity Mastcam. knovel = 430 is the number of ground truth
novel samples in the dataset and 15% of the data accounts for 128 samples.
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Precision(knovel) is highest for SIMPLE VAE at 0.63, Precision(15%)

is much higher with BASELINE CAE than any of the other models at

0.88. More precisely, when detecting with BASELINE CAE the

highest 15% of novelty scores are associated with 88% of the

ground truth novelties. In practice it is impossible to know knovel
beforehand. Since data downlink limitations are driven by means

entirely unrelated to the number of novelties, Figure 9 proves the

value of assessing the precision at a specified data capacity, a

value that is driven by operational factors such as bandwidth

constraints and line of sight opportunities.

Class-wise results for the BASELINE models trained on

Curiosity Mastcam are provided in Table 3. BASELINE VAE not

only obtains the best ROC AUC overall (Figure 8), but also

exhibits more consistent AUCs across novelty classes than either

the CAE or AAE. These results contrast the technically superior

RX detector from (Kerner et al., 2020) that achieved an ROC

AUC of 0.72, but showed high volatility when detecting on a

class-wise basis (AUC 0.22 detecting veins versus AUC

0.97 when detection meteorites), indicating that RX detectors

are susceptible to specific types of spectral and morphological

FIGURE 10
(top) Reconstruction score distributions for typical and novel samples; approximated probability densities were calculated with Gaussian kernel
density estimation. Thresholds ST placed on novelty scores S establish a boundary that separates positive (novel) and negative (typical) class
predictions. (middle) Positive likelihood ratio (LR+) as a function of novelty boundary/threshold ST. LR+ provides information about the relative
strength of the true positive rate against the false positive rate. (bottom) Examples of true positive (TP) and false positive (FP) samples predicted
by models with ST set at the point marked by •. (A) BaselineCAE-v1. (B) BaselineVAE-v1
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features and that BASELINEVAE is superior in terms generic novelty

detection. Moreover, RX detectors were not selected as state-of-

the-art for comparison in this work because they do not

generalize to 3-channel colour images, which are the only

ones currently available for lunar applications. Once multi- or

hyper-spectral lunar surface images become available, RX

detectors should be given a more detailed treatment to fully

understand their capabilities in the lunar environment.

in Figure 10 (top), novelty scores from test samples are

binned and coloured by their ground truth label. A probability

density estimate is then computed using Gaussian kernel density

estimation (KDE) with kernel N (S; σ2) where σ = 0.55, as

determined by Scott’s method (Scott, 1992). In Figure 10A

(top) it can be seen that novel samples dominate the

distribution above the right-most KDE intersection at S =

0.548. This linear separability gives context as to why the

BASELINE CAE-V1 shows high precision at low data capacity in

Figure 94. Since models exhibiting high precision are particularly

valuable for data prioritization (e.g. in a bandwidth constrained

environment), the positive likelihood ratio (LR+) plays a special

role when selecting a specific model because it provides

information about the relationship between the true positive

rate and the false positive rate. In Figure 10A (middle), LR+ is

plotted as a function of novelty thresholds. It is observed that for

the BASELINE CAE, LR+ hits a local maximum at the point marked

by • with (ST, LR+) = (0.603, 10.700). A model chosen with this

threshold would yield a TPR 10.7 × higher than its FPR. While

there does exist a global maxima at ST = 0.664, such a threshold

would omit 42 true positives to increase LR+ to 10.900; if the

ultimate goal is to reduce false positives at all costs, such a trade-

off may be desirable, but is left for the reader to decide Such

results demonstrate that performant, domain-specific models

with low FPRs can be built and selected using existing

statistical metrics and a small amount of qualitative assessment.

Figure 10A (bottom) shows randomly selected examples of

true positives and false positives that were reported by the model

with ST = 0.603. Interestingly, all of the false positives are highly

homogeneous with little or no morphological structure.

Switching to Figure 10B where results pertaining to the

BASELINE VAE are shown, it is observed that both the novel and

typical distributions exhibit at least one mode in the region above

ST = 0.600. Overlap such as this is a sign that the predictions given

by the model lack separability in high scoring regions.

