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Robots used in extreme environments need a high reactivity on their scene. For

fast response, they need the ability to find the optimal path in a short time. In

order to achieve this goal, this study introduces WA*DH+, an improved version

of WA*DH (weighted A* with the derivative of heuristic angle). In some path

planning scenes, WA*DH cannot find suboptimal nodes with the small inflation

factor called the critical value due to its filtering method. It is hard to develop a

new filtering method, so this study inflated the suboptimality of the initial

solution instead. Critical values vary in every path planning scene, so

increasing the inflation factor for the initial solution will not be the solution

to our problem. Thus, WA*DH + uses the GBFS algorithm with the infinitely

bounded suboptimal solution for its initial solution. Simulation results

demonstrate that WA*DH + can return a better solution faster than WA*DH

by finding suboptimal nodes in the given environment.
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Introduction

Path planning is an essential part of self-moving machines such as self-driving cars,

unmanned aerial vehicles, or other robotics systems (De Momi, Elena et al., 2016;

Boulares and Barnawi, 2021; Mac, Thi Thoa et al., 2016; Fu, Bing et al., 2018; Duan, Chao,

et al., 2020; Liu, Zhiyuan et al., 2020; Hou, Mengxue et al., 2021). Path planning aims to

find the path that has the lowest path cost in the shortest time because self-moving

machines need fast reactions on their scene. Here, the path cost means the distance from

the start to the target. Many path planning algorithms were developed to achieve this goal.

Bioinspired algorithms such as genetic algorithm (GA), particle swarm optimization

(PSO) (Das et al., 2016; Song et al., 2016), sampling-based algorithms such as rapidly

exploring random tree (RRT), Voronoi, and artificial potential field (APF) algorithms are

the examples (Yang, Liang et al., 2014; Yang, Liang et al., 2016). However, these

algorithms sometimes show poor performances due to some limitations, such as the

local minimum situation.

In order to avoid these threats, the A* algorithm (Hart et al., 1968) motivated by

Dijkstra’s algorithm and other node-based algorithms were developed. The main

characteristic of A* and all variations of A* is the heuristic. The heuristic means the
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estimated distance from the current node to the target. The

heuristic is the most important factor in A* and all variations of

A* because the heuristic can change the performance of

algorithms (Jing and Yang, 2018). The concept of the

heuristic is used not only for node-based algorithms but also

for other algorithms, such as the ACO algorithm (Dai, Xiaolin

et al., 2019).

The heuristic is a powerful method for finding the optimal

path. However, algorithms using the heuristic have a time-

consuming problem. This problem made A* hard to use in

real-time systems, so many researchers developed various

methods to get a result of heuristic-using algorithms in a

short time. With these trials, weighted A*(WA*), the bounded

suboptimal search algorithm, was developed (Pohl, 1970). WA*

uses the heuristic multiplied by the inflation factor (ϵ> 1). The
concept of inflating the heuristic solved a time-consuming

problem. However, the inflated heuristic cannot guarantee the

optimality of the result anymore.

Many researchers focused on this side effect, and as a result,

many variations of WA* were developed. For example,

dynamically weighted A*(DWA*) uses the d(root) as a depth

bound (Pohl, 1973) and A*
ϵ uses the desired suboptimality bound

to build the focal list from a node selected to expand (Pearl and

Kim, 1982; Thayer and Ruml, 2008; Thayer and Ruml, 2009).

Also, Aine Sandip et al. (2016) suggested two versions of multi-

heuristic A*(MHA*), which uses multiple heuristic functions to

find the path; independent MHA*(IMHA*), which uses

independent g and h values for each search, and shared

MHA*(SMHA*), which uses different g but a single g value

for all the searches. Ying et al. (2018) suggested the evolutionary

heuristic A*(EHA*), which uses GA to automatically design,

calibrate, and optimize multi-weighted heuristic functions to

maximize the performance of the algorithm (Yiu et al, 2018).

