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Leveraging explainability for
understanding object
descriptions in ambiguous 3D
environments

Fethiye Irmak Doğan*, Gaspar I. Melsión and Iolanda Leite

Division of Robotics, Perception and Learning, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm, Sweden

For effective human-robot collaboration, it is crucial for robots to

understand requests from users perceiving the three-dimensional space

and ask reasonable follow-up questions when there are ambiguities. While

comprehending the users’ object descriptions in the requests, existing studies

have focused on this challenge for limited object categories that can be

detected or localized with existing object detection and localization modules.

Further, they have mostly focused on comprehending the object descriptions

using flat RGB images without considering the depth dimension. On the other

hand, in the wild, it is impossible to limit the object categories that can be

encountered during the interaction, and 3-dimensional space perception that

includes depth information is fundamental in successful task completion. To

understand described objects and resolve ambiguities in the wild, for the first

time, we suggest a method leveraging explainability. Our method focuses

on the active areas of an RGB scene to find the described objects without

putting the previous constraints on object categories and natural language

instructions. We further improve our method to identify the described objects

considering depth dimension. We evaluate our method in varied real-world

images and observe that the regions suggested by our method can help

resolve ambiguities. When we compare our method with a state-of-the-art

baseline, we show that our method performs better in scenes with ambiguous

objects which cannot be recognized by existing object detectors. We also

show that using depth features significantly improves performance in scenes

where depth data is critical to disambiguate the objects and across our

evaluation dataset that contains objects that can be specified with and without

the depth dimension.
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1 Introduction

When humans and robots work on tasks as teammates, it is
critical for robots to understand their human partners’ natural
language requests to successfully complete the task. During the
task, the robot can encounter many challenges. For instance,
when the robot is asked by its human partner to pick up an
object, there can be misunderstandings caused by failures of
speech recognition or the use of object descriptions that are
unknown to the robot. Another challenge can be ambiguous
requests (e.g., the human partner’s object description might fit
more than one object). In these cases, the robot should be
able to make reasonable suggestions to its partner by using the
familiar concepts in the request. For example, it should suggest
the objects that fit the description instead of just saying it couldn’t
understand the request. While handling these challenges, the
depth dimension also plays an important role for the robot. For
instance, consider a robot located in the environment ofFigure 1,
helping a user pick up a described object. In this scenario, if a
user asks the robot to pick up ‘the mug next to the books,’ it can
aim to take the incorrect mug (i.e., the one in the blue bounding
box) using the RGB scene because this mug is the closest to the
books in 2D. Alternatively, if the robot can obtain the RGB-D
scene and use the depth dimension to solve the problem, it can
aim to take the correct mug (i.e., the one in the red bounding
box), which is the closest to the books in 3D.Therefore, the depth
dimension is critical in this scenario to understand the user’s
object descriptions.

People can identify objects with the help of
referring expressions, which are phrases that describe
the objects with their distinguishing features. In robotics,
comprehending object descriptions has been studied
extensively. Prior work has focused on situated dialogue
systems (Kruijff et al., 2007; Zender et al., 2009), probabilistic
graph models (Paul et al., 2016), and learning semantic
maps (Kollar et al., 2013). Recent work on comprehending
referring expressions has also employed models based on
deep learning (Hatori et al., 2018; Shridhar and Hsu, 2018;
Magassouba et al., 2019; Shridhar et al., 2020).

In this paper, we propose a method to comprehend users’
expressions using deep neural networks’ explainability in real-
world, ambiguous environments. Although recent human-
robot interaction (HRI) studies evaluate the importance of
explainable AI for different tasks (Siau and Wang, 2018;
Edmonds et al., 2019; Sridharan and Meadows, 2019; Tabrez
and Hayes, 2019), to our knowledge, this is the first work using
explainability to comprehend the user descriptions. Recent
models on comprehension of user expressions demonstrate
promising results, but they assume the target candidates
in a scene are given (Magassouba et al., 2019), or these
candidates can be obtained from the existing object detection
(Hatori et al., 2018) or localization methods (Shridhar and

Hsu, 2018; Shridhar et al., 2020). However, when robots are
deployed in the real world, the encountered objects are not
limited to the ones that can be detected by the state-of-art object
detection or localization models, and it is not feasible to expand
these models to localize every object category in a supervised
fashion. Even when dealing with detectable object categories,
due to environmental conditions such as poor illumination or
cluttered scenes, these objects might not be possible to classify.
In that case, when the described objects cannot be detected
or localized, the existing solutions do not even consider these
objects as target candidates. On the other hand, for a more
general solution, our approach finds active areas of a scene
using the explainability activations of an image captioning
module, which is not trained on object-wise supervised fashion
and learns a higher-level feature space. Therefore, our method
does not require any detectable target candidates to suggest the
described regions. This allows our system to handle various
objects (including uncommon ones that may not be proposed by
existing object detection or localization models) without putting
any constraints on object categories or users’ expressions.

In addition to focusing on limited object categories while
comprehending referring expressions, most techniques in
computer vision and robotics studies have relied on flat RGB
images without using the depth dimension (Hatori et al., 2018;
Yu et al., 2018; Magassouba et al., 2019). However, depth
information plays a critical role in real-world environments,
and it was recently shown that depth features could facilitate the
comprehension of referring expressions (Mauceri et al., 2019).
Consequently, there have been recent attempts to address
this challenge using the three-dimensional feature space (i.e.,
3D point clouds) (Achlioptas et al., 2020; Chen et al., 2020).
Although these studies have shown promising results, in contrast
to our system, they have still required candidate objects and
selected the target object among the 3D object proposals. To our
knowledge, our method is the first one to use explainability in
RGB-D images to identify the described object regions in 3D
environments.

In this work, we first find the active areas of an RGB
scene using the explainability module (i.e., Grad-CAM
(Selvaraju et al., 2017)), and then we use an unsupervised
clustering technique (i.e., K-means) to find the active clusters.
These active clusters are proposed as the regions that the robot
needs to direct its attention to (Grad-CAMRGBmethod shown
in Figure 2). Next, we extend this approach by providing the
depth features in the input space and generating the RGB and
depth activation heatmaps from Grad-CAM. Then, we obtain
the combined activations showing the areas that are active in
both of these heatmaps and cluster the combined activations
(Grad-CAM RGB-D method shown in Figure 5). Our results
show that the regions suggested by the Grad-CAM RGB method
can be useful for resolving ambiguities. Moreover, compared
to a state-of-the-art referring expression comprehension model
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FIGURE 1
An example illustrating the motivation behind using depth to improve referring expression comprehension. In this example, when the user’s object
description is ‘the mug next to the books’, the robot can suggest the mug in the blue bounding box in RGB or the one in the red bounding box in
RGB-D. Best viewed in color.

FIGURE 2
Overview of the Grad-CAM RGB method to find the described object regions for a given RGB scene and a referring expression (the bold part of the
user’s expression corresponds to the referring expression). The heatmap generated by Grad-CAM in (A), all active regions in (B), and the results
from K-means clustering in (C).

