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Firm foot contact is the top priority of climbing robots to avoid catastrophic events,

especiallywhenworking at height. This studyproposes a robust planning andcontrol

framework for climbing robots that provides robustness to slippage in unknown

environments. The framework includes 1) a center of mass (CoM) trajectory

optimization under the estimated contact condition, 2) Kalman filter–like

approach for uncertain environment parameter estimation and subsequent CoM

trajectory re-planing, and 3) an online weight adaptation approach for whole-body

control (WBC) framework that canadjust theground reaction force (GRF) distribution

in real time. Though the friction andadhesioncharacteristics areoften assumed tobe

known, the presence of several factors that lead to a reduction in adhesion may

cause critical problems for climbing robots. To address this issue safely and

effectively, this study suggests estimating unknown contact parameters in real

time and using the evaluated contact information to optimize climbing motion.

Since slippage is a crucial behavior and requires instant recovery, the computation

time for motion re-planning is also critical. The proposed CoM trajectory

optimization algorithm achieved state-of-art fast computation via trajectory

parameterization with several reasonable assumptions and linear algebra tricks.

Last, an online weight adaptation approach is presented in the study to stabilize

slippery motions within the WBC framework. This can help a robot to manage the

slippage at the very last control step by redistributing the desired GRF. In order to

verify the effectiveness of our method, we have tested our algorithm and provided

benchmarks in simulation using a magnetic-legged climbing robot Manegto.
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1 Introduction

Climbing robots can keep humans away from dangerous tasks such as inspection of

vertical structures. Various types of climbing robots are developed with different adhesion

modalities: suction Tummala et al. (2002), biologically inspired adhesion, for example,

micro-splines Spenko et al. (2008); Parness et al. (2017) and micro-fibrillar Kim et al.

(2007). Magnetic adhesion is predominant in industry Jose et al. (2018), for maintenance

and inspection purposes of ferromagnetic surfaces. Robots with wheels Tavakoli et al.
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(2013); Eich and Vögele (2011) and continuous tracks

Kermorgant (2018) are often used with magnetic adhesion but

these robots have difficulties in traversing complex 3D structure.

Legged platforms, on the other hand, offer greater mobility given

their ability to execute discontinuous contact transition

Bandyopadhyay et al. (2018). However, these benefits are

achieved at the cost of increased complexity requiring great

intelligence to control a robot over the unstructured ground.

1.1 What do we need to concern about for
climbing behaviors?

Most current studies on climbing robots focused on their

design and mechanism and only a few studies have been

conducted on dynamic robot climbing behavior. Several

studies propose to utilize biologically inspired templates to

generate climbing motions Brown et al. (2018), Lynch et al.

(2012), but their implementations are limited to certain behavior

and do not consider any constraint regarding safe holdings that

should be guaranteed for stable climbing. Motion planning and

control have also been studied for free-climbing Bretl (2006);

Miller and Rock (2008) and vertical wall climbing Lin et al.

(2019); Lin et al. (2018). However, most works are also limited

since the problems are formulated quasi-static to avoid

computational complexity.

Apparently, the climbing and walking behavior of legged

robots share a common mechanism: multi-contact transition to

relocate their footholds to the proper position. It is more

challenging for climbing robots as they need to hold onto an

inclined surface while lifting their entire mass. Besides, given that

most climbing robots are developed to inspect in an unknown

environment, assumed adhesion and friction quality can often be

different from the real values. Therefore, the need for a method to

avoid falling and deal with unexpected slippage cannot be

overemphasized especially for climbing robots.

1.2 How can we deal with slippage using
robot control?

A combination of walking pattern parameter adaptation

(long-term strategy) and force control (short-term strategy) to

compensate for slippages is effective for robots walking on a

slippery ground Takemura et al. (2005). However, predefined

walking pattern adaptation can recover only from the limited

amount of slippage. Instead, the idea to handle slip force as

disturbance acting on a robot is suggested by Kaneko et al.

(2005). A humanoid can avoid falling by estimating slip force via

observer and compensating for the reactive motion caused by slip

force. Focchi et al. (2018); Jenelten et al. (2019) proposed slip

detection and recovery mechanism for quadruped robots

developed to be employed in a WBC framework. However,

both methods can still fail to recover from traction loss

without proper centroidal motion re-planning to generate

required GRFs to keep contact firm.

1.2.1 Centroidal trajectory optimization
This study proposes to re-plan CoM motion via trajectory

optimization to address the above limitations. Generating the

proper CoM motion plays a critical role in vertical climbing

Brown et al. (2018), though most studies achieve it via

biologically inspired motion pattern. Trajectory optimization

with centroidal dynamics is becoming popular in locomotion

community Orin et al. (2013); Kim et al. (2019); Carpentier and

Mansard (2018); Dai et al. (2014) due to its availability to handle

friction condition simpler than solving full-body dynamics.

Given the estimated adhesion force and friction coefficient, we

can help a robot remain firm in contact by generating proper

CoM motion. For example, by decelerating CoM in the gravity

direction or normal to surface direction, we can relatively

increase the normal contact force and reduce the tangential

friction force at poor contact.

One well-known strategy to simplify centroidal dynamics

optimization is the convexification of the system Ponton et al.

(2018). By approximating non-convex quadratic constraint in a

discrete-time system, it can obtain optimal CoM trajectory given

multi-contact scenarios in 1 s for around 100 time steps. Another

effective way to achieve fast computation is parameterization.

Winkler et al. (2018); Ahn et al. (2021) leveraged phase-based

parameterization to simplify trajectory description. Then, they

formulate the problem to automatically determine the gait

sequence, step timings, footholds, and swing-leg motions by

solving nonlinear optimization in a discrete-time system. Though

they provide the more generic form, the problem remains non-

convex, and thus it takes about 4 s to be solved. Fernbach et al. (2020)

utilized both parameterization and convexification via Bezier curves.

However, since the whole trajectory over the multi-contact sequence

is determined by one 3d vector decision variable, the generated

motion could be limited. Also, the double description (DD) method

is known to be unstable means to compute the linear constraints,

which can be critical in robotics.

The proposed centroidal trajectory optimization leverages

phase-based parameterization and several assumptions are

applied to convexify the problem. Also, we showed that

inequality constraints hold over the entire time horizon if it

holds at the boundary of the function. Reduced dimension of

constraints compared to that of the discrete-time domain

provides faster computation. As a result, the proposed CoM

trajectory optimization algorithm achieves a state-of-the-art fast

computation simultaneously with an online contact parameter

estimation algorithm to update the CoM trajectory immediately.