Anytime algorithms were also used in various path planning

environments. Anytime algorithms have a flexible time cost and

can return a sub-optimal solution in a short time and

progressively optimize it till the time limit expires. The naïve

anytime A*(ATA*) returns its result by iteratively reducing the

inflation factor; however, it repeats previous works (Zhou and

Hansen, 2002). To address this inefficient work, anytime

repairing A*(ARA*) reuses the previous work to optimize the

path efficiently (Likhachev et al., 2003; Li et al., 2012). The

concept of reusing the previous work was adapted to D*.

Thus, anytime dynamic A* was developed (Likhachev, Maxim

et al., 2005). However, they need an understanding of complex

mathematical logic, which can make users reluctant to use these

algorithms.

Recently, weighted A* with the derivative of the heuristic

angle (WA*DH), motivated by the concept of anytime

algorithms, was suggested (Lim et al., 2020). WA*DH returns

its path by getting an initial solution with a certain inflation factor

and partially replans the path with the same inflation factor used

in the initial solution. Because WA*DH improves the initial

solution only with the direction of the path, it does not require

complicated mathematical logic. Thus, WA*DH has the

advantage that users can easily understand how WA*DH can

improve its initial solution. However, we found that the

performance of WA*DH at a certain range of inflation factors

is worse than that of the larger inflation factor. We supposed that

this is because of the quality of the initial solution ofWA*DH and

this problem makes WA*DH hard to use in the self-moving

vehicles used in extreme environments.

In order to address this problem, this study introduces

WA*DH+. WA*DH+ is motivated by WA*DH, so the overall

procedures of WA*DH+ are the same as those of WA*DH.

The difference between WA*DH and WA*DH+ is that

WA*DH+ uses the GBFS algorithm to get the initial

solution, whereas WA*DH uses the WA* to get the initial

solution. We confirmed from the simulations that the

suggested method not only reduces the elapsed times but

also removes the probability of the degradation of the

performance of the algorithm. From the simulation results,

we believe that WA*DH+ will make self-moving vehicles used

in extreme environments more responsive.

Weighted A*with the derivative of the
heuristic angle

As stated in the introduction, WA*DH uses the derivative of

the heuristic angle (hereinafter referred to as DH) to refine the

initial solution. The heuristic angle can be defined as (1), and its

schematic diagram is stated in Figure 1. In Eq. 1, {T, n1, n2} ∈ P
denotes the target node, a current node, and the parent node of a

current node, respectively. P denotes the set of nodes that consist

of the path. T denotes the target, and subscripts {target, n, n − 1}
are subscripts of {T, n1, n2}, respectively:

θha �
∣∣∣∣∣∣∣∣tan−1(ytarget − yn

xtarget − xn
) − tan−1(yn − yn−1

xn − xn−1
)
∣∣∣∣∣∣∣∣ (1)

FIGURE 1
Schematic diagram for the heuristic angle.

Frontiers in Robotics and AI frontiersin.org02

Lim and Jo 10.3389/frobt.2022.958930

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.958930


The first step of WA*DH is getting an initial solution from

WA*. Once the procedures of WA* are executed, coordinates of

nodes that consist of the initial solution will be listed. With this

list, WA*DH calculates heuristic angles and their derivatives. The

shape of the initial solution and the derivatives of heuristic angles

are stated in Figures 2A,B.

From Figure 2B, there are some noise-shaped patterns

near 0. These elements can be considered suboptimal nodes

by the definition of suboptimal nodes, so they must be

eliminated. To do so, WA*DH filters them with a

threshold defined as (2). With these methods, Figure 2B

will be changed to Figure 3. In Eq. 2, θ′ha(n) denotes the

derivative of the heuristic angle of nth node of the initial

solution andm denotes the total number of nodes that consist

of the initial solution:

Threshold � ∑m
n�1

(θ′ha(n)) ÷ m (2)

The next step of WA*DH is searching suboptimal nodes. The

suboptimal node contains two nodes: occurrence and escape. The

occurrence node is defined as a node with a positive DH, and the

escape node is defined as a node with negative DH. Also, the

escape node must satisfy one more condition; there must be at

least one occurrence node between the start and a node with

negative DH. By the definition of suboptimal nodes, we can find

two occurrence nodes near the 110th and 200th nodes and three

escape nodes near the 120th, 150th, and 280th nodes from

Figure 3.