(i.e., MAttNet (Yu et al., 2018)), the Grad-CAM RGB method
performs better in the scenes where several objects match the
same description (e.g., multiple similar fishes) and where there
are uncommon objects typically not recognized by off-the-
shelf object detectors (e.g., an artichoke). Finally, we show that
depth features employed by the Grad-CAM RGB-D method
further enhance the performance in the scenes where the object
descriptions are dependent on the depth dimension and in the
evaluation dataset containing depth-dependent and independent
features.

1.1 Contributions

Our contributions in thiswork can be summarized as follows:

• We propose using the explainability of image captioning
to improve the effectiveness of referring expression
comprehension (Grad-CAM RGB Method). To our

knowledge, this is the first work employing explainability
for comprehending user expressions to direct robots to
described objects in the wild, without any restrictions such
as detectable or localizable objects.

• We extend Grad-CAM RGB Method to take the depth
dimension as an input, and we identify the target object
regions fromRGB-D images (Grad-CAMRGB-DMethod).
To our knowledge, our work is the first one comprehending
referring expressions considering the depth of the objects
using explainability.

• We examine the regions suggested by the Grad-CAM RGB
method to determine whether these regions can be used for
asking for clarification to resolve ambiguities.

• We compare the Grad-CAM RGB method with a state-
of-the-art baseline in varied real-world images and
show that our method performs better in challenging
environments (i.e., scenes with uncommon and similar
objects), which robots will more likely encounter in the real
world.
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• We show that using the depth dimension in the Grad-CAM
RGB-D method improves the performance in scenes where
the target objects are described with the spatial relations
dependent on the depth features and in the whole evaluation
dataset, which contains object features both dependent and
independent of the depth dimension.

2 Background

2.1 Referring expression comprehension

In human-robot collaborative settings, referring expression
comprehension (REC) is crucial, where the physical nature of
the interaction allows humans to expand their natural language
expressions with visual cues. Recent advances have taken
advantage of this characteristic to improve the comprehension
of referring expressions from humans (Mao et al., 2016;
Yu et al., 2018; Magassouba et al., 2019; Kamath et al., 2021).
In addition, it is common that the expressions given by
humans are ambiguous and difficult to interpret by the robot,
where interactive methods for the robot to clarify them have
been shown to improve the success rate of comprehension
(Hatori et al., 2018; Shridhar and Hsu, 2018). However, these
methods are usually limited to the pre-learned object categories
of the vision algorithm. The work from Shridhar et al. (2020)
avoided the use of predefined object categories, but it was still
restricted to the target candidates obtained from the DenseCap
object localization module (Johnson et al., 2016). Hence, we
present a novel approach employing explainability to solve the
task of comprehending referring expressions that removes the
dependency on using an object detection module that limits the
results to the learned object categories.

2.1.1 Spatial referring expressions
It is common that referring expressions contain relational

concepts between multiple entities in the scene, and its
exploitation has been shown to improve the capability of the
models to comprehend those expressions (Zender et al., 2009;
Nagaraja et al., 2016; Hu et al., 2017; Shridhar et al., 2020). In
particular, these relationships tend to be spatial relations from
the point of reference of the user and the robot must be able
to cope with this kind of descriptions in order to resolve
any ambiguities there might be to eventually identify the
right entity in the scene (Ding et al., 2021; Venkatesh et al., 2021;
Roh et al., 2022). Ding et al. (2021) present a transformer-based
architecture combining the language features with a vision-
guided attention framework to model the global context in
a multi-modal fashion. Nagaraja et al. (2016) provided CNN
features to LSTMs to model spatial relationships between a
region and its context regions. Shridhar et al. (2020) proposes a
two-stage approach, first generating descriptions of the candidate

objects and then finding the best match with the object in the
expression.

2.1.2 Using depth for REC
While identifying the spatial relationships among objects,

depth information has been shown to improve the task
performance (Birmingham et al., 2018). Consequently, studies
on referring expression comprehension have also focused on
resolving this problem in three-dimensional feature space
(Yuan et al., 2021; Thomason et al., 2022). For instance, 3D
Point Clouds were used as an input to select the target objects
among the detected object candidates (Chen et al., 2020) or
segmented 3D instances (Achlioptas et al., 2020). Further,
Mauceri et al. (2019) proposed an RGB-D dataset with referring
expressions and evaluated this dataset with proof-of-concept
experiments. In their experiments, they modified the referring
expression generation model of Mao et al. (2016) to take the
depth dimension as an input in addition to RGB features.
They also used this generation method for comprehension by
maximizing the probability of generating the input expression
for candidate bounding boxes. Their findings showed pioneering
results for our work: additional depth features enhanced the
model’s performance. However, their method assumed that the
candidate bounding boxes were given or could be obtained by
object box proposal systems, but our method does not require
any candidate proposals thanks to leveraging explainability of
image captioning activations.

2.2 Explainability

Explainability has been claimed to offer a viable solution
to make intelligent systems more fair and accountable
(Barredo Arrieta et al., 2020). There have been several
techniques presented in the academia to make machine learning
models to be more interpretable (Guidotti et al., 2018), and they
have been curated to the variety of existingmodels, e.g., classifiers
(Ribeiro et al., 2016), image captioning (Selvaraju et al., 2017),
natural language processing (Alonso et al., 2021), and
reinforcement learning (Madumal et al., 2020). There are
multiple uses that explainable systems may have, depending
on the step of the development and deployment cycle to which
the explainability is being leveraged. For instance, explanations
may be useful for developers in order to debug their models
and be able to understand better their functioning to correct
them in the best way possible (Kulesza et al., 2015), for field
experts using AI-based systems e.g. to aid in medical diagnosis
(Watson et al., 2019), or as integrated part to improve a system’s
performance (Hendricks et al., 2018), but also it is crucial for
consumers of the technology to understand how the systems
work e.g. in bank loan applications and the ‘right to explanation’
from the latest data privacy standards (Adadi andBerrada, 2018).
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The broad audience of the field has caught the attention of
researchers from a variety of areas that raised concern about
the viability of the current explainability solutions to be usable
for the general public (Abdul et al., 2018; Wang et al., 2019),
stating a clear mismatch between the technical advances and the
appropriate practices in theway explanations are presented to the
users (Miller et al., 2017). Miller (2019) established specific lines
of investigation based on research from the social sciences on
explanation that could help make Explainable AI (XAI) systems
to be more human-centered, and several works have used it as
foundation to study explainability in applications closer to the
end-user with an effort to understand their preferences (Ehsan
and Riedl, 2020; Liao et al., 2020). In this work, we present a
novel use of explainability that enables the robot to act in a more
human-centered way when recognizing users’ expressions of its
surroundings.

2.2.1 Explainability in human-robot interaction
The embodiment and social factors of HRI add a

new dimension to the importance of designing and using
explainability with a human-centered approach for robotic
applications (Han et al., 2021). The physically embodied nature
of robots give them the capacity to expand the interaction to
different levels, by using social cues and multiple modalities
to convey their explanations. Although there have been
advances in explainability techniques that make use of
multimodal explanations combining visual approaches with
text (Park et al., 2018), currently the majority of explainable
embodied agents do not take advantage of it, and most
researchers opt for using only lexical utterances for the robot
to deliver its explanations (Wallkötter et al., 2021).