1.2.2 QP-based whole-body control framework
Whole-body control (WBC) is a generic task-oriented

control method that is particularly useful in controlling
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redundant robots like legged robots Khatib et al. (2004). A

multilevel hierarchical control structure can be established via

torque-based whole-body control, which allows humanoid

robots to interact with the environment Sentis et al. (2010)

compliantly. Optimization-based approaches have been

popular for its ability to incorporate inequality constraints

addressed within full-body dynamics Escande et al. (2014);

Feng et al. (2015); Kim et al. (2020). Task hierarchy can be

formulated as hierarchical least-square quadratic problems

Escande et al. (2014); Bellicoso et al. (2016), but also can be

considered via weighted cost terms in a single quadratic program

Feng et al. (2015);Wiedebach et al. (2016). Even though weighted

QP formulation can reduce the number of optimization

problems to be solved, heuristically determined weights can

violate the priority.

Whole-body locomotion controller (WBLC) leveraged a

projection-based approach to consider equality task hierarchy

and a QP formulation to find the command satisfying inequality

constraints and full-body dynamics Kim et al. (2020). WBLC has

successfully demonstrated dynamic locomotion of passive ankled

robots. However, heuristic weights in QP formulation can violate

the task hierarchy considered in task-priority projection-based

inverse kinematics, especially when external disturbances or

uncertainties exist in the environment. Lee et al. (2021)

proposes a feedback gain adaptation method to stabilize

external disturbances in WBLC based on the stability analysis.

In this study, we suggest online weight adaption in QP

formulation to address uncertainties, especially those that

cause slippage. By regulating weights regarding reaction force

depending on the slip level, we can enforce QP to find the

command robust to the slippage.

1.3 Contribution

We summarize the contributions of this study as follows:

• We devise a state-of-the-art fast CoM trajectory

optimization, which can be solved in 50 μs for one-step

climbing motion. By using phase-based parameterization

and several assumptions to convexify the centroidal

dynamics, the problem to determine CoM trajectory

while satisfying the friction and adhesion condition

during the swing phase can be solved about two orders

of magnitude faster than other existing methods.

• We propose a Kalman filter–like approach for estimating

unknown friction coefficient and (magnetic) adhesion

force at slippery contact. Based on the contact force

measurement, we linearize the observation model and

formulate the system propagating itself to apply Kalman

filter algorithm. This can be used in combination with our

state-of-the-art fast algorithm to re-plan CoM trajectory to

generate an instant slip recovery motion.

• We provide an online weight adaptation approach to be

used in a QP-based WBC framework to stabilize the

slippage instantly. We increase the normal contact force

and decrease the tangential force by regulating the weights

for ground reaction force with respect to the slippage rate.

Altogether, our main contribution is an integrated

framework that provides planning and control strategies for

robot climbing robust to the unknown environment. The

proposed CoM trajectory optimization can be solved in real

time allowing instant and effective slippage recovery. In

combination with an online weight adaptation, the framework

yields the best results in dealing with unknown slippery

condition.

1.4 Organization of the article

This article is structured as follows:

• Problem definition (Section 2): This section introduces the

robot climbing problem. An overview of our problem

solving is also described in this section with the

summary of WBLC as preliminary studies for the

proposed framework.

• Multi-contact CoM trajectory generation for climbing

(Section 3): This section describes the proposed CoM

trajectory optimization method. Details are addressed

from parameterization to approximations and applied

linear algebra tricks step by step.

• Contact parameter estimation and CoM re-planning

(Section 4): This section develops a slip reflex strategy

when the slippage occurs. The overall procedure can be

described as follows: 1) Friction coefficient and adhesion

force in slippery contacts are estimated via either solving

the least-square problem or the Kalman filter–like

approach. 2) Given the re-evaluated friction coefficient

and adhesion force, CoM re-planning is performed

through the revised CoM trajectory optimization

described in Section 3 to satisfy the new constraints.

• Online weight adaptation to stabilize slippery motions

(Section 5): This section provides an online weight

adaptation method that can be used in QP-based WBC.

Defining the slippage rate that determines how the slip is

severe, the weights can be adjusted to reduce slip behaviors.

• Experimental validation (Section 6): This section shows the

performance of the proposed method via simulation

experiment using a magnetic legged climbing robot

Manegto. We have tested our algorithm and provided

benchmarks. Several multi-contact scenarios including

the different shapes of the climbing structure and

various settings of the contact environment were used

for the test.
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2 Problem definition

In this study, we are aiming to solve a one-step climbing problem

that can be described as follows: given the initial configuration of a

robot in static equilibrium and given the next foot placement, the

desired CoM position can be calculated—we chose the position close

to the initial configuration and far from singularity—and we want to

generate optimal trajectories for climbing and design the control laws

robust to the environment uncertainties, especially the slip

phenomenon.

2.1 Overview

Figure 1 shows an overview of the proposed control architecture.

This framework is developed based on a whole-body locomotion

controller (WBLC) Kim et al. (2020), which takes prioritized tasks as

an input and outputs torque command with desired joint position

and velocity commands at the instant time horizon. Usually, tasks

prioritized in the following order are widely used in a legged robot: 1)

maintaining rigid contact, 2) tracking CoM (centroidal) trajectory, 3)

tracking swing foot trajectory, and 4) staying close to the initial

configuration. Both CoM trajectory and swing foot trajectory are

simply described as a straight line or parabola in most WBC works.

However, since CoM trajectory can play an important role in

generating required GRF in climbing motion, we propose to

generate CoM motion via trajectory optimization. In addition, to

deal with the slippage caused by the unknown environment, the

estimation of adhesion force and friction coefficient is applied to the

slipping contact. The re-evaluated parameters are updated in WBC

that computes torque commands that satisfies friction constraints

associated with the estimated friction coefficient and full-body

dynamics affected by estimated magnetic adhesion. CoM re-

planning could be also needed to generate the GRF that lies in

the associated friction cone. Finally, a slip-aware online weight

adaptation approach is integrated to the work with quadratic

programming (QP) formulation in WBC to stabilize slippery

motion instantly.

2.2 Whole-body locomotion controller
extended to climbing

In this section, we first review WBLC with an extended

formulation for climbing robots, especially those that use

magnetism for adhesion, for example, Magneto

Bandyopadhyay et al. (2018). WBLC proposed in Kim et al.

(2020) solves the WBC problem by two sequential blocks: a

Kinematic-level WBC that considers task hierarchy in inverse

kinematics via projection-based method and a Dynamic-level

WBC to compute torque command that satisfies all the dynamics

constraints by solving quadratic programming (QP).

2.2.1 Magnetic climbing dynamics
Magneto is developed to climb the wall using a switchable

electromagnet attached to each foot. Each leg ofMagneto consists

of actuated joints for actuators and passive joints for gimbals.