The purpose of searching suboptimal nodes is to make the

node-set. The node-set contains the start and the target nodes

for local replanning. Local replanning needs to be executed

for the number of occurrence nodes. In the example

environment, there are two occurrence nodes, so local

replanning needs to be executed twice. The start and the

FIGURE 2
Initial solution and their derivatives of heuristic angles. (A) Initial solution from WA*. (B) The derivatives of heuristic angles.

FIGURE 3
Filtered DH with a threshold.
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target for local replanning can be determined as follows and

Figure 4 shows the start and the target for local replanning of

the example environment:

1) The start of the first local replanning is the start of the initial

solution, and the target of the first local replanning is the first

escape node. However, if there are two or more escape nodes

between two occurrence nodes (or target of the initial

solution), the last escape node will be chosen for the target

of the local replanning.

2) The start and the target of the second and the subsequence

local replanning are targets of the previous local replanning

and nth escape node. If there are two or more escape nodes

between two occurrence nodes (or target of the initial

solution), the last escape node will be chosen for the target

of the local replanning.

Next, WA*DH executes WA* multiple times based on the

node-set. The number of executions is the same as the number of

occurrence nodes, and the inflation factor in each execution is

equal to the initial solution. After that, WA*DH replaces the

initial solution with the locally replanned paths. The procedure of

the replacement contains not only replacing nodes but also

updating g(n) and h(n). As a result, WA*DH returns its

result. Figure 5 states the initial solution and final solution of

WA*DH in a dotted line and a full line, respectively.

WA*DH+: Locally replans paths based
on the infinitely bounded suboptimal
solution

Critical values on WA*DH

Theoretically, the path cost of WA*DH decreases with the

decreasing inflation factor. However, we found that the path cost

of WA*DH with a certain inflation factor is higher than that with

a larger inflation factor. This is stated in Figure 6 and Table 1. In

Figures 6B,D,F, θ′haf denotes the filtered DH with a threshold; a

dotted line and a full line in Figures 6A,C,E denote the initial and

final solution of WA*DH, respectively. Table 1 states the elapsed

times and path costs of each simulation.

From the initial solution in Figures 6A,C,E, it is intuitively

clear that there are two detouring sections, so we can expect that

there will be two escape nodes. When ϵ � 2, WA*DH detected

two escape nodes correctly, so the quality of the path cost is equal

to A*. However, when ϵ � 1.8, WA*DH detected only one escape

node near the 300th node and the path cost of WA*DH is higher

than the path cost of WA*DH when ϵ � 2. We first supposed this

is becauseWA*DH cannot detect all suboptimal nodes. However,

as stated in Figure 6D, WA*DH with ϵ � 1.5 found only one

escape node at the same location in Figure 6D, but its path cost is

equal to A*. From these results, we concluded that the fault

detection of suboptimal nodes is not the cause of the poor

performance. Also, we defined inflation factors that make

performance degradation critical value.

Get an initial solution from the greedy GFS
algorithm

It is hard to avoid the threat of critical values because

they are unpredictable. We thought that using a large

inflation factor would avoid the threat of the critical

value. However, it is hard to decide on a large inflation

FIGURE 4
The start and the target for local replanning of the example.

FIGURE 5
Initial and final solution of WA*DH.
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FIGURE 6
Results ofWA*DHon the different inflation factors. (A)Result ofWA*DHon ϵ � 2.2. (B) θ′haf ofWA*DHon ϵ � 2.2. (C) Result ofWA*DHon ϵ � 1.8.
(D) θ′haf of WA*DH on ϵ � 1.8. (E) Result of WA*DH on ϵ � 1.5. (F) θ′haf of WA*DH on ϵ � 1.5.
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factor because the criteria for big and small are different for

each person. From this, we hypothesized that an extremely

high inflation factor, such as an infinite inflation factor, will

be enough to call a large inflation factor. Therefore, we

suggest the greedy best-first search (GBFS) algorithm as

the algorithm for the initial solution. GBFS is an

algorithm that searches nodes with only heuristic, so we

thought that using the GBFS algorithm is equal to using WA*

with the infinite inflation factor. The cost function of GBFS is

stated in Eq. 3, where f(n) denotes the cost function of a node

of the GBFS algorithm and h(n) denotes the heuristic of a

node:

f (n) � h(n) (3)

Theorem. If the inflation factor is extremely high (or infinite),

then the effect of the g term will be disappeared. Here, g is the cost

of the path from the start node to the nth node.