Explainability has been shown to be an important tool
to use in human-robot collaboration settings. For instance,
during an interactive robot learning scenario, explainability may
help the human teacher to make better decisions based on the
robot’s explanations (Chao et al., 2010; Edmonds et al., 2019),
and increase the predictability of the robot’s actions to
facilitate collaboration between humans and robots on a
shared task (Tabrez and Hayes, 2019). Other examples in
the HRI community use explainability for non-experts to
understand the causes of unexpected failures in robotic
systems (Das et al., 2021). We want to contribute to this
body of work by leveraging explainability in specific robotic
applications.

2.2.2 Using explainability for advancing the
System’s functioning

Explainability has also been used for advancing the
systems’ functioning (Ross et al., 2017; Hendricks et al., 2018;
Li et al., 2018; Selvaraju et al., 2019). Recent computer vision
studies have demonstrated the potential of interpretability to
expand the use of explainability beyond the original concept

of transparency by using explanations to improve models’
intrinsic functioning. For instance, Selvaraju et al. (2019)
aligned the visual explanations obtained from Grad-CAM
(Selvaraju et al., 2017) with the human attention heatmaps
to improve task accuracy in image captioning and visual
question answering tasks. Hendricks et al. (2018) used a similar
approach to force a captioning model to generate gender-
specific words based on the person region of the image
instead of the biased reasons given by gender-stereotyped
datasets. Similarly, Ross et al. (2017) improved model
generalization by constraining explanations with input gradient
penalties.

In other domains, human attention maps have been aligned
with the explanations provided by Grad-CAM to improve visual
grounding in vision and language tasks (Selvaraju et al., 2019).
Further, Li et al. (2018) presented a method to generate more
accurate explanations (i.e., attention maps) through supervision
in an end-to-end fashion while training the network. In line
with enhancing the intrinsic functioning, our work leverages
explainability to improve human-robot collaboration, using
Grad-CAM (Selvaraju et al., 2017) saliency maps to direct the
robot’s attention to the appropriate regions described by the
user.

3 Proposed method

In this section, we present our method finding the described
regions from RGB scenes (Grad-CAM RGB method), and also
how we extend this approach to also consider the depth features
(Grad-CAM RGB-D method).

3.1 Grad-CAM RGB method

For a given RGB scene and a referring expression provided
by a human using natural language, we aim to find the bounding
boxes that show the described objects. To achieve this, we first
use Grad-CAM (Selvaraju et al., 2017) to find the active areas
in the scene, and then we use unsupervised clustering to find
different clusters in these active areas. From these active clusters,
we generate the bounding boxes most likely to belong to the
target object regions (Figure 2).

3.1.1 Obtaining heatmap activations
We use the image captioning module of Grad-CAM

(Selvaraju et al., 2017) to find active areas of a scene. The module
takes a scene and an expression as an input, and it generates
a heatmap H as an output. This heatmap shows the relevant
regions in the scene. In order to obtain the heatmap, the
module uses the pre-trained NeuralTalk2 image captioning
model (Karpathy and Fei-Fei, 2015) and finds the gradient of the
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caption’s log probability with respect to the final convolutional
layer. Then, the module uses these gradients to provide visual
explanations.

When different captions are provided for the same image,
different areas become active depending on the items in the
captions (e.g., different objects). In our work, these captions
correspond to referring expressions, and we find the active areas
specified by the referring expression (Figure 2A).

Using the NeuralTalk2 image captioning model with Grad-
CAM has the advantage of not being restricted to specific object
categories. We achieve this because the NeuralTalk2 method was
trained on a dataset (i.e., MSCOCO (Lin et al., 2014) with five
captions per image collected from crowd workers) that describes
scenes with many different features, not restricted to object
categories. Thanks to varied scene descriptions encountered
during the training of NeuralTalk2, when an object category is
unknown (i.e., not in MSCOCO object categories), the higher-
level feature space learned by NeuralTalk2 and visualized by
Grad-CAM can be used to show the active areas that fit
the given description. For instance, in Figure 3, when the
expression is ‘the blue sky’, the highlighted region of Grad-
CAM shows the sky, although the sky is not in the object
categories of the MSCOCO. In that case, the color information
is helpful for NeuralTalk2 to determine what to search for
in the image. In this example, the existing works that first
detect the candidate objects and select the target object among
these candidates fail if they do not detect the sky, which is
typically not recognized by off-the-shelf object detectors. On
the other hand, by using the Grad-CAM activations of the
NeuralTalk2 captioning method, we can consider the sky as a
candidate region using the additional features given in the object
description.

3.1.2 Clustering heatmap
After finding the active areas in a scene, we aim to cluster

them. These clusters can be interpreted as different regions
belonging to candidate objects so the robot can direct its
attention to the right part of the scene. To achieve this, we
first find the total number of active areas in the heatmap and
use this value to determine the number of the resulting active
clusters. Consequently, we use K-means clustering to identify
those clusters.

3.1.2.1 Finding the number of clusters
In order to determine the number of clusters in K-means

clustering, we find the number of unconnected areas that are
active in the heatmap H. We first define a set U where its values
are 1 for active pixels and 0 otherwise:

U = {|pr > Th or pg > Th|, ∀p ∈H} , (1)

where |.| sets the value as 1 when the condition is correct
and 0 otherwise. Additionally, pr and pg show the normalized
intensity values of each pixel p for the red and green channels.
We set the threshold Th as 0.9 to only consider the pixels with
high activation. A smaller value of this threshold can drastically
increase the number of clusters by considering low-activation
areas. With our formulation, U corresponds to all active areas in
the heatmap. The visualization of U can be seen in Figure 2B.

After finding all active areas U , we compute the number of
unconnected ones to determine the number of clusters. To this
end, we consider the 2D connectivity of pixels. Concretely, two
pixels are considered neighbors if they have horizontal, vertical,
or diagonal connectivity, and their activations are the same (i.e.,
either 0 or 1). While computing the number of unconnected

FIGURE 3
The input image (in (A)), the heatmap from Grad-CAM (in (B)), and the activations aligned with the original image (in (C)) when the expression is
“the blue sky.” The Grad-CAM heatmap highlights the sky using the color features, although the sky is not in the object categories of the MSCOCO
dataset.
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areas, we discard an area if it is very small (experimentally
set as less than 150 pixels), and we consider the background
to be another region. The calculated number of unconnected
regions, n, is provided as the number of clusters for the K-means
clustering algorithm.

3.1.2.2 Using K-means clustering
For some activations in heatmaps, it can be challenging

to determine whether close active areas belong to the same
cluster. In these cases, the neighboring method explained in
Section 3.1.2.1 can not be directly applied to separate the active
regions into different clusters. For instance, in Figure 4, it is
not possible to determine which active area belongs to which
cluster by only checking their connectivity, given the activations
of different regions overlap. To address this problem, we use
K-means clustering.