Given a configuration spaceQ ∈ Rn and an input space U ∈ Rna ,

the dynamics of a robot can be formulated as follows:

M q( )€q + b q, _q( ) � Saτa + Jc q( )uFc + Jm q( )uFm, (1)

where q ∈ Q, M(q) ∈ Sn++, b(q, _q) ∈ Rn, and τa ∈ U denote the

joint vector, mass/inertia matrix, sum of Coriolis/centrifugal

FIGURE 1
Control architecture.
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force and gravitational forces, and actuator command,

respectively. Sa ∈ Rn×na denotes the selection matrix indicating

the index set of actuated joints, which maps τa into the

generalized forces. Fc ∈ R6nc is a vertically concatenated

contact wrench vector, where nc is the number of contacts

and the corresponding contact Jacobian is represented as

Jc(q) ∈ R6nc×n. Similarly, magnetic force applied to the

climbing robot for adhesion can be represented as a stacked

wrench vector Fm ∈ R6nm and the corresponding Jacobian matrix

Jm(q) ∈ R6nm×n, where nm is the number of activated magnetic

mechanisms. In this study, we have assumed that both the

contact forces and magnetic forces are applied at the center of

each foot if and only if contact is made; thus, we have nc = nm and

Jc(q) = Jm(q). Then the ground reaction force wrench can be

represented as Fr = Fc + Fm; the sum of forces are applied to the

contacts.

2.2.2 Kinematic level WBC
A kinematic level WBC computes the desired joint command

qd ∈ Rn given the tasks defined in hierarchy. Let Jk(q) and xdesk

denote kth prioritized task Jacobian and the desired position.

ThenΔqk, the change of joint configuration related to the kth task
iteration, can be obtained by the propagation below:

Jk|k−1 q( ) � Jk q( )Nk−1 q( ),
Δqk � J†k|k−1 xdesk − xk − Jk q( )Δqk−1( ),

Nk q( ) � Nk−1 q( ) − Jk|k−1 q( )†Jk|k−1 q( ),
N0 q( ) � In×n,

(2)

where Nk(q) and Jk|k−1 represent kth task null-space projection

and prioritized Jacobians. Then the desired joint position can be

obtained by qd � q +∑N
k�1Δqk in consideration of task priority.

Similarly, _qd � ∑N
k�1 _q

d
k and €qd � ∑N

k�1€q
d
k can be obtained from

the following propagation:

_qd0 � 0, €qd0 � 0,
_qd
k � J†k|k−1 _xdk − Jk q( ) _qdk−1( ),

€qdk � J†k|k−1 €xdk − _Jk q, _q( ) _q − Jk q( )€qdk−1( ). (3)

2.2.3 Dynamic level WBC
A dynamic level WBC calculates the desired torque

command and modified joint command that satisfies dynamic

constraints based on the optimization framework. This can be

achieved by solving QP formulated as follows:

min
δ€q,Fr,€xc

, δ€q⊤W€qδ€q + F⊤
r WfFr + €x⊤c Wc€xc,

subject to M q( )€q + b q, _q( ) � Saτa + Jc q( )uFc + Jm q( )uFm,
€q � €qd + Kd _qd − _q( ) + Kp qd − q( ) + δ€q

€xc � Jc€q + _Jc _q,
Fr � Fc + Fm,
U μ( )Fc ≥ 0,
τmin ≤ τ ≤ τmax,

(4)
where W€q � diag(w1

€q, . . . , w
n
€q), Wf � diag(w1

f, . . . , w
6nc
f ),

and Wc � diag(w1
c , . . . , w

6nc
c ) are weight matrices

corresponding to the joint acceleration relation δ€q ∈ Rn,

ground reaction force Fr ∈ R6nc , and contact acceleration

€xc ∈ R6nc . Kp,Kd ∈ Sn+ are feedback gains corresponding to the

desired joint commands qd, _qd, €qd ∈ Rn obtained by Kinematic

Level WBC, and U(μ) ∈ R17nc×6nc represents diagonally stacked

rectangular contact wrench cones (Caron et al., 2015) with

respect to the contacts where the friction coefficients are

μ � [μ1, . . . , μnc]⊤. Note that all the force wrenches and

corresponding Jacobians in the formulation are expressed

from the local body frame. Finally, torque command limits

are considered given the minimum and maximum torques of

the actuators τmin, τmax. By solving the aforementioned QP, we

FIGURE 2
Free body diagram.
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can finally compute the low-level joint torque command that

satisfies all the dynamics constraints given the prioritized task.

2.2.4 Phase-based state machine
Phase-based state machines are used together with WBLC to

control a legged robot. We defined four state machines for one-

step climbing control: full-support, pre-swing transition, swing,

and post-swing transition. Each state machine represents a WBLC

controller defined to consider different contact phases—e.g.,

different contact dimensions and weight parameters—so that

the multi-contact climbing motion can be controlled by using

the proper controller. The details can be found in Kim et al. (2020).

3 Multi-contact CoM trajectory
generation for climbing

This planner can cooperate with the WBLC framework by

providing the optimal CoM trajectory for climbing motion as the

first prioritized task. Given the current configuration and the next

desired contact location, we want to find a CoM trajectory for one

step climbing motion, which satisfies constraints established under

the estimated adhesion forces and friction coefficients.

3.1 Centroidal dynamics with magnetic
force and friction cone constraints

In this study, we formulated the problem with respect to the

centroidal dynamics of a robot, which is commonly used in the

legged robotics community as an effective way to simplify the robot

dynamics while considering the contact constraints. By solving the

Newton–Euler equations on the center of mass (CoM) of a robot, as

described in free body diagram in Figure 2 we can formulate the

centroidal dynamics as follows:

mpG × €pG − g( ) + _L
m €pG − g( )[ ] � ∑

i∈Contact

pi × Rif c,i
Rif c,i

[ ] + ∑
i∈Magnet

pi × Rifm,i

Rif
i
m

[ ],
� pc1

× Rc1 · · ·
Rc1 · · ·[ ]︸������︷︷������︸

︷������︸︸������︷Pc

Rc

f c,c1
..
.⎡⎣ ⎤⎦︸��︷︷��︸
fc

+ pm1
× Rm1 · · ·

Rm1 · · ·[ ]︸������︷︷������︸
︷������︸︸������︷Pm

Rm

fm,m1

..

.⎡⎣ ⎤⎦︸���︷︷���︸
fm

� Pc

Rc
[ ]f c + Pm

Rm
[ ]fm, (5)

wherem is the mass of the robot, g = [0,0,−9.81]⊤ is the gravity vector,

pG ∈ R3 is the robot CoM position, and _L ∈ R3 is angular

momentum. pi ∈ R3, Ri ∈ SO(3) are the position and orientation

of the ith foot expressed in the world frame, which are used to map

contact force fc,i ∈ R3, andmagnetic force fm,i ∈ R3 is expressed from

the local foot frame. Finally, we defined

Pc,Rc ∈ R3×3nc ,Pm,Rm ∈ R3×3nm , fc ∈ R3nc , and fm ∈ R3nm to

simply describe the equation using the stackedmatrix and vector form.