Nonetheless, the distribution of typical samples shows bi-

modal behaviour (as opposed to the novel samples which

show uni-modal behaviour) with a large fraction of its scores

being concentrated in the lower region where S < 0.600 (point

marked ▼). Again using the LR+ curve (Figure 10B (middle)), we

see a local maximum at ST = 0.892 (marked by •) and global

maximum at ST = 0.992. Although the latter threshold obtains a

better LR+, in the vicinity of ST = 0.992 the curve is noisy due to

the small number of samples with S > ST. In an operational

scenario, a model that implements ST = 0.870 will hence provide a

more robust solution at the expense of LR+. Such a model is

recall-dominant and is best applied when seeking to maximize

the number of ground truth novelties detected. In these scenarios,

on-board computation is less valuable than the counterpart

shown in Figure 10A since its data prioritization potential is

low. However, recall-dominated models that lack precision are

still valuable on-ground as a first-pass filtering mechanism that

helps resolve delayed tactical cycles (Gaines et al., 2016).

The observations outlined herein show that when inferring

novelty on a linear scale of scores, measures such as ROC AUC

and Precision(knovel) are insufficient to draw informed conclusions

about relative performance. For example, while both BASELINE CAE

and BASELINEVAE obtain a similar ROCAUC, these values are arrived

at in two distinct ways. One way is to produce higher proportions of

novel to typical samples in the region where S is high (Figure 10A),

the other is to produce lower proportions of novel to typical samples

in the regionwhere S is low (Figure 10B). Despite the ROCAUCand

Precision(knovel) scores identifying similar performance, a deeper

analysis of a models’ underlying properties, including probability

density approximations and positive likelihood distributions, makes

the model selection process more transparent and less qualitative.

Figure 11 demonstrates that VAEs can cope with higher MSE

scores while retaining state-of-the-art performance. In this figure,

the MSE of BASELINE VAE trained on Curiosity Mastcam at the final

validation epoch was calculated to be 0.58 (Figure 11B, marked with

•). Contrarily, a lowest validation loss of 0.28 was obtained with

BASELINE CAE (Figure 11A). The obvious qualitative nature of this

difference can be observed in the inputs and reconstructions in the

rightmost images. When detecting with BASELINE VAE, the

reconstructed image loses fine features such as the ring and

circular spots surrounding the calibration target (dark pole with

knob on top). Though a greater level of detail is kept with BASELINE

TABLE 3 Class-wise ROC AUCs for BASELINE models trained on curiosity
Mastcam.

Novelty class BASELINE CAE BASELINE VAE BASELINE AAE

All 0.684 0.697 0.671

Bedrock 0.443 0.581 0.552

Broken rock 0.521 0.719 0.725

Drill hole 0.751 0.640 0.608

DRT spot 0.857 0.743 0.725

Dump pile 0.752 0.666 0.639

Float 0.571 0.660 0.626

Meteorite 0.549 0.619 0.594

Vein 0.416 0.692 0.686

The bold values refer to the best ROC AUC for each of the novelty classes.

4 For reference, the threshold marked by ■ that was heuristically chosen
in Figure 8 is also plotted in Figure 10A (middle).
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CAE (as also evidenced by its lowerMSE), the general performance as

measured by ROC AUC is marginally higher for BASELINE VAE.

3.2 Lunar analogue

The findings in the previous section on Curiosity Mastcam data

suggest that the performance of a novelty detector is not directly

driven by the ability to reconstruct typical images well. Instead, it is

driven by the relative ability to reconstruct typical images better than

novel ones, even at the expense of objectively poor reconstructions.

We can observe further examples of this phenomenon in Lunar

Analogue data shown in Figure 12, where inputs, reconstructions,

and normalized error maps are displayed. To be precise, each error

map pixel is taken as the squared difference between the input x and

reconstruction x̂ such that,

errori,j � xi,j − x̂i,j( )2 (7)

Inputs were obtained by randomly sampling six images from the

first training batch of the lowest validation epoch (with patience of

five epochs). As is seen in Figure 12B the mean intensity in the error

maps of BASELINE CAE are lower than for BASELINE AAE (Figure 12A).

One may also notice that the reconstructions shown in Figure 12A

have a lower frequency than those in Figure 12B, omitting much of

the details in the reconstruction. Remarkably, the ROC AUC of

BASELINE AAE is marginally higher.