In order to cluster each pixel p, we consider the following
features: f(p) = {px,py,pr ,pg ,pb}. In our formulation, px and py are
the normalized horizontal and vertical coordinates of pixel p. pr ,
pg and pb represent the normalized intensity values of the red,
green and blue channels.

First, we apply a Gaussian filter to the heatmap H to smooth
the image. The Gaussian kernel’s width and height are set as 11,
and the smoothed image is represented as Hg.

We define another set W such that every element in W
corresponds to a pixel p and contains f(p) if p is active or zeros if
p is inactive:

W = {‖pr > Tm or pg > Tm‖, ∀p ∈Hg} , (2)

where ‖.‖ sets the value as f(p)when the condition is correct, and
0s otherwise. We set threshold Tm as 0.5 because we do not need
to consider regions with low activation.

After finding the number of clusters, n, and features for
each pixel in W , we cluster W using the K-means algorithm.

The centroids of the clusters are initialized randomly, and they
are updated by minimizing the within-cluster sum-of-squares.
The maximum number of iterations for the algorithm is set
to 300.

After obtaining the clusters from the K-means algorithm, we
check whether there are unconnected regions within the same
cluster. If a cluster has unconnected regions, we separate these
regions into different clusters using 2D neighboring connectivity,
as described in Section 3.1.2.1. Also, we discard a cluster if it is
too small (< 150 pixels). Therefore, the total number of clusters
can be different than the n value.

We represent all of the obtained clusters asC and each cluster
in C as ci–see Figure 2C for visualization of C. We calculate the
activation of each cluster ci ∈ C using the channel intensities in
H:

aci ←
1
nci
∑
∀p∈ci

(wr × pr +wg × pg) , for ci ∈ C, (3)

where pr and pg are the normalized red and green channel
intensities in H, and nci represents the number of pixels
in region ci. Further, wr and wg are the activation weights
for the red and green channels. We experimentally set wr
as 0.7 and wg as 0.3. wr has a higher weight than wg
because red channels reflect more about the activation in our
heatmap.

After finding activation value aci for each ci, we sort the
clusters in descending order of their activation levels. We
represent these sorted clusters as Csorted. For each ci ∈ Csorted, we
obtain the smallest bounding boxes covering ci. The obtained
bounding boxes are represented as Bsorted, and we consider Bsorted
as the candidate bounding boxes most likely to belong to the
described object.

The overall procedure of the Grad-CAM RGB method is
summarized in Algorithm 1 (see Supplementary Material for
an alternative solution).

FIGURE 4
When the expression is “the red house between the pink and yellow flower pots,” (A) the input image, (B) the heatmap from Grad-CAM, (C) the
active clusters from K-means, and (D) the suggested candidate bounding boxes (the green ones are the candidates and the red one is the target
object). The activations of different regions overlap, so the heatmap is not straightforward to cluster without using K-means clustering.
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Input: an RGB scene and a referring

expression.

Output: Bsorted, the candidate bounding boxes

belonging to the described object.

1 Generate the heatmap H using Grad-CAM for

the given scene and the referring expression

2 Set U to sbe the all active areas in H
(Eq. 1)

3 Let n to be the number of disconnected areas

in U
4 Obtain Hg by applying a Gaussian filter to

H
5 Let W to contain the feature vectors of

pixels in Hg (Eq. 2)

6 Cluster W using K-means clustering with n

number of clusters

7 Set C to be the clusters obtained from

K-means clustering

8 Calculate the activation aci for each

cluster ci ∈ C (Eq. 3)

9 Obtain Csorted by sorting C in terms of the

cluster activations

10 Set Bsorted to be the smallest bounding boxes

covering each cluster in Csorted

11 Provide Bsorted as the candidate bounding

boxes belonging to the described object

Algorithm 1. Grad-CAMRGBmethod.

3.2 Grad-CAM RGB-D method

To obtain the described RGB-D scene regions for a given
expression, we propose to extend the Grad-CAM RGB method
presented in Section 3.1 with depth features. To achieve this, we
first generate the activation heatmap of RGB and depth channels
using Grad-CAM. Then, we find the combined activations
showing the common active areas in these channels. Finally,
we apply K-means clustering to the combined activations and
suggest the bounding boxes covering the clusters with the highest
activations as the regions belonging to the described objects. (See
Figure 5 for an overview.)

3.2.1 Obtaining heatmap activations
To obtain the active parts of RGB-D scenes, we use the

NeuralTalk2 image captioning module of Grad-CAM as in
Section 3.1.1. The NeuralTalk2 image captioning model was
trained on RGB images, but thanks to its rich feature space, the
Grad-CAMactivations of the captioningmodel can also generate
useful activations for the depth dimension of the scenes. For

instance, inFigure 6, heatmap activations ofNeuralTalk2 inRGB
image are not accurate enough to identify ‘the microwave closer
to the table’. On the other hand, the heatmap of the depth image
forces these activations towards the described area. Therefore, in
this case, using the depth heatmap together with the RGB one
can help to highlight the correct areas.

After observing the depth heatmap can help to identify the
areas described by a user, as in Figure 6, we provide an RGB-
D scene to Grad-CAM through its RGB channels and depth
dimension. Therefore, we obtain two different heatmaps, one
from RGB denoted asHRGB and another from the depth denoted
asHdepth. For instance, in Figure 5A, the image in the back in the
first row showsHRGB and the image in the back in the second row
visualizes the Hdepth.

In the heatmap representation, higher intensities in the
red channel show higher activations, and higher values in the
blue channels denote lower heatmap activations as before. We
represent each pixel’s normalized RGB channel intensities as
{pRGBr ,p

RGB
g ,p

RGB
b } and {p

depth
r ,p

depth
g ,p

depth
b } for H

RGB and Hdepth

respectively.

3.2.2 Combining RBG and depth activations
After obtaining the activation heatmapsHRGB andHdepth, we

find the intersecting area of the active parts in the heatmaps. First,
we check the channel intensities of each pixel for bothHRGB and
Hdepth. When red or green channel intensities are higher than a
threshold Trgb (experimentally set as 0.39) for both of the pixels
in HRGB and Hdepth, we assume that the corresponding pixel in
their intersection heatmap Hint is also active. In that case, we
take the mean of each channel in HRGB and Hdepth to set the
corresponding pixel intensities {pintr ,p

int
g ,p

int
b } in Hint:

pintr ←
1
2
(pRGBr + p

depth
r ) , (4)

pintg ←
1
2
(pRGBg + p

depth
g ) , (5)

pintb ←
1
2
(pRGBb + p

depth
b ) . (6)

If the red and green channels of a pixel in HRGB or Hdepth

are lower than Trgb, we set the corresponding pixel in Hint as
inactive, i.e., we set {pintr ,p

int
g ,p

int
b } as {0,0,1} since the highest

intensity in blue channel shows an inactive pixel.The second row
of Figure 5B shows an example visualization of Hint.