In order to describe the friction that resists relative lateral

motion between two solid surfaces in contact, the linearized

Coulomb friction model was used in this study. It approximately

provides a threshold value for friction force parallel to the surface

as a function of the normal force. Based on the model, we can

formulate the inequality constraints on contact forces as follows:

Df c ≥ 0,

where, D � diag Uf μc1( ),/( ),

Uf μ( ) �
0 0 1

1 0 ~μ

−1 0 ~μ

0 1 ~μ

0 −1 ~μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with ~μ � μ�

2
√

, (6)

3.2 Phase-based CoM trajectory
parameterization

Legged motion is often represented as a sequence of contact

phases. For instance, one step climbing motion for a quadruped

can be described as the contact sequence of (1) full support/pre-

swing (nc = 4)→ (2) swing (nc = 3)→ (3) full support/post-swing

(nc = 4). In this study, we composed CoM trajectories for

climbing considering the contact sequence using cubic

Hermite spline, where each piece represents the pre-swing,

swing, and post-swing phase sequentially, as shown in

Figure 3. Then CoM trajectory can be parameterized as three

pieces of cubic Hermite polynomial defined by its duration(T),

the initial and goal position of each node (pi, pg), and the

velocities (vi, vg). This phase-based parameterization also

matches with our WBLC (whole-body locomotion controller)

framework well. Based on four state machines defined within

WBLC (full support–transition–swing–transition), given that we

FIGURE 3
CoM trajectory represented by parameterized spline.
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can consider the transition as a part of the adjacent full support

phase, the parameterized trajectory can be used according to the

corresponding state machine.

However, we still need several assumptions to remove the non-

convexity of the problem caused by the cross product term

pG × €pG. Del Prete et al. (2018) utilized the fact that the cross

product of the parallel vectors is zero to solve the zero-step

capturability problem. To be more specific, they assumed that

the best strategy to stop CoM is to decelerate it in the direction CoM

moves. Inspired by the strategy, we applied a similar assumption to

our spline formulation. During the swing phase and post-swing

phase, CoM moves along the straight line but accelerates in the

opposite direction: €pswingG (t) � αd, €ppost swingG (t) � βd, where α, β are

constants with different signs and d is an unit vector indicating the

direction of straight motion. Then given the initial and goal CoM

position pa and pb, respectively, CoM trajectory parameterization

for one step climbing can be summarized as Table 1.

3.3 Reformulation of centroidal dynamics
based on spline parameterization

Now,we can reformulate the centroidal dynamics by substituting

the parameterized CoM trajectory pHS(t; T, pi, pg, vi, vg), summarized

in Table 1 into Eqs 5, 6. Given that slippage is most likely to happen

during (2) swing and (3) post-swing phase, we assumed that

parameterized CoM motion that satisfies friction conditions

during (2) swing and (3) post-swing phase will also satisfy friction

conditions during (1) pre-swing phase. Last, we assumed that both

magnetic force fm and contact force fc are applied at the center of each

foot frame forMagneto only if the foot is in contact, that is,Pc � Pm

and Rc � Rm in Eq. 5. Then we have the following:

2) Swing:

Ps − pb[ ]×Rs

Rs

[ ]f c �
1
2
m g[ ]× T2 − t( )2

mI3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦αd +
1
2
m g[ ]×T3 T3 + 2T2 − t( )

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦βd
+ _L − Ps − pb[ ]×Rs( )fm

−mg −Rsfm
[ ],

5 Asf c � Bsa t( )αd + Bsb t( )βd + cs, ∀t ∈ 0, T2( ),
(7)

Dsf c ≥ 0 (8)
wherePs,Rs ∈ R3×9 represent the configurationmatrices(Pc,Rc in

Eq. 5) mapping the force vectors fc, fm ∈ R9 during the swing phase.

Finally, we denoted the coefficients of the obtained parameterized

centroidal dynamics during the swing phase as As ∈ R6×9,

Bsa(t),Bsb(t) ∈ R6×3, cs ∈ R6, and the corresponding friction

cone matrix as Ds ∈ R15×9.

3) Post swing:

Pf − pb[ ]×Rf

Rf
[ ]f c � 1

2
m g[ ]× T3 − t( )2

mI3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦βd + _L − Pf − pb[ ]×Rf( )fm
−mg −Rffm

[ ],
5 Aff c � Bf t( )βd + cf, ∀t ∈ 0, T3( ),

(9)
Dff c ≥ 0, (10)

where Pf,Rf ∈ R3×12 represent the configuration matrices

mapping the force vectors fc, fm ∈ R12 during the post swing

phase. Af ∈ R6×12, Bf(t) ∈ R6×3, and cf ∈ R6 are coefficients of

the parameterized centroidal dynamics during the post-swing phase

and Df ∈ R20×12 is the corresponding friction cone matrix.

3.4 Problem solution for parameterized
CoM trajectory generation

By applying parameterized CoM spline to the centroidal

dynamics, the problem of determining CoM trajectory during

one step climbing can be simplified as a problem to find α, β, d

that satisfies Eqs 7–10. However, the problem is still non-linear

since we have multiplication of variables, αd, βd in equation.

Also, the different dimension of contact force vector (fc) in (7, 8)

and (9, 10) makes a problem hard to be solved. Along with the

assumptions we made in the CoM trajectory parameterization,

we need several more tricks to solve the problem.

3.4.1 Pre-determining the ratio of accelerations
First, we pre-determine γ � α

β, the ratio of the accelerations

during the swing phase and the post swing phase. This way, we

can linearize the problem by decoupling the constraint between

αd and βd. We, specifically, chose γ that minimizes the maximum

TABLE 1 Summary of phase-based CoM trajectory parameterization for one-step climbing motion. Given knots values described in the table, CoM
trajectory can be computed via cubic Hermite polynomial (pHS(t; T, pi, pg, vi, vg)). Detailed equations are described in Appendix.

(1) Pre swing (2) Swing (3) Post swing

T (duration) T1 T2 T3

pi (init position) pa p1 � pb + (12 βT2
3 + βT3T2 + 1

2 αT
2
2)d p2

pg (goal position) p1 p2 � pb + 1
2 βT

2
3d pb

vi (init velocity) 0 v1 = (−βT3 − αT2)d v2

vg (goal velocity) v1 v2 = (−βT3)d 0

Note that vectors are denoted by boldface letters to avoid confusion with scalar variables. Given knots values described in the table.
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distance between the CoM goal position and the trajectory over

the swing phase. This limits the trajectory to have minimal

movement.