Proof.

Let the cost function of an algorithm be

f () � g +  × h (4)

We can change Eq. 4 to

f ()


� g

+ h (5)

Taking the limit on both sides of Eq. 5,

lim
→∞(

f ()
ϵ ) � lim

→∞(g

) + lim

→∞(h) (6)

f ()


≈ h (7)
∴ f () ≈  × h (8)

The role of the inflation factor on the cost function, such as

Eq. 4, is deciding the influence of the heuristics compared to the

cost of the path, g(n). However, there is no need for the inflation

factor because Eq. 8 does not contain g(n) anymore. so we can

remove ϵ from Eq. 8 With these procedures, we can derive Eq. 3

as a result.

Using the GBFS algorithm gives us some advantages, as

stated in Figure 7. Figure 7 states escape nodes found from the

result of WA* with ϵ � 1.8, ϵ � 2.2, and the GBFS algorithm,

and circles in Figures 7A,C,E state the locations of occurrence

nodes.

WA*DH in Figure 7B detected two occurrence nodes,

so we can expect there would be two escape nodes.

However, WA*DH in Figure 7 detected only one escape

node. Also, in Figure 7D, WA*DH detected two occurrence

nodes and two escape nodes. Moreover, WA*DH in

Figure 7F found three occurrence nodes and escape

nodes. In fact, considering the placement of obstacles in

the simulation environment of Figure 7, there must be

three occurrence nodes and escape nodes. However,

Figures 7B,D could not detect all suboptimal nodes due

to the relatively high optimality of WA*. From these

results, we can prove that the high inflation factor can

detect suboptimal nodes clearly.

The path planning with the GBFS algorithm is also very

useful in terms of elapsed time. The elapsed time of WA* gets

shorter as the inflation factor increases. This means that an

infinite inflation factor can theoretically get a result of WA* in

the fastest time. Thus, we can expect that the GBFS algorithm

can reduce the elapsed time of our algorithm, WA*DH+. This

will be simulated in Section 4.

Procedures of WA*DH+

This section introduces our algorithm, WA*DH+, and

how WA*DH + gets its result. Procedures of WA*DH + are

similar to those of WA*DH: getting an initial solution,

finding escape nodes, locally replanning the paths, and

connecting them. The details of procedures of WA*DH +

are stated below.

First of all, WA*DH + gets an initial solution from the GBFS

algorithm. Unlike WA*DH, WA*DH + does not need to decide

the inflation factor for the initial solution. After getting an initial

solution, then WA*DH+ calculates θ′haf with the moving

median filter and the threshold.

The next step of WA*DH+ is finding the suboptimal

nodes to decide the start and the targets for local

replanning. Next, WA*DH+ executes the local

replanning. In this procedure, WA*DH+ needs to decide

on an inflation factor.

The final step of WA*DH+ is path-connecting. In this

procedure, WA*DH + needs to update only heuristics,

whereas WA*DH needs to update the actual costs, g(n),

and heuristics. Also, WA*DH+ needs an additional

procedure to calculate the path cost, whereas WA*DH can

get its path cost from g(n) of the target. After calculating the

path cost, WA*DH+ can finally get its result. The pseudocode

and the flowchart of WA*DH+ are stated in Figures 8, 9. In the

flowchart, when i � 1 , the (i − 1)th node is equal to the

original start node.

TABLE 1 Elapsed times and costs Figure 4.

Inflation factor Time (s) Cost (node)

2.2 2.04 404.84

1.8 2.49 408.15

1.5 4.08 404.84

1 (= A*) 15.40 404.84
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FIGURE 7
Escape nodes of WA* on different inflation factors. (A) Result of WA*DH on ϵ � 1.8. (B) Filtered θ′haf of WA* on ϵ � 1.8. (C) Result of WA*DH on
ϵ � 2.2. (D) Filtered θ′haf of WA* on ϵ � 2.2. (E) Result of the GBFS algorithm. (F) Filtered θ′haf of the GBFS algorithm.
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Simulation results

Simulation environments

In order to compare the performances withWA*DH, obstacles

were placed the same as in the simulation environments of

WA*DH, and the sizes of all simulation environments are also

the same as those of the simulation environments of WA*DH

(270 x 27 nodes) as stated in Figure 10. All simulations were

conducted in MATLAB with Windows 10, i7-9700 CPU with

32 GB RAM, and there are no acceleration methods or parallel

processes such as Graphics Processing Unit (GPU) and parallel

processing with CPU cores.