4 Conclusion

Well-tuned autoencoders, be they CAEs, VAEs, or AAEs,

provide promising performance. On Curiosity Mastcam data the

ROC AUCs of all BASELINE architectures showed performance

within 0.685 ± 0.015, with the best AUC being found with

BASELINE VAE (0.70). The previous state-of-the-art presented by

Kerner et al. (2020) achieved an ROC AUC of 0.65, and only a

max ROC AUC of 0.61 when using MSE metrics. Therefore, this

BASELINE VAE model presented in this work outperforms the

previous state-of-the-art by 0.70/0.65 = 1.077, or > 7%, and

outperforms the MSE-only reference model by 0.70/0.61 = 1.148,

or > 14%. Moreover, when analyzed according to

Precision(15%) the BASELINE CAE achieved a precision of 0.88.

This important result proves that when trained on a

representative dataset, the correct algorithm can boost the

FIGURE 11
Training and validation curves (left) for two models trained on Curiosity Mastcam data. Input and reconstruction samples from the final
validation epoch are shown for qualitative comparison. Although MSEs were almost 2× higher for BASELINE VAE, it still achieved a slightly better ROC
AUC than BASELINE CAE. (A) Baseline CAE; lowest validation MSE = 0.28 achieves an ROC AUC = 0.68. (B) Baseline VAE; lowest validation MSE = 0.58
achieves an ROC AUC = 0.70.
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proportion of novel to typical samples considerably while

retaining good recall (see Figures 8, 9). Lastly, these results

were obtained within the scope of a single objective and

novelty scoring function: mean squared error. Our

supplementary findings published in (Stefanuk et al., 2020)

showed that the best results were obtained by using a hybrid

SSIM/MSE objective function and Outlier Count as the novelty

scoring function. By extending the algorithms presented in this

paper to use alternative optimizations and operations,

performance could be improved even further. Such

investigations were omitted here so that focus could be placed

on widening the scope of available autoencoder algorithms, all of

which can be routinely extended to use different operations such

as SSIM or Outlier Count.

Another important aspect of this study is the use of VAEs

and AAEs. Until recently, VAEs and AAEs had been primarily

considered for novelty detection on datasets similar to

Novelty MNIST (An and Cho, 2015; Leveau et al., 2017;

Beggel et al., 2019). Our research took these algorithms and

applied them to complex real-world data, demonstrating their

capabilities in both academic and commercial realms. In

certain scenarios, it was shown that the implemented VAEs

and AAEs outperform more conventional techniques, such as

PCA. Furthermore, they enable structured latent

representations, which could further enable the meaningful

utilization of the latent space for direct novelty detection.

Thus with VAEs and AAEs rich alternatives to reconstruction-

based detections become available.

4.1 Closure on precision and recall

When the connection between precision and recall is

interpreted in the context of planetary exploration, important

insights arise regarding what to look for in high performance

novelty detectors. In our experiments, ROC curves were used to

FIGURE 12
Images of inputs (top), reconstructions (middle), and error maps (bottom) obtained during training for two novelty detectionmodels. Notice the
objectively poor reconstructions in (A) BaselineAAE-bing1 achieving an ROC AUC=0.60. (B) BaselineCAE-bing1 achieving an ROC AUC=0.58.
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understand the recall of a model while Precision(k) curves

displayed information about precision. Whether a detector is

viewed through the lens of precision (e.g. Figure 9) or the lens of

recall (e.g. Figure 8) affects the interpretation of its performance.

Fundamentally, when evaluating the recall (or true positive

rate) of a detector, what we consider is: “Of all the ground truth

novelties present in the dataset, howmany are correctly identified

as novel.” Alternatively, when evaluating the precision (or

positive predictive value) of a detector, what we consider is:

“Of all the predicted novelties, how many are ground truth

novel?”

Detectors that achieve high recall are best suited for

scenarios where it is most important to catch every novelty.

For these detectors, the amount of samples incorrectly

identified as novel is a secondary concern; the detector’s

job is in this case is to prune the obviously typical samples

to reduce overall workload. Such scenarios dominate current

approaches to planetary novelty detection on-ground because

it is easy to conduct high-throughput image analysis on

already downlinked data, when bandwidth constraints are

no longer a concern. However, recall must not be used as a

sole metric, as simply labeling all images novel achieves

perfect recall. This is why ROC curves were used as a

primary evaluation metric in this work, as they visualize

the trade off between recall (TPR) and false positive rate.