γp � argmin
γ

max
t

|gγ t( )|, t ∈ 0, T2( )( ),
where ps t( ) − pb � gγ t( ) · βd, t ∈ 0, T2( ),

gγ t( ) � 1
2
γ T2 − t( )2 + T3 T2 − t( ) + 1

2
T2
3,

Assuming γp ≠ 0 and solving for γ < 0, we get the following:

γp � −T3 T2 + T3( ) + T3

�������������
T2 + T3( )2 + T2

2

√
T2
2

. (11)

3.4.2 Contact force determination in centroidal
dynamics

We took a simple solution for contact force in centroidal

dynamics by mapping the weighted inverse of configuration

matrix As and Af. In the centroidal dynamics described in

Eqs. 7, 9, given the rank of the equation is six and fc is either

nine or 12, there is an infinite number of possible fc tracking

the given CoM trajectory. One effective way to handle a set of

inequalities and equates is using the double description

method as Fernbach et al. (2020) reformulate the problem.

This way, we can find all feasible solutions based on the

numerical conversion between the convex hull description

method, but at the same time, it is known to be sometimes

computationally unstable, which can be problematic in

robotics. Instead, we simply assumed that contact force

can be easily obtained by mapping the weighted inverse

matrix A−1 � W−1A⊤(AW−1A⊤)−1 to the dynamics. This

method is quite reliable, and we can configure it to find

the contact force as close to the center of the friction cone

as possible by designing the weight matrix W considering the

shape of friction cone D, where we provided the details in

Appendix. Then by denoting x = βd and substituting fc �
A−1
f (Bf(t)βd + cf) and fc � A−1

s ((Bsa(t)γp + Bsb(t))βd + cs)
into each inequality equation, we have two linear matrix

inequalities (LMI) for each phase.

DsA
−1
s Bsa t( )γp + Bsb t( )( )x +DsA

−1
s cs ≥ 0, ∀t ∈ 0, T2( ), (12)

DfA
−1
f Bf t( )x +DfA

−1
f cf ≥ 0, ∀t ∈ 0, T3( ). (13)

By splitting the inverse matrixA−1
f ,A−1

s into left and right column

matrices and expressing Bf (t), Bsa(t), and Bsb(t) as a function of t,

Eqs (12) and (13) can be rewritten as follows:

1
2
m γp T2 − t( )2 + T3 T3 + 2T2 − t( )( )︸��������������︷︷��������������︸

fs t( )
DsA

−1
s 1; 3 g[ ]× +mγpDsA

−1
s 4; 6⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠x +DsA

−1
s cs ≥ 0,

1
2
m T3 − t( )2︸���︷︷���︸

ff t( )
DfA

−1
f 1; 3 g[ ]× +mDfA

−1
f 4; 6⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠x +DfA

−1
f cf ≥ 0.

3.4.3 Applying necessary and sufficient
condition to satisfy inequality over the given
time horizon

Proposition 1. Given an inequality (f(t)B1 + B2)x + c≥ 0
defined over a bounded function fmin ≤ f(t) ≤ fmax, ∀t ∈ (0, T), if

an inequality holds at the boundary values (fminB1 + B2)x + c≥ 0
and (fmaxB1 + B2)x + c≥ 0 for x,

then (f(t)B1 + B2)x + c≥ 0,∀t ∈ (0, T)
The detailed proof of Proposition 1 is provided in Appendix.

Based on Proposition 1, the problem to find x that satisfies

inequalities along t can be reduced to the inequalities at the

boundary of quadratic functions ff(t) � (T3 − t)2, t ∈ (0, T3)
and fs(t) � γ*(T2 − t)2 + T3(T3 + 2T2 − t), t ∈ (0, T2). Then

by stacking inequalities for fmin and fmax, we finally obtained the

condition for x = βd:

1
2mfs,minDsA

−1
s 1; 3 g[ ]× +mγpDsA

−1
s 4; 6

1
2mfs,maxDsA

−1
s 1; 3 g[ ]× +mγpDsA

−1
s 4; 6

1
2mff,minDfA

−1
f 1; 3 g[ ]× +mDfA

−1
f 4; 6

1
2mff,maxDfA

−1
f 1; 3 g[ ]× +mDfA

−1
f 4; 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸������������������︷︷������������������︸
Dx

x +
DsA

−1
s cs

DsA−1
s cs

DfA
−1
f cf

DfA
−1
f cf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸�����︷︷�����︸
dx

≥ 0.

(14)

3.4.4 Parameterized CoM trajectory
optimization

Given the predefined sequence of contact for one step

climbing motion, we parameterized the CoM trajectory with

three polynomials corresponding to each contact phase and

found the sufficient condition for the parameters that satisfy

the centroidal dynamics and linearized friction cone

inequalities as described in Inequality 14. Based on

parameterization and all the assumptions and tricks we

apply to simplify the problem, the problem to determine

CoM trajectory can be reduced to the quadratic programming

for x as follows:

min ‖x‖2,
subject to Dxx + dx ≥ 0,

(15)

where x � βd ∈ R3, Dx ∈ R70×3, and dx ∈ R70.

4 Contact parameter estimation and
CoM re-planning

4.1 Friction and magnetic adhesion force
estimation

If we have an F/T sensor on the feet so that we can measure

the reaction force at each contact, we can estimate the friction

and magnetic adhesion force. Once the slippage is detected, then

the frictional force can be formulated at the sliding foot as

follows:
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ft �
�������
f2
x + f2

y

√
, (16)

f̂t � μ̂ fz + f̂m( ), (17)

where [fx, fy, fz]⊤ is the measured contact force represented in

the local foot coordinate, ft ∈ R is the measured friction force

which is equivalent to the tangential contact force, and f̂t ∈ R is

the estimated friction force computed based on the normal

contact force(fz ∈ R), the estimated friction coefficient μ̂ ∈ R,

and magnetic adhesion force (f̂m ∈ R). Let us define the

parameter we want to estimate as θ � [μ̂, μ̂f̂m]⊤ and assume

that we can access the T-period of time sampling data for the

estimation. Then we can estimate the parameter by solving the

least-square problem below:

θp � argmin
θ

∑
t�1: T

‖ft t( ) − μ fz t( ) + fm( )‖2. 18)

By solving the first order necessary condition (FONC), we get

∑fz t( ) ∑ 1∑fz t( )2 ∑fz t( )
⎡⎣ ⎤⎦ μ̂

μ̂f̂m

[ ] � ∑ft t( )∑ft t( )fz t( )
⎡⎣ ⎤⎦. (19)

However, the least square estimation can be problematic if

the contact is unstable. This can give inconsistent estimation

value, which can be sometimes even unusable. In order to

treat this issue, we propose the Kalman filter–like approach

for estimating the friction coefficient and magnetic adhesion

force. We first assumed that the system is propagating itself

and has a T-period of time sampling ground reaction force

data as observation. Also, we assumed that the measured

normal force can be used as an observation model rather than

observed data to simply linearize the model. This way, we can

estimate the environment parameters more robust to the

noise.