3.2.3 Clustering heatmap
After obtaining Hint showing the activation intersection of

HRGB and Hdepth, we cluster Hint to find the active regions in
the RGB-D scene. To achieve this, we first obtain the number
of clusters and then use this number for K-means clustering to
identify the active clusters.

To obtain the number of clusters n from Hint, we calculated
the number of unconnected areas inHint following the procedure
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FIGURE 5
For a given RGB-D scene and a referring expression (i.e., the bold part of the user expression), the overview of the Grad-CAM RGB-D method to
obtain the bounding boxes containing the target object regions. The RGB and depth heatmaps generated by Grad-CAM in (A), combined
activations in (B), and the results from K-means clustering in (C).

FIGURE 6
The RGB image (in (A)), the heatmap activations of RGB image (in (B)), and depth activations (in (C)) when the expression is “the microwave closer
to the table.”

explained in Section 3.1.2.1 – see the first row of Figure 5C
for the visualization of number of active clusters. The computed
number n is provided as the number of clusters to the K-means
clustering.

After finding the cluster count n, we apply K-Means
clustering to determine the active clusters. We first apply a
Gaussian filter to Hint as in Section 3.1.2.2 and obtained Hint

g .
Then, we define a feature vector for each pixel in Hint

g . After
the Gaussian smoothing, if a pixel is active (i.e., the red or blue
channel has a value higher than 0.5, as before), the feature vector
of the pixel contains the five features descried in Section3.1.2.2
and also the depth feature:

f (pint) = {pintx ,p
int
y ,p

int
z ,p

int
r ,p

int
g ,p

int
b } , (7)

where these features correspond to the pixel’s coordinates in
the x and y-axes, its corresponding depth value obtained from
the input RGB-D scene, and its pixel intensities in red, blue,
and green channels, respectively. All of these feature values are
normalized in the zero to one range. Alternatively, if a pixel is not
active after smoothing, the feature vector is set as {0,0,0,0,0,0},
as before.

Using the pixels’ features and the calculated number of
clusters n, we cluster the pixels of Hint

g with K-means clustering
following the procedure explained in Section 3.1.2.2—see the
second rowofFigure 5C for the visualization of example clusters.
After the K-means clustering, we calculate the activation aci of
each cluster ci using the Eq. 3, and sort the clusters from the
highest activation to the lowest. Finally, we suggest the bounding
boxes Bsorted covering the sorted clusters as the candidate
bounding boxes containing the target object.

Algorithm 2 summarizes the overall procedure of the Grad-
CAM RGB-D method.

4 Experiments and results

To evaluate the Grad-CAM RGB and RGB-D methods,
we conducted two sets of experiments. First, to assess the
Grad-CAM RGB method efficacy, we selected a state-of-the-art
referring expression comprehension method as a baseline (i.e.,
MAttNet (Yu et al., 2018)), gathered varied real-world images,
and compared the results of bothmethods on these images.Then,
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Input: an RGB-D scene and a referring

expression.

Output: Bsorted, the candidate bounding boxes

belonging to the described object.

1 Generate the heatmap activations HRGB and

Hdepth using Grad-CAM

2 Find the heatmap Hint showing the common

active areas of HRGB and Hdepth (Eqs 4, 5, 6)

3 Count the number of unconnected areas (n) of

active pixels in Hint

4 Obtain Hint
g by applying a Gaussian filter to

Hint

5 Collect the feature vector of each pixel in

Hint
g (Eq. 7)

6 Find the clusters by employing K-means

clustering to the feature vector with n

number of clusters

7 Follow the steps between the lines 7–10 in

Algorithm 1, and obtain Bsorted

8 Suggest Bsorted as candidate bounding boxes

showing the target object regions

Algorithm 2. Grad-CAMRGB-DMethod.

to analyze the impacts of depth features, we compared the Grad-
CAM RGB-D method with the Grad-CAM RGB method on
another dataset containing depth dependent and independent
features.

4.1 MattNet baseline

For a given RGB scene and referring expression, MAttNet
first obtains the candidate objects using an object detection
module. Then, the method checks how well the expression
fits each of the candidate objects. Finally, the candidate object
that best fits the expression is considered the target object. To
compare theGrad-CAMRGBmethodwithMAttNet, we sort the
candidate bounding boxes by how well they fit the expression.
Similar to Grad-CAM RGB output, the bounding boxes ordered
from the most likely to the least likely are considered MAttNet’s
candidate bounding boxes belonging to the described object.

4.2 Data collection

4.2.1 MTurk dataset
To compare the Grad-CAM RGB method with MAttNet,

we gathered a dataset of 25 images containing indoor and

outdoor scenes (12 images from SUN (Xiao et al., 2010), 8
images from Google Images, 4 images from Doğan et al. (2019),
and 1 image from SUNRGB-D (Song et al., 2015)).These images
are classified as easy (7 images), medium (8 images), and hard
(10 images) difficulty levels. An image is labeled as easy if there
are only a few objects in total, they are commonly known objects
(e.g., bottle, book, mouse, etc.), and the number of same-type
objects is 2 (i.e., only one distractor per object). If the objects
are common, but the number of distractors is at least three per
object, the image is classified in themedium category.The images
in the hard group contain many objects with distractors and
some objects that are not so common (e.g., radish, papaya, and
artichoke). Since MAttNet uses Mask R-CNN (He et al., 2017)
for extracting objects, we determine an object as common if it
is part of the list of instance categories of Mask R-CNN (i.e., 90
types of objects), so a fair comparison is ensured. Next, one target
object per image is annotated by a person blind to our research
questions (female, 29 years old). She was instructed to draw a
bounding box around an object she would consider difficult to
describe.

Thereafter, we used Amazon Mechanical Turk (AMT) to
collect written expressions describing the target objects in the
images. We asked AMT workers to provide an unambiguous
description of the target object such that it could be differentiated
from other similar objects in the image and gave them some
examples. We asked them to describe the objects to a robot in
order to collect descriptions that simulate interactions between
a user and a robot (e.g., a user requests an object from a robot).
For each interaction, each user could describe an object using its
various features or refer to an object in relation to other objects.
For example, different AMT workers described the object in
Figure 8D as ‘the brown vegetable on the top right’, ‘the purple
vegetable right next to the mushrooms’, and ‘the turnip to the
right of the eggplant’. To account for this variability, we gathered
10 expressions describing the same target object in the same
image. In total, we obtained 250 expressions–see Figure 8 for
some examples.

We gathered such a dataset to evaluate the Grad-CAM
RGB method’s performance in different conditions. The easy
and medium difficulty images represent the typical computer
vision datasets for referring expression comprehension (e.g.,
RefCOCO dataset (Yu et al., 2016) which contains MSCOCO
(Lin et al., 2014) images where MAttNet and NeuralTalk2 were
trained). In these scenes, the total object categories are limited
(91 novel object categories for COCO images) and detectable by
existing object detectors. On the other hand, in the hard category
dataset, the object categories go beyond the existing datasets,
and this dataset represents the scenes that can be encountered
in the wild. Therefore, this three-level difficulty dataset enables
us to observe the behavior of the methods in many interactions
at different difficulty levels. Further, neither NeuralTalk2 nor
MAttNet were trained on our collected scenes and expressions,
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which helps us to better evaluate the methods’ generalization
capacities.