Most of our experiments showcased examples of high recall

detectors. All autoencoder models trained on Curiosity

Mastcam (Figure 8) obtained recalls of 0.60 at FPR =

0.38 ± 0.03. When trained on Lunar Analogue region

proposals (Figure 12) the BASELINE CAE and BASELINE AAE

obtained recalls of 0.6 at FPR = 0.35 ± 0.02. All of these

models are well-suited for on-ground processing to boost

the ratio of novel to typical samples.

Detectors with good precision are best suited for scenarios

where it is most important to maximize the proportion of

correctly identified novelties from a subset of images. For

these detectors, missing large numbers of novelties altogether

is acceptable. Bandwidth constrained environments exemplify a

particularly valuable application of high precision detectors since

the most novel data can be identified and prioritized for

downlink. Unfortunately, bandwidth constrained

environments are often also constrained in terms of

computational resources. Hence on-board pre-filtering may be

avoided for reasons related to power availability or hardware

limitations. As a metric, precision also has the disadvantage that

it only considers novel predictions in its evaluation, so it fails to

incorporate information about how many ground truth novelties

were overlooked entirely.

A visual example of precision and recall in planetary

novelty detection is illuminated in Figure 10. Imagine a

threshold is placed at S = 0.6 for both BASELINE CAE a) and

BASELINE VAE (b). For BASELINE CAE this threshold would

produce a high precision detector because most of the

typical and novel samples would be omitted, but those that

were retained would be almost entirely novel. On the other

hand, this threshold placed on BASELINE VAE would produce a

high recall detector since most of the novelties would be

recognized, but many typical samples would be mistaken

for novelties as well.

Unlike recall, which is governed by the number of ground

truth novelties and ranges between zero and one accordingly.

As such, when using precision to evaluate performance, the

goal post should be set to knovel/ktotal as opposed to some

static value such as AUC = 0.5 for ROC curves. If precision is

higher than knovel/ktotal and computational concerns are not

an issue, then using a detector for on-board pre-filtering is a

good idea.

Since each of the two metrics have their place in specific

scenarios, neither can objectively be called better. Under certain

conditions, however, one may be more appropriate as the basis of

evaluation, and both should always be used to counter-balance

conclusions made from the other.

4.2 Dimensionality reduction and quality
of reconstruction

Many factors are at play when switching between

algorithms and training regimes. One of the primary

reasons why the reconstructions resulting from the AAE

are objectively poor compared to the CAE is that the latent

representation is lower dimensional. The latent representation

of BASELINE AAE-BING1 occupies R32, the latent size of BASELINE

CAE occupies R768, 24-times higher in dimension. In other

words, the latent representation undergoes a larger

dimensional reduction when encoded by the AAE. It

appears that there is a “Goldilocks Zone” for dimensional

reduction that results in the best performance. The key insight

here is that this zone does not arise because certain levels of

compression provide good reconstructions, but because they

lose just enough information that the model of normality

learns only the most dominant typical features. At the most

appropriate compression, upon reconstruction, features that

are reminiscent of novelties (whether they be typical or not)

are lost. While guiding design decisions based on this

interpretation may omit some typical content in the

reconstruction of typical images, such a concern is

secondary under the presumption that novel images are

relatively devoid of typical content. Thus, when they are

mapped onto the learned typical modes of the model, most

of the novel content will fail to be reconstructed, resulting in

higher MSE scores.
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As shown in Figures 11, 12, our research supports this

interpretation because it demonstrates that VAEs and AAEs

can cope with higher MSE scores while retaining state-of-the-

art performance. Though a greater level of detail is kept with

BASELINE CAE (as evidenced by its lower MSE), the general

performance as measured by ROC AUC remains marginally

higher for BASELINE VAE or BASELINE AAE respectively.

For reasons mentioned above, these insights are most

applicable to complex, real-world images that have fine, subtle

details. Future novelty detection researchers applying their

expertise to such data are advised to consider the

interpretation presented herein—the best performing models

are ones that prioritize the most dominant typical features.

Models that return high quality reconstructions may suffer

from overfitting, and are often capable of reconstructing novel

features on-par with typical ones encountered during training.

4.3 Future work

Avenues for future research are plentiful, some of which have

been mentioned throughout the text.