θk+1 � θk + wk, wk ~ N 0,Qk( ),
zk � Hkθk + vk, vk ~ N 0,Rk( ),

where zk �
ft tk − T + 1( )

..

.

ft tk( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Hk �

fz tk − T + 1( ) 1

..

. ..
.

fz tk − T + 1( ) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(20)

Though the formulated system is non-linear, given that the

observation model Hk is not a constant but a function of the

observed data, we just considered it as a time-varying observation

model to apply the Kalman filter algorithm. Then we have the

following:

TABLE 2 Revised CoM parameterization for the swing phase re-
planning.

(2) Swing (3) Post swing

T (duration) T2′ � T2 − tnow T3

pi (init position) pa p1

pg (goal position) p1 � pa + 1
2 αT

′2
2 d pb

vi (init velocity) 0 v1

vg (goal velocity) v1 � αT2′d 0

FIGURE 4
Multi-contact scenarios on (A) a flat slope at α =1rad and (B) a hexagonal structure. A robot is climbing up on each structure bymoving its feet in
the order of left bottom (1→2), right top (2→3), left top (3→4), and right bottom (4→5).
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Kk � Pk−1 +Qk( )H⊤
k Hk Pk−1 + Qk( )H⊤

k + Rk( )−1
Pk � I − KkHk( ) Pk−1 +Qk( ),
θ̂k � θ̂k−1 + Kk zk −Hkθ̂k−1( ). (21)

4.2 CoM re-planning for slip reflex

When a robot climbs in an unknown environment, we can

expect a robot to experience slip behavior when the uncertainty

for a contact is high, for example, when the foot in contact was a

swing foot in the previous step. If a slip is detected and the

estimated friction coefficient and adhesion forces are

significantly inferior, then we will need to re-plan the CoM

trajectory for generating the desirable contact forces to keep

rigid contact. The slip is supposed to be detected during the pre-

swing or swing phase when the uncertainty for a contact is high.

If slip is detected during the pre-swing phase, then the CoM

trajectory optimization for re-planning will have the same

formulation as the one solved in Section 3. The re-computed

α, β, d for re-evaluated μ̂, F̂m can be used to update CoM

trajectory. The only difference is the initial position and

velocity of the CoM set to zero in the previous problem will

be substituted into the current position and velocity of CoM.

4.2.1 Revised CoM trajectory optimization
algorithm for re-planning in the swing phase

The CoM re-planing problem can be defined as follows: given

the current and the desired configuration; given the current and

desired CoM position pa, pb; and given the current and desired

contacts configurationPs,Pf,Rs,Rf, find the CoM trajectory that

satisfies the new friction condition. Let tnow be the time past since a

robot started the swing phase, then we can re-parameterize the CoM

trajectory for the remaining climbing motion as Table 2.

Then the centroidal dynamics during the swing and post-

swing phase can be rewritten as follows:

2) Swing:

Ps − pa[ ]×Rs

Rs
[ ]f c � pa[ ]×Rs − Ps( )fm + _L

−mg −Rsfm
[ ]
+m

1
2
t2 g[ ]×
I

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦αd. (22)

3) Post swing:

Pf − p1[ ]×Rf

Rf
[ ]f c � pa[ ]×Rf − Pf( )fm + _L

−mg −Rffm
[ ] +m

f1 t( ) g[ ]×
f2 t( )I[ ]αd,

where f1 t( ) � −1
2
T′2
2 −2 t

T3
( )3

+ 3
t

T3
( )2( ) + T2′ · T3

t

T3
( )3

− 2
t

T3
( )2

+ t

T3
( )( ),

f2 t( ) � −1
2

T2′
T3
( )2

−12 t

T3
+ 6( ) + T2′

T3
6
t

T3
− 4( ).

(23)

Then similar to the problem solving we described in Eq. 12

~(15), we can reformulate the optimization problem for x = αd

withDx′ and dx′ defined similar to Dx and dx in Eq. 14 as follows:

min ‖x‖2,
subject to Dx′x + dx′ ≥ 0

. (24)

5 Online weight adaptation to
stabilize slippery motions

In this section, we present an online weight adaptation approach

to stabilize slippery motions by redistributing the contact force at

each contact instantly. As discussed in the previous section, the final

TABLE 3 Computation time comparison benchmark of CoM trajectory optimization for two different climbing scenarios between the proposed
algorithm and other existing methods. Computation time is averaged over 100 tries for each scenario.

Computation time [ms] for flat slope climbing scenario(motion horizon = 0.65 s)

Swing foot Left bottom Right top Left top Right bottom

Proposed method 5.22e-02 5.23e-02 5.45e-02 5.67e-02

Method Ponton et al. (2018) (ΔT = 10ms) 2,400 2,230 2,280 2,330

Ponton et al. (2018) (ΔT = 50ms) 313 295 303 314

Fernbach et al. (2020) 7.51 7.32 7.81 7.35

Computation time [ms] for hexagonal structure climbing scenario(motion horizon = 0.8s)

Swing foot Left bottom Right top Left top Right bottom

Proposed method 5.29e-02 5.78e-02 5.33e-02 5.91e-02

Method Ponton et al. (2018) (ΔT = 50ms) 365 332 326 379

Fernbach et al. (2020) 1.40 1.58 1.40 1.59
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torque commands are computed by solvingQP-based formulation in

Dynamic level WBC block. Weights in QP formulation.

5.1 Slippage rate for weight adaptation

In order to update weight gains according to the slippage

rate in contact, we need a way to measure the rate of slippage.

In this study, we defined the slippage rate based on slip

velocity at each contact as follows:

αs �
1 if ‖vcontact foot‖≤ vthreshold
‖vcontact foot‖
vthreshold

otherwise

⎧⎪⎪⎨⎪⎪⎩
vcontact foot � LOWPASS FILTER Jc q( ) _q( ).

By defining the rate with the threshold, we can provide weight

adaptation only if the slippage is large enough and the rate

parameter itself is continuous as well.

5.2 Weight adaptation to the slippage

Based on the structure of WBLC, we formulated an extension

version of WBLC for climbing in Section 2.2. Recalling that the

cost function is designed to minimize the ground reaction force

and tracking error:

min
δ€q,Fr ,€xc

, δ€q⊤W€qδ€q + F⊤
r WfFr + €x⊤c Wc€xc,

Let us say we have contact foot 1, 2, . . . , c. Then the

corresponding slippage ratio and weight matrix can be

described as follows:

αs � αs1, . . . , αsc( ),
Wf � diag wfx1, wfy1, wfz1, . . . , wfxc, wfyc, wfzc( ).

Typically, we used predefined weight parameters in WBC and

usually took wfxi, wfyi � wxy and wfzi � wz. Once we have foot

in slippery contact, αsi> 1, we can update the corresponding

weight parameters based on the ratio online as follows:

wfxi, wfyi �
αsiwxy,

1
αsi

wxy,

⎧⎪⎪⎨⎪⎪⎩ and , wfzi �
1
αsi

wz, if αsi> 1,

αsiwz, otherwise.

