AUTHOR=Zocca Simone , Guo Yihan , Minetto Alex , Dovis Fabio TITLE=Improved weighting in particle filters applied to precise state estimation in GNSS JOURNAL=Frontiers in Robotics and AI VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.950427 DOI=10.3389/frobt.2022.950427 ISSN=2296-9144 ABSTRACT=
In the last decades, the increasing complexity of the fusion of proprioceptive and exteroceptive sensors with Global Navigation Satellite System (GNSS) has motivated the exploration of Artificial Intelligence related strategies for the implementation of the navigation filters. In order to meet the strict requirements of accuracy and precision for Intelligent Transportation Systems (ITS) and Robotics, Bayesian inference algorithms are at the basis of current Positioning, Navigation, and Timing (PNT). Some scientific and technical contributions resort to Sequential Importance Resampling (SIR) Particle Filters (PF) to overcome the theoretical weaknesses of the more popular and efficient Kalman Filters (KFs) when the application relies on non-linear measurements models and non-Gaussian measurements errors. However, due to its higher computational burden, SIR PF is generally discarded. This paper presents a methodology named Multiple Weighting (MW) that reduces the computational burden of PF by considering the mutual information provided by the input measurements about the unknown state. An assessment of the proposed scheme is shown through an application to standalone GNSS estimation as a baseline of more complex multi-sensors, integrated solutions. By relying on the