Performances of WA*DH+

To validate the performance of WA*DH+, we simulated

WA*DH+, WA*DH, and WA* in terms of the path cost and

elapsed time in each environment. Simulations were conducted

by reducing the inflation factor from 3 to 1 by 0.2 to compare

performances near critical values. Results of simulations are

stated in Figures 11–14, and quantitative comparisons are

stated in Tables 2–5.

From Table 2, the path cost of WA*DHwith a relatively large

inflation factor (> 2.2) is the same path cost of A*’s. However,

when ϵ is in the range from 2.2 to 1.6, the path cost of WA*DH is

about 0.81% larger than that with larger inflation factors. In

contrast, the path cost of WA*DH + does not change with

varying inflation factors, and its quality keeps the same as the

path cost of A*.

Table 3 shows that path costs ofWA*DH andWA*DH+with

relatively high inflation factors (> 2.0) are the same as the path

cost of A*. However, when the inflation factor is lower than 2, the

path cost ofWA*DH is the same asWA* until the inflation factor

decreases to 1, whereas the path cost of WA*DH + does not

change with varying inflation factors.

In the case of simulation case 3, the path cost of WA*DH+ is

about 5.04% lower than that of WA*DH. Thus, we can see that

WA*DH + not only removes the risk of a critical value but also

returns a lower path cost at a relatively high inflation factor.

Moreover, we also confirmed that the path cost of WA*DH +

keeps the same quality as the path cost of A* regardless of the

inflation factor.

Unlike other results of simulation cases, when ϵ � 3 in case

of simulation case 4, the path cost of WA*DH+ is about 0.5%

higher than that of WA*DH, and this difference rises to about

1.47% when ϵ � 1.6. However, it is hard to say that the quality

of WA*DH+ is bad because the purpose of using WA*DH+ is

to avoid the threat of the critical value.

Besides being free from the threat of the critical value, we

also found that WA*DH + has an advantage in terms of the

FIGURE 8
Flowchart of WA*DH+.
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FIGURE 9
Pseudocode of WA*DH+.
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FIGURE 10
Environments for simulations. (A) Simulation environment 1. (B) Simulation environment 2. (C) Simulation environment 3. (D) Simulation
environment 4.

FIGURE 11
Result of simulation case 1. (A) Path costs of simulation case 1. (B) Elapsed times of simulation case 1.
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FIGURE 12
Result of simulation case 2. (A) Path costs of simulation case 2. (B) Elapsed times of simulation case 2.

FIGURE 13
Results of simulation case 3. (A) Path costs of simulation case 3. (B) Elapsed times of simulation case 3.

FIGURE 14
Result of simulation case 4. (A) Path costs of simulation case 4. (B) Elapsed times of simulation case 4.

Frontiers in Robotics and AI frontiersin.org11

Lim and Jo 10.3389/frobt.2022.958930

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.958930


TABLE 2 Quantitative comparison of the performances of algorithms on simulation 1.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 404.84 1.08 404.84 1.54 440.46 1.08

2.8 404.84 0.88 404.84 1.33 439.63 1.07

2.6 404.84 0.88 404.84 1.41 437.97 1.15

2.4 404.84 0.88 404.84 1.57 436.32 1.28

2.2 404.84 0.88 404.84 1.71 431.35 1.42

2.0 404.84 0.91 408.15 1.90 425.55 1.60

1.8 404.84 0.94 408.15 2.43 423.06 1.94

1.6 404.84 0.99 404.84 2.96 415.61 2.46

1.4 404.84 0.90 404.84 4.13 409.81 4.14

1.2 404.84 0.89 404.84 8.52 404.84 7.95

1.0 404.84 1.24 404.84 14.65 404.84 14.65

TABLE 3 Quantitative comparison of the performances of algorithms on simulation 2.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 345.14 0.85 345.14 1.27 394.13 1.25