⎧⎪⎪⎨⎪⎪⎩
(25)

6 Experimental validation

In this section, we focus on showing the performance of the

proposed framework. In Section 6.1, we present how the proposed

algorithm yields competitive performance against other CoM

trajectory generation methods. Then, in Section 6.2, parameter

estimation to identify unknown slippery condition is presented.

Finally, in Section 6.4, we have demonstrated robot climbing

behavior in unknown slippery conditions with and without the

proposed strategies to evaluate the performance of the algorithms.

6.1 Comparison benchmarks of proposed
CoM trajectory optimization

In order to show the performance of our CoM trajectory

optimization, we choose to compare the computation time of the

proposed algorithm with a state-of-the-art convexified formulation

Ponton et al. (2018) and parameterized formulation (CROC)

Fernbach et al. (2020). Generated CoM trajectory and

corresponding ground reaction force distribution are also analyzed

for comparison. The codes used in our benchmark modified for

climbing is provided for CROC1 and convexified centroidal

optimization2, and for the proposed method3.

For these benchmarks, we have performed a climbing

simulation in two different structures.

• The first structure described in Figure 4A is a flat slope

inclined at α = 1 rad, where all the contacts of a robot are

always on the same planar. One of the contacts is set

particularly poor, where the environment parameter of the

left bottom foot is set to μs = 0.3 and fm = 30(N), while other

feet are set to μs = 0.5 and fm = 70(N).

• The second structure described in Figure 4B is a hexagonal

structure, which leads a robot to climb with a set of non-co-

planar contacts. All the parameters that determine the contact

quality are given the same for all feet as μs= 0.5 and fm= 70(N).

In each structure, a robot is climbing up on a wall by moving its

feet in the order of left bottom, right top, left top, and right bottom

foot. All the benchmark simulationswere run onUbuntu 18.04.5 LTS

with Processor Intel® CoreTM i7-8700K CPU @ 3.70GHz × 12,

Memory 16 GB. QuadProg++ (Goldfarb and Idnani (1983)) were

used to solve the QP problem in our software.

As described in Table 3, the computation time of the proposed

algorithm is about 4 ~5 orders of magnitude faster than the

convexified centroidal dynamics optimization method and two

orders of magnitude faster than CROC. This result is natural

considering that the dimension of convexified centroidal dynamics

optimization ismuch larger because it solves the problem for the time

discretization variables. On the other hand, parameterization can

1 https://github.com/jeeeunlee/ccroc_magneto

2 https://github.com/jeeeunlee/centroidal_sandbox_magneto

3 https://github.com/jeeeunlee/ros_pncbranch:mpc-devel-slip
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reduce the dimension of the problem effectively. Though CROC also

uses parameterization, the double description (DD) method to

handle inequality conditions in CROC takes a relatively long time.

Instead, we utilized the weighted inverse matrices to determine

contact forces in the centroidal dynamics equation, which helps

us to find a reasonable solution two orders of magnitude faster.

Furthermore, as the DD method is known to suffer from

computational instability, which can cause a critical problem in

robotics, the proposed solving method can be beneficial in terms

of computation stability as well.

Not surprisingly, the trajectory obtained by different algorithms

was different as shown in Figure 5. It is natural, considering that there

are always an infinite number of trajectories that satisfy constraints in

many trajectory optimization problems. One of the advantages we

can take from parameterization is that we can expect a shape of the

trajectory planning. This is important in robotics since unexpected

plans can often cause a critical problem. In addition, the more

variables the problem has, the more weight parameters we need to

tune. In Ponton et al. (2018), the obtained trajectories were sensitive

to the choice of weights, resulting in another difficulty in weight

tuning. Finally, as we obtain the contact force placed as close as

possible to the center of the friction cone, we can see the desired

contact forces obtained by the proposed method tend to have more

margin in inequalities.

6.2 Parameter estimation

As described in Section 4, unknown environment parameters

μ and Fm can be estimated based on the friction force model when

FIGURE 5
The comparison of centroidal climbing motion obtained by different algorithms. One-step climbing motions for the right top foot are
compared on two structures [(A) a flat slope at α = 1 rad and (B) a hexagonal structure]. The plots on the right show the corresponding desired GRF
distribution on each foot with friction inequality constraints.
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a slip occurs. Figure 6 shows the parameter estimation based on

two different algorithms. Once the contact velocity exceeds the

threshold, we prepare the parameter estimation, assuming that

there is a slip. Though we assumed that we can detect the slippage

by thresholding the contact velocity computed based on the

floating base configuration, this cannot be achieved in the real

legged robot system. Instead, either comparing the velocity of the

contact and the median of the velocity of all contacts Focchi et al.

(2018) or a probabilistic state machine Jenelten et al. (2019) can

be considered for slip detection in real robots.

Once the slip detection is triggered, we store the contact force data

during 15 time samples. Then, we can estimate the unknown

FIGURE 6
Estimation of unknown environment parameters � [μ,μFm]⊤ during the slip condition. (A) shows the condition of the estimation activation.
Once the contact velocity exceeds the threshold during the certain amount of time, we declare the slip detection so that the estimation can be
executed. Yellow areas in the plots represent where the estimation is activated. (B) and (C) present the resulting estimation obtained by two different
approaches, least-squares, and Kalman filter–like approach.

FIGURE 7
Slip phenomenon with and without an online weight adaptation. (A) shows the linear velocity and ground reaction force at the contact in
slippery condition without any adaptation and (B) shows reduced slippage at the contact in the same condition with the proposed weight adaptation.
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FIGURE 8
Comparative analysis on the slippage of the foot in unknown slippery conditions for each controller: (A)WBLCwithout any adaptation, (B)WBLC
with unknown parameter estimation and CoM replanning (described in Section 4), (C)WBLC with online weight adaptation (described in Section 5),
and (D)WBLCwith bothmethods [applied in (B) and (C)]. Slip velocities of the left bottom foot and snapshots of the simulation are represented. After
the first climbing step where the left bottom foot is used for swing, the velocity is supposed to be zero. Blue dots in the last zoom-in shots
represent the desired foot position.
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parameters θ � [μ, μFm]⊤ that tell how slippery the surface is via

either least-square estimation or Kalman filter-like approach. As you

can see fromFigure 6B, parameter estimation through the least-square

estimation was not desirable; The observation of contact forces is too

noisy even in simulation, and observation data captured during the

traction loss doesn’t match with the friction force model we used for

estimation. On the other hand, Kalman filter–like approach worked

well with a small value for model covariance Qk = diag([0.000004,

0.01]), and a relatively large value for observation covarianceRk=0.25.