4.2.2 SUN RGB-D dataset
To compare the Grad-CAM RGB and RGB-D methods,

we gathered another dataset with 70 scenes from SUN RGB-
D (Song et al., 2015). This dataset contains various real-world
scenes collected from different spatial contexts (e.g., living room,
bedroom, bathroom, office, etc.). Moreover, for each scene, we
selected a target object with at least one distractor (i.e., the objects
that are in the same object category as the target object). Further,
for each target object, we collected an expression describing the
target object in a natural and unambiguous manner. In the end,
we obtained a datasetwith 70 images and 70 expressions referring
to the target objects.

Half of our dataset (35 images) was considered to be
depth independent, and the remaining half was labeled as
depth dependent. In depth independent category, the target
objects were described with features that were not tied to
depth dimensions (e.g., the spatial relations such as ‘to the
left’, ‘to the right’ or other object features such as the color or
object type. In contrast, the depth dependent category images
needed the depth dimension to disambiguate the target objects.
Therefore, the expressions used to describe the target objects
were dependent on their three-dimensional distances (e.g., the
expressions contained depth-dependent spatial relations such as
‘close by’, ‘next to’, ‘in front of ’, etc.) – see Figure 10 for some
example images and expressions).

We collected such a dataset because we aim to assess
the impacts of using depth features for dept dependent and
independent environments. The instances that we collected
for this purpose enable us to manipulate the environment’s
depth dependence for a detailed comparison of the Grad-CAM
RGB and RGB-D methods. Moreover, the equal proportion of
instances for each category ensures the fair evaluation of the
methods’ overall performance.

4.3 Evaluation procedure

The candidate bounding boxes are obtained from the MTurk
dataset using Grad-CAM RGB and MattNet, and from the SUN
RGB-D dataset using the Grad-CAMRGB and RGB-Dmethods.
The first three candidates from each method are considered for
computing a matching score with the target object bounding
box. To calculate the matching score, Si, we use 1− LDIoU , where
LDIoU (defined by Zheng et al. (2020)) represents the matching
loss function between two bounding boxes. Therefore, Si is:

Si←
area(bi ∩ btarget)

area(bi ∪ btarget)
− d

2

c2
, (8)

where bi is the candidate bounding box and btarget is
the box of the target object. d represents the normalized
distance between the centers of bi and btarget , and c is the
normalized diagonal length of the smallest box covering bi
and btarget .

In Eq. 8, the first term gives a higher score for a higher
intersection of the boxes, and the second term penalizes the
distance between their center of masses. The matching score
Si can vary in [−1,1] interval. The first of the three candidates
that results in Si > 0 is accepted as the candidate box showing
the region belonging to the target object. In the case of all
three candidates having a score lower than zero, we report
it as none of the candidate boxes belonging to the target
object.

In the first evaluation with the MTurk dataset, the same steps
were applied to theGrad-CAMRGBmethod andMatNett for the
250 expressions. Bothmethods could find at least three candidate
boxes in all cases, except forMAttNet in one instance.That image
belongs to the easy category, and it was able to find the target
object for the first two candidates without affecting the reported
results.

In the second evaluation with the SUN RGB-D dataset, the
same steps were applied to the Grad-CAM RGB and RGB-D
methods for 70 expressions, and both of the methods could
suggest at least three candidate boxes.

4.4 Results

4.4.1 Grad-CAM RGB vs. MattNet baseline
In this section, we present our results comparing the Grad-

CAM RGB method with the MattNet baseline in the MTurk
dataset for 250 expressions. Figure 7 presents how often the
target objectmatchedwith the first three candidates for all images
at each level of difficulty. In Figure 8, we show the first candidates
suggested by the two methods for the same images and target
objects.

4.4.1.1 All MTurk dataset
We first compared the Grad-CAM RGB method with

MAttNet for how many times the target object from the 250
user expressions matched the first, second, or third candidate
bounding boxes according to the Si score from Eq 8. A Chi-
Square test did not find any significant differences between the
methods, χ2 (3,N = 500) = 4.34,p = .23. Most often, the target
object was not matched with any of the first three candidate
bounding boxes proposed by the two models (i.e., the mode was
“none” of the candidates for both methods). In Figure 7A, we
can see that both methods showed similar trends for different
candidates, and the number of times that the methods generated
candidate bounding boxes that matched the target object were
similar.
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FIGURE 7
The number of times the Grad-CAM RGB method and the Mattnet baseline generated candidate bounding boxes that matched the target object
by difficulty level. All MTurk Dataset in (A), easy images in (B), medium difficulty images in (C), and hard images in (D).

4.4.1.2 Easy MTurk dataset
We examined the results for the easy images with 70

expressions (Figure 7B). We conducted a two-sided Fisher’s
exact test (the minimum expected value was less than 5 for some
cells, so the Chi-Square test couldn’t be applied). The results
showed significant differences (Fisher’s exact test value: 40.29,
N = 140, p < 0.001. Most often, the target object was matched
with the first candidate bounding box for the MAttNet baseline
and second candidate for the Grad-CAM RGB method–see
Figure 7B). Examining the first candidate, the baseline found the
target objects more often than the Grad-CAM RGB method did.
Moreover, there were no cases where none of the baseline’s first
three candidates was correct, while the Grad-CAM RGB method
had 22 cases.

4.4.1.3 Medium difficulty MTurk dataset
For themediumdifficulty images, we evaluated the results for

80 expressions. A Chi-Square test did not identify a significant
difference between the methods (χ2 (3,N = 160) = 6.07,p = .11,
the mode was “none” of the candidates for both methods).
Figure 7C shows that the number of times finding the target
boxes was similar for the first and third candidates for both
methods. The results from both methods were slightly different
for the second and the last items, but these differences were not
significant.

4.4.1.4 Hard MTurk dataset
We compared the Grad-CAMRGBmethodwith the baseline

for the hard category scenes for 100 expressions (Figure 7D).
We again conducted a two-sided Fisher’s exact test, that

showed significant differences (Fisher’s exact test value: 11.44,
N = 200, p = .009, the mode was “none” of the candidates
for both methods). The results indicate that the Grad-CAM
RGB method found the target object in its first, second, and
third candidates more often than MAttNet. Also, the baseline
had a higher number of cases for which no candidate was
correct.

4.4.2 Grad-CAM RGB-D vs. Grad-CAM RGB
We compared the Grad-CAM RGB-D method with the

Grad-CAM RGB method considering the number of times the
target object matched with the candidate bounding boxes in
the SUN RGB-D dataset for different depth dependencies–see
Figure 9. Further, we provided some qualitative examples
showing the first candidate bounding boxes suggested by both
methods for the depth independent and dependent categories
(Figure 10).