Perhaps the single largest factor limiting the development of

general purpose novelty detection systems for planetary

exploration is the lack of available data. While many sources

and databases exist with images of the lunar and Martian surface

(NASA, 2017; CNSA, 2021), very few research endeavours have

gone through the process of preparing large, high-quality

datasets with labels specifically designed to address novelty

detection tasks. Currently, projects such as LabelMars are

underway which will help alleviate this developmental

bottleneck for martian-based systems. One important project

that should be undertaken is to conduct similar measures as

LabelMars but for lunar surface images, for example, LabelMoon.

Expert analysis of existing lunar surface images is a valuable first

line of attack.

In this research, all of the models used for novelty

detection are optimized using a mean squared error (MSE)

objective. For the reconstruction-based techniques, the MSE

was also used to directly score the novelness of each input

sample. In work published in the early stages of this research

(Stefanuk et al., 2020) a wider array of operations were used

both for the optimization objective (e.g., loss function) and

novelty scoring function. Similar research was conducted

along this avenue in the work by Kerner et al. (2020). In

both these studies, the performance of MSE as an optimization

objective between the reconstruction and input was compared

and contrasted to the structural similarity index (SSIM), as

well as a linear combination of MSE and SSIM. Though these

measures mark the most transparent operations to optimize,

there are potentially other techniques that could be used too.

For example, expanding upon the linear combination

approach, polynomial functions containing both SSIM and

MSE could be valuable loss functions with little overhead

required to adapt current training regimes. Our preliminary

exploration of SSIM and hybridized loss functions have

demonstrated that carefully selecting the optimization

criterion can improve detection performance for

reconstruction-based methods. In addition, Kerner et al.

(2020) introduced the Outlier Count method, whereby the

squared error of each pixel in the reconstruction and input

image is computed.

When applying novelty detection to a specific domain,

such as the Moon or Mars, (hyper) parameters must be

adapted to suit the domain. Differences in illumination,

distribution of features, colours, and general geologic

content all affect the ability of a reconstruction algorithm

to detect novel behaviour within an image, as do the size and

spectral dimension (i.e. number of channels) or the image.

Training parameters such as the learning rate, weight decay,

network capacity, and model architecture are all impacted by

the domain of interest, and will not necessarily show similar

performance when applied to different environments.

Considerations such as these are crucial when building a

novelty detection system deployable to targeted

environments. One promising direction of research lies in

tuning a system to a specific environment to its fullest extent,

such research would be highly valuable as commercial

software products.

All of the detections carried out in this research use

thresholds to establish novelty boundaries. In the current

study, this approach was selected because, independent of

the model used, more sophisticated binary classifiers can

always be cascaded with them. This research outlines the

potential for advanced autoencoder methods, such as VAEs

and AAEs, to provide reconstruction outputs that in some

cases perform better than previous state-of-the-art CAE

methods. A CNN can be cascaded with any of these

architectures to extract subtle features in the error map

between input and reconstruction. As a logical extension to

this, since VAEs and AAEs enable structured latent

representations, it is possible to cascade a CNN with the

latent representation to conduct intermediary detections to

either supplement or replace reconstruction detections. End-

to-end trainable networks are also of interest for image-based

novelty detection. These networks would not require any

cascaded networks, but would instead build the CNN

classifier directly into the overall architecture, effectively

creating a network that outputs novelty detections directly.

An illuminating discussion on end-to-end trainable networks

and their place in novelty/anomaly detection is given by Pang

et al. (2020).

Frontiers in Robotics and AI frontiersin.org18

Stefanuk and Skonieczny 10.3389/frobt.2022.974397

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.974397


Another interesting way to further extend the research in

this work is to develop better techniques for novelty

detection using the latent representations made available

with VAEs and AAEs. Since the latent space is effectively

an embedding of a high-dimensional image into a low

dimensional representation, any detection techniques that

are prohibited because of the curse of dimensionality become

available. Probabilistic and information theoretic detection

methods may provide better performance than the distance

measures used in our experiments. A good starting point

would be to consult the comprehensive review given by

Pimentel et al. (2014). Leveraging the latent space for

image-based novelty detection has been considered with

VAEs in previous works (An and Cho, 2015). One study

has shown that ROC AUCs can be improved for both latent

space and reconstruction-based detections (Sintini and

Kunze, 2020).
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