From the initial guess of parameters, you can see it converges in 30ms

to the ground-truth value in Figure 6C.

6.3 Slip-aware online weight adaption for
QP based WBC

In Section 5, we present an online weight adaptation for QP-

based WBC framework. Figure 7 shows a part of motion suffering

from sliding. It describes how the proposed algorithm shapes the

corresponding weights based on the slip velocity and how it affects

the corresponding ground reaction forces. Once the slip velocity

exceeds the threshold, it starts to change the weights, and this can

help a robot to slightly redistribute contact forces to stop sliding.

6.4 Climbing in unknown slippery
condition

In Section 4 and Section 5, we proposed CoM trajectory re-

planning based on re-evaluated parameters and an online weight

adaptation to stabilize a slip. Lastly, in this section, to verify the

performance of the proposed control framework in terms of

robustness to the unknown slippage, we examine the slip velocity

of the foot in unknown slippery conditions with respect to the

following 4 controllers:

• WBLC without any adaptation,

• WBLC with parameter estimation and CoM re-planning,

• WBLC with an online weight adaptation,

• WBLC with both methods.

In this simulation, the controller assumes the environment

parameters for all feet to be μ = 0.5, Fm = 50N, while the

parameters of the left bottom foot are set to μ = 0.3, Fm =

20N. The climbing scenario on a flat slope described in Figure 4A

was used for this verification test.

In Figure 8, the slip velocities of the left bottom foot for

each controller are shown with snapshots of the simulation.

As shown in Figure 8A, without any adaptation, the

controller cannot compute the adequate trajectory and

control satisfying the real friction constraints, and that

eventually results in contact loss at the left bottom foot

after four climbing steps are made. You can also see that a

slip tends to occur during the swing phase and post swing

transition where one of the feet is used for making a step.

Figures 8B,C shows both CoM replanning and an online

weight adaptation for WBC are effective to stabilize the

slippery motion. The difference shown in the results for

the two methods is that the online weight adaptation

method faces the second slip once the slippery is stabilized

especially around the start of the post-swing transition phase

for each climbing step. That could be caused since the weights

are initialized in every phase in our controller. Finally, as

shown in Figure 8D, we validated that the slip can be

prevented the most when both methods are applied.

7 Conclusion

In this study, we have presented several strategies to stabilize

known and unknown slipperymotionwithin aWBLC framework. In

an effort to stabilize unknown slip, CoM re-planning based on

unknown parameter estimation and online weight adaptation for

WBC were presented. When the environment parameters are

unknown and different from what we assume when we solve the

problem, the obtained solution can suffer from unknown behaviors,

for example, slip, traction loss, etc. Based on the friction force model,

the friction coefficient and the friction force limit calculated from the

adhesion force can be estimated when the contact is under the slip

condition. Then, CoM re-planning is performed based on the

proposed CoM trajectory optimization algorithm. The proposed

CoM trajectory optimization achieved fast computation by

leveraging a phase-based parameterization and we verified it by

providing comparison benchmarks with other state-of-art

algorithms. Therefore, the proposed CoM trajectory generation

method allows for CoM re-planning in real time, and this can

reduce the slip by generating adequate contact forces to increase

the normal force and decrease the tangential force at slippery contact.

The proposed strategies are shown to be effective to reduce slip

through the simulation experiment.

FIGURE 9
Linearized friction cone.
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Although we have shown that the proposed methods are

fast and effective to stabilize the slippery motion, traction loss

could be another issue that can cause devastating result

especially for overhang climbing as you can see from the

provided video. The proposed CoM optimization algorithm is

expected to be extended to prevent a robot from those fetal

movements. While working on this study, we also found that

the wrong estimated parameter can make robot climbing

more problematic, even though the estimation are sorely

dependent on the noisy and uncertain observation. In

addition, this study does not provide thorough theoretical

analysis on the stability of the proposed method. In that in

mind, instability resulting from the parameter estimation and

stability analysis on weight adaptation should be addressed in

our future research.

Lastly, our approach has not been tested yet on a real robot,

although there could be a lot more challenges arising from

hardware experiment. For example, in a real robot setup, a

robot can always be susceptible to kinematic singularities,

discretization of dynamics and model error, etc. Though we

didn’t mention it in this study, we consider the singularity when

we set the goal CoM position.We solve the optimization problem

that is formulated to find the goal configuration far from

singularities given the next foot placement, and we are using

the goal CoM position obtained from the configuration. As for

the dynamics errors, augmented PD control can be used along

with the WBC to compensate for errors from the dynamics

model. In addition, for legged robot system, it is hard to estimate

the base configuration accurately as simulation, though we

assumed that we can detect slip based on the floating based

robot kinematics. However, we can use other measurement such

as F/T sensor values or IMU values to define slippage ratio and

apply it for online weight adaptation. Overall, thus verifying the

feasibility to implement this work in real hardware setup is the

next coming step, as well.
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8.2 Weight matrix design for friction cone

Given the centroidal dynamics, the problem to find contact

force that satisfies all the constraints can be formulated as follows:
Find f c s.t. Af c � b,

Df c ≥ 0 where D � diag Uf μc1( ),/( ),
Uf μ( ) �

0 0 1
1 0 ~μ
−1 0 ~μ
0 1 ~μ
0 −1 ~μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠with ~μ � μ�

2
√ .

(26)

Assuming the contact force fc � (fc1
x , f

c1
y , f

c1
z ,/ )⊤ lying in

the friction cone, we would want to find fc that is located as close

to the center of the cone as possible as shown in Figure 9. In this

manner, we can formulate the problem:

min∑
c∈C

1

2 μc( )2 fc
x − ~μcfc

z( )2 + fc
x + ~μcfc

z( )2 + fc
y − ~μcfc

z( )2 + fc
y + ~μcfc

z( )2( )
�∑

c∈C

fc
x( )2 + fc

y( )2 + 2 ~μcfc
z( )2

μc( )2⎛⎝ ⎞⎠ ≜ fcWf⊤c , whereW � diag
1

μc1( )2 , 1

μc1( )2 , 1,/( ),
s.t. Af c � b.

Note that we used weighted sum to prioritize the slippery

contact. Then solving constrained minimization problem, we get

fc � W−1A⊤(AW−1A⊤)−1b.

8.3 Proof of proposition 1

Given the bounded function fmin ≤ f(t) ≤ fmax, ∀t ∈ (0, T) and
∃s ∈ (0, 1) s.t. f(t) = sfmin + (1 − s)fmax, ∀t ∈ (0, T). Then s, (1 − s) ≥
0 and

f t( )B1 + B2( )x + c � sfmin + 1 − s( )fmax( )B1 + B2( )x + c,
� s fminB1 + B2( )x + c( ) + 1 − s( ) fmaxB1 + B2( )x + c( ),
≥ 0.
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