2.8 345.14 0.68 345.14 1.18 390.62 1.15

2.6 345.14 0.67 345.14 1.16 385.44 1.15

2.4 345.14 0.68 345.14 1.18 379.1 1.17

2.2 345.14 0.69 345.14 1.22 375.79 1.21

2.0 345.14 0.74 345.14 1.23 370.82 1.22

1.8 345.14 0.72 365.85 1.23 365.85 1.23

1.6 345.14 0.72 361.71 1.27 361.71 1.27

1.4 345.14 0.67 352.59 1.29 352.59 1.29

1.2 345.14 0.69 346.79 1.83 346.79 1.83

1.0 345.14 0.85 345.14 4.43 345.14 4.43

TABLE 4 Quantitative comparison of the performances of algorithms on simulation 3.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 264.79 0.03 278.85 0.08 296.43 0.05

2.8 264.79 0.03 277.68 0.08 297.01 0.05

2.6 264.79 0.03 274.17 0.06 297.01 0.05

2.4 264.79 0.03 273.00 0.06 295.84 0.06

2.2 264.79 0.04 270.65 0.08 292.91 0.07

2.0 264.79 0.03 268.31 0.08 285.3 0.07

1.8 264.79 0.03 264.79 0.08 277.68 0.07

1.6 264.79 0.03 264.79 0.12 271.24 0.08

1.4 264.79 0.03 264.79 0.16 265.97 0.10

1.2 264.79 0.03 264.79 0.29 264.79 0.23

1.0 264.79 0.40 264.79 3.56 264.79 3.56
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elapsed time. In all simulation cases, elapsed times of WA*DH

increase exponentially near ϵ � 1. However, the elapsed time

of WA*DH + does not significantly increase with decreasing

inflation factor, and elapsed times of WA*DH + are much

lower than WA*DH. In fact, considering that using the GBFS

algorithm has the same meaning as using the infinite inflation

factor at WA*, it is a natural result because the higher the

inflation factor is, the faster the result can be returned.

Discussion

This study aims to evade the threat of the critical values on

WA*DH. We found that the critical value comes from the fault

detection of suboptimal nodes from the initial solution with relatively

high optimality. We hypothesized that high suboptimality could find

suboptimal nodes clearly, so we suggested our algorithm,WA*DH+,

which uses the GBFS algorithm for the initial solution. From

simulations, it can be proven that WA*DH + can avoid the

threat of the critical value successfully by detecting suboptimal

nodes more clearly than WA*DH. In terms of the elapsed time,

we also confirmed that the elapsed time does not change significantly

with varying inflation factors; however, the elapsed time of WA*DH

increases exponentially when the inflation factor is near 1.

Although WA*DH + shows powerful performances in

terms of the path cost and the elapsed time, WA*DH + still

cannot guarantee admissibility because WA*DH + refines the

initial solution based on the GBFS algorithm that has the

infinitely bounded suboptimality. It will remain a limitation of

algorithms using the concept of WA*DH. Also, WA*DH+

cannot refine the initial solution if there are circular obstacles

in the path planning scene. However, we expect this will be

removed in future works using new filtering methods of DH or

additional procedures to the result of WA*DH+.
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TABLE 5 Quantitative comparison of the performances of algorithms on simulation 4.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 350.33 0.40 348.58 1.12 437.97 1.11

2.8 350.33 0.39 348.58 1.23 436.32 1.23

2.6 350.33 0.40 347.75 1.37 431.34 1.36

2.4 349.50 0.38 382.23 1.59 426.37 1.57

2.2 348.68 0.39 382.23 1.73 418.09 1.71

2.0 346.09 0.39 393.24 1.99 409.00 1.98

1.8 345.26 0.39 346.09 2.41 403.18 2.40

1.6 342.78 0.39 337.81 3.03 337.81 3.02

1.4 338.63 0.41 336.15 2.72 336.15 2.69

1.2 336.15 0.41 336.15 3.27 336.15 3.27

1.0 336.15 0.49 336.15 9.13 336.15 9.13
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