4.4.2.1 All SUN RGB-D dataset
We first evaluated our results by considering the whole SUN

RGB-D dataset (70 images). Figure 9A shows that the Grad-
CAM RGB-D method found the target object more often in
its first and second candidates compared to the Grad-CAM
RGB method. Moreover, the cases where none of the first three
candidatesmatchedwith the target object were rarer in theGrad-
CAM RGB-D method. Further analysis of these results with a
Chi-Squared test showed that these differences were significant
(χ2 (3,N = 140) = 16.06,p = .001; the mode is the first candidate
for bothmethods, i.e., the candidatemost oftenmatchedwith the
target object was the first candidate).
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FIGURE 8
Examples of easy (A), medium (B), and hard (C,D,E,F,G, H) MTurk dataset images with original expressions collected from AMT workers describing
the target objects in red boxes. The green boxes indicate the first proposed candidate object from the Grad-CAM RGB method (on the left) and the
MAttNet baseline (on the right). Best viewed in color.

4.4.2.2 Depth independent SUN RGB-D dataset
To assess the impacts of depth features, we also examined

the results in the depth independent category (35 images),
where the target object descriptions did not depend on depth.
Figure 9B shows that the Grad-CAM RGB-D method’s first and
second candidates matched with the target object more often,
and the Grad-CAM RGB-D method failed less while suggesting
the regions belonging to the target object. However, when we
examined the results with Fisher’s exact test (a Chi-Squared
test could not be applied because some cells had a minimum
expected value of fewer than five), we did not observe any
significant differences betweenmethods (Fisher’s exact test value:

5.59, N = 70, p = 0.12, the mode is the first candidate for both
methods).

4.4.2.3 Depth dependent SUN RGB-D dataset
Finally, we evaluated the impacts of using the depth

dimension for the depth dependent category (35 images), where
the descriptions of the target objects’ were tied to their depth
features. The results shown in Figure 9C demonstrated that
the regions identified by the Grad-CAM RGB-D method in
its first, second, or third candidates matched with the target
object more often compared to the RGB method. Further, the
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FIGURE 9
The number of times that the generated candidate bounding boxes matched with the target objects for the all SUN RGB-D dataset (in (A)), depth
independent (in (B)), and dependent (in (C)) categories.

FIGURE 10
Examples from the depth independent (A,B, C) and depth dependent (D,E, F) SUN RGB-D dataset. The red bounding boxes show the target objects
(ground truth), and the green boxes show the first candidates from the Grad-CAM RGB-D method (on the left) and the Grad-CAM RGB method
(on the right) suggested for the given expressions. Best viewed in color.

Grad-CAM RGB-D method had fewer cases where none of
its first three candidates matched the target object. To assess
these results’ significance, we ran another Fisher’s exact test.
The result of this analysis showed that the differences were

significant (Fisher’s exact test value: 12.67, N = 70, p = 0.004; the
mode is the first candidate for the Grad-CAM RGB-D method
and none of the first three candidates for the Grad-CAM RGB
method).
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5 Discussion

In this section, we discuss our results where we compared
the Grad-CAM RGB method with the MattNet baseline on
the MTurk dataset, and also the analysis obtained from the
evaluation of the Grad-CAM RGB and RGB-D methods on the
SUN-RGB-D dataset.

First of all, MAttNet performs significantly better than the
Grad-CAM RGB method for easy MTurk images. This was
expected because there are few objects in the images, the
number of distractors per object is only one, and the objects
are commonly known. Therefore, the chance level for MAttNet
to predict the target is very high (i.e., 1/n where n is the total
number of detected objects). The chance level is lower for the
Grad-CAM RGB method because it focuses on the activation of
each pixel, not the detected object boxes.

The results for hard MTurk images show that the Grad-CAM
RGB method performs significantly better than the MAttNet
baseline at suggesting regions belonging to the target object.
This shows that the Grad-CAM RGB method can be employed
when MattNet fails to identify target objects in challenging
environments where there are many objects with distractors and
also uncommon objects. In these environments, the users mostly
referred to the uncommon objects using features such as color,
shape, general category (e.g., vegetable instead of radish), and
their spatial relationships with known objects nearby. On the
other hand, in the easy and medium difficulty MTurk images,
the users described the objects primarily using the objects’ exact
names because they are familiar. Therefore, the results indicate
that the Grad-CAM RGB method performs better than MAttNet
when the descriptions are based on an object’s features instead of
its name.

We did not expect to observe significant differences for
the all MTurk dataset and medium difficulty MTurk images
because our goal with the Grad-CAM RGB method is not an
overall performance improvement, given that it does not simplify
the problem to select the target object among the suggested
candidates. Instead, we aim to suggest a method that can work
better in the wild (e.g., with uncommon objects and ambiguities).
Therefore, the hard MTurk dataset is crucial for the evaluation
of such a system. Results on this dataset are critical for human-
robot collaboration because it is impossible to assume that the
robot is familiar with all of the different ways that users will use
when referring to objects in the real world. In these cases, the
Grad-CAM RGB method successfully suggests regions by using
known concepts. For instance, in Figure 8D, if the robot doesn’t
know the concept of a vegetable, it can still predict a region
by looking for something brown and on the top right. In other
words, the Grad-CAM RGB method can handle the unknown
objects in the expressions by employing explainability of image
captioning and looking forwhich input features (i.e., which pixels
of the image in our case) contributemore to the output. However,

handling unknown objects is more difficult for the MAttNet
baseline because there should be a detected bounding box to
consider an object as a candidate.

From the qualitative results of the MTurk dataset, we
observe that the Grad-CAM RGB method focuses on the regions
which are important for the given expression. For instance, in
Figure 8A from the easy MTurk images, the Grad-CAM RGB
method finds a bounding box focused on the pants of the
man because the expression includes this information. From the
same example, we also notice that the bounding box suggested
by the Grad-CAM RGB method does not entirely cover the
man, but MAttNet provides more precise bounding boxes in
such cases (commonly known objects with fewer ambiguities)
by being based on an object detector. On the other hand,
when there are uncommon objects (e.g., papayas in Figure 8F),
relying on important regions of the scene, not only specified
by object categories but also object features, enables the Grad-
CAM RGB method to find regions that better fit expressions
than MAttNet. Even in the failure cases shown in Figures 8G,H
(reported as none in Figure 7), the suggested regions are still
sensible. For instance, in Figure 8H, the suggested bounding
box focuses on the broccoli because the expression includes
this information. This is crucial because our goal with the
Grad-CAM RGB method is to endow robots with the ability
to direct their attention to the right part of the scene in the
wild and determine the regions to ask for an efficient follow-up
clarification instead of asking the user to repeat the whole request
again.

In line with our goal, our qualitative results from the MTurk
dataset support that if there are ambiguities in the environment,
the Grad-CAM RGB method can be used to ask for further
clarifications by only focusing on the active clusters instead of
the whole image. For example, when we asked AMT workers to
describe objects as if describing them to a robot (i.e., to obtain
object descriptions simulating natural language user requests),
there were ambiguities in their descriptions. For instance, in
Figure 8E, the worker’s description fits both of the small white
fishes, and the bounding box obtained from the Grad-CAMRGB
method contains the parts of both fishes. In another example,
when the description is the green vegetables in Figure 2, the
Grad-CAM RGB method finds the active clusters on the green
vegetables for the first two candidates. Also, in Figure 4, when
the red birdhouse is described, the Grad-CAM RGB method
finds the most active regions on the birdhouses. Therefore, these
examples demonstrate that the robot can ask the user to clarify
the request by only considering these active regions instead of
taking into account thewhole images (e.g. inFigure 8E, the robot
can ask ‘do you mean the fish on the left or on the right?’). In
brief, focusing on active clusters can improve the efficiency of
human-robot collaboration.

When we compared the Grad-CAM RGB and RGB-D
methods to seewhether using depth features improves the system
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performance, the quantitative evaluation for depth independent
SUN RGB-D dataset demonstrated that using the depth of the
objects did not result in significant differences. In this category,
similar performances from the Grad-CAM RGB and RGB-D
methods were expected because the target object descriptions
are not dependent on the depth dimension. However, the system
performance was significantly improved for the whole SUN
RGB-D dataset and the depth dependent category. Further, the
improvement was even more distinct for the depth dependent
instances. The performance advancements in this category,
which was collected to simulate depth-dependent environments,
show that considering depth is critical in real-world applications
of referring expression comprehension. In these applications,
the objects are located in three-dimensional feature space, and
finding the described object can be impossible without their
depth features. In such cases, when the robot is comprehending
the user’s expressions, the Grad-CAM RGB-D method can be
used for successful human-robot collaboration.

Our quantitative results from the all SUN RGB-D dataset
and depth dependent category also demonstrated that the Grad-
CAM RGB-D method could identify the target objects in its
first candidate more often than the Grad-CAM RGB method
could. Furthermore, the number of failures (i.e., none of the first
three candidatesmatchedwith the target object) was significantly
fewer for the Grad-CAM RGB-D method in these cases. These
findings imply that, in a real-world environment, the robot
would find the described objects more often in its first selection
without opting for its latter candidates, and it would make fewer
mistakes if the depth dimension were provided in its input
space.This suggests that using depthwhile comprehending users’
expressions improves the task accuracy and efficiency of human-
robot collaboration.

In our qualitative results from the depth independent SUN
RGB-D category, we show the first candidate bounding boxes
suggested by the Grad-CAM RGB-D and RGB methods in
Figures 10A,B,C. Even though we did not observe significant
differences in our quantitative results for this category, the
qualitative results show some of the examples in which the
RGB-D method (on the left) suggested the regions matching the
described objects better than the RGB method (on the right).
Although some bounding boxes from the Grad-CAM RGB-D
method do not exactly cover the target objects, the suggested
regions are still sensible. For instance, the region suggested in
Figure 10C partially contains the lamp and the bed when the
expression is ‘the lamp to the right of the bed’. However, the
region suggested by the Grad-CAM RGB method is towards
the incorrect lamp. Therefore, significant differences between
methods for this categorymight be obtainedwith further analysis
of the suggested regions by using different matching scores or
asking users to evaluate these proposed regions.

In our qualitative results for the depth dependent SUN
RGB-D category (Figures 10D,E,F), we show the first candidate

bounding boxes obtained from the Grad-CAM RGB-D (on the
left) and RGB methods (on the right). We observe that the
regions suggested by the Grad-CAM RGB-D method fit better
to the target object. In these examples, the lack of depth features
misleads the Grad-CAM RGB method to select the distractor
objects. For example, in Figure 10D, when the expression is
‘the chair in front of the fridge,’ the Grad-CAM RGB method
highlighted the incorrect chairs, which can be considered in front
of the fridge in 2D. However, the Grad-CAM RGB-D method
can handle these situations using the additional features obtained
from the depth dimension. These examples demonstrate the
significance of the depth features for accurate comprehension of
referring expressions in real-world environments.

6 Conclusion and future work

Wepropose the Grad-CAMRGBmethod to point the robot’s
attention in the regions of a scene described by a user to
improve human-robot collaboration in the wild and also suggest
extending this method to Grad-CAM RGB-D considering the
depth features. Our methods find the regions belonging to the
described objects using explainability. In the Grad-CAM RGB
method, the region activations of an RGB scene are found using
Grad-CAM, and then we use K-means clustering to obtain
the active clusters. On the other hand, the Grad-CAM RGB-D
method uses Grad-CAM to generate the activation heatmaps of
RGB channels and the depth dimension, and then the combined
activations, obtained from the common active parts of the
heatmaps, are clustered to find the active clusters showing the
target object. Our qualitative results from the Grad-CAM RGB
method demonstrate that the regions suggested by this method
can be used to resolve ambiguities. Moreover, through our
evaluation, we show that the Grad-CAM RGB method works
better than a state-of-art baseline for scenes with uncommon
objects and multiple distractors. Finally, we demonstrate that
using the depth dimension in the Grad-CAM RGB-D method
significantly improves the performance in depth dependent and
the whole evaluation dataset, which includes all of the depth
dependent and independent category instances.

There could be several extensions of our work. We
have already deployed the Grad-CAM RGB method in a
robot to evaluate the efficiency of the interaction while
resolving the ambiguities by asking follow-up clarifications
(Doğan et al., 2022). This interaction can be further examined
with the perspective of explainable robotics (Setchi et al., 2020)
considering how users’ perception of the robot is affected
by the given visual explanations of the system predictions.
Additionally, although we use the NeuralTalk2 image captaining
model to obtain the activation heatmaps, our approach is
applicable to other CNN-based image captioning models,
such as Huang et al. (2019) and Jiang et al. (2018). Therefore,
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future research can make use of our method and utilize other
state-of-art captioning techniques to possibly improve the
presented accuracies. Further, our system can be expanded by
taking into account the aspects of visual attention studies (e.g.,
the importance of surrounding context (Itti and Koch, 2001)
or correlation between the visual attention and gaze (Borji
and Itti, 2013; Zaraki et al., 2014)). Moreover, the Grad-CAM
module can be used to take the three dimensions (i.e., an
RGB-D scene) as an input instead of obtaining RGB and depth
activations separately. In this case, the challenge can be training
an image captioning network that performs well in 3D scenes
to visualize the RGB-D gradient activations. Although there
are recent attempts to address the image captioning task in
3D (e.g., Chen et al. (2021)), these studies focus on relatively
small datasets compared to MSCOCO, and the varied scene
descriptions of MSCOCO enable our approach to work for
uncommon object categories. If RGB-D gradient activations
can be obtained from such a rich dataset, our method can be
applied to them to obtain the described object regions without
putting any restrictions on object categories. Finally, 3D point
clouds can be provided in the input space instead of RGB-D
images, and the performance of the robot can be evaluated
further with and without depth features. This interaction can
also be examined for the user’s trust and reliance on the
system predictions, which are critical measures for explainable
robotics.
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