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Robots operating with humans in highly dynamic environments need not only

react to moving persons and objects but also to anticipate and adhere to

patterns of motion of dynamic agents in their environment. Currently, robotic

systems use information about dynamics locally, through tracking and

predicting motion within their direct perceptual range. This limits robots to

reactive response to observed motion and to short-term predictions in their

immediate vicinity. In this paper, we explore howmaps of dynamics (MoDs) that

provide information about motion patterns outside of the direct perceptual

range of the robot can be used inmotion planning to improve the behaviour of a

robot in a dynamic environment. We formulate cost functions for four MoD

representations to be used in any optimizing motion planning framework.

Further, to evaluate the performance gain through using MoDs in motion

planning, we design objective metrics, and we introduce a simulation

framework for rapid benchmarking. We find that planners that utilize MoDs

waste less time waiting for pedestrians, compared to planners that use

geometric information alone. In particular, planners utilizing both intensity

(proportion of observations at a grid cell where a dynamic entity was

detected) and direction information have better task execution efficiency.
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1 Introduction

What motion-planning can gain from being aware of patterns of motion in its

environment can be seen in the scenario visualized in Figure 1: two corridors separated by

a wall. Suppose that entities (e.g., humans or human-driven vehicles) move in the

environment along the directions indicated by the blue arrows, that is, predominantly

towards the left in the bottom corridor and predominantly towards the right in the top

corridor. Now, a robot operating alongside these dynamic entities has to move from A to

B. Typically, a motion planning algorithm would return the shortest obstacle-free path
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from A to B, which, in this symmetric environment, could be

R1 or R2 along either side of the corridor. However, in dynamic

environments, robots should also account for patterns of motion

of dynamic agents in their environment. This can be seen as

follows: with standardmotion planning approaches the robot will

follow the path computed by a global planer (accounting only for

static objects in the environment) and locally react to moving

entities observed within its sensing range (light blue semi-circle

shown in Figure 1). However, if the robot adopts path R2, which

is against the direction in which entities tend to move in the

respective area, it will more likely encounter approaching entities

and thus need to stop, re-plan or maneuver around them more

often. In contrast, if the robot adopts path R1, it will move along

the same direction in which the other entities tend to move thus

minimizing the number of avoidance maneuvers or stops. Notice

that using information from what the robot can immediately

observe is not enough to ensure that the motion planner chooses

path R1. Therefore, information about the general patterns of

dynamics in an environment is beneficial, if not necessary, for

efficient robot operation.

From the point of view of motion planning, two types of

information about dynamics can be useful: dynamics

information associated with an entity and dynamics

information associated with the environment. Information

associated with dynamic entities is usually available live as

positions of tracked entities or as the output of a motion

prediction pipeline. Using motion prediction, the positions of

tracked entities can be extrapolated into the future and can be

used to re-plan robot paths to avoid it colliding with the entities

(Rudenko et al., 2020). Information associated with the

environment captures the general patterns of motion in the

environment. Such information is referred to as Maps of

Dynamics or MoDs for short (Kucner et al., 2020b). MoDs are

spatially organized and can model motion patterns over the

spatial domain. In this paper, we focus on using MoDs in motion

planning and not live dynamics information.

Motion planning is often performed hierarchically and split

into two phases: global and local (see the work by Lu et al.

(2014)). Global planning is the phase of motion planning that

generally happens before the robot starts moving. It constitutes a

general plan (usually a sequence of motions to execute or poses to

reach) that a robot should use to reach the goal pose from its

current pose, taking into account the obstacles in a global cost

map. When MoDs are used in the global planning phase, it is

possible to plan motions that also account for the general

patterns of dynamics represented with MoDs. Local planning,

on the other hand, utilizes information immediately surrounding

the robot (the local cost map created using sensory information)

and tries to steer the robot along the global plan, as closely as

possible. MoDs particularly benefit global planning, since

information over the entire spatial domain can be available: it

is analogous to adding another layer to a layered cost map

architecture like the one presented by Lu et al. (2014).

Although there are several works evaluating the utility of

dynamics information in the literature, only a few focus on using

maps of dynamics for motion planning (Mohanan and Salgoankar,

2018) or measure how the MoDs affect execution of planned

motions (Palmieri et al., 2017; Swaminathan et al., 2018). In

other words, it has been unclear to what extent MoDs are useful

in global planning. Many works assume that it is possible to track

and predict the motion of dynamic entities in the environment

(Kruse et al., 1997; Bennewitz et al., 2005; Chung and Huang, 2011).

These works emphasize the use of live dynamics information in the

evaluation, thereby taking the focus off MoDs. Measuring the utility

of MoDs is however difficult due to three main factors: 1) the lack of

objective metrics; 2) the difficulty involved in reproducing and

repeating real-world experiments, together with the difficulty of

finding enough participants and ensuring that privacy and safety

regulations are met; 3) the low fidelity of current simulators in

simulating human-robot interaction. Experiments in simulations

can however be repeated easily and a benchmarking platform based

on such a simulation would reduce the time and effort required. To

this end, in this paper we focus on the application ofMoDs for global

motion planning, and, in particular, quantitatively measuring their

impact on the robot’s performance while executing motions in

simulation.

FIGURE 1
Two corridors on either side of a large central obstacle (black wall). Blue arrows indicate the typical direction of motion of dynamic entities.
R1 and R2 are possible paths of equal length that can be taken by a robot to go from A (red star) to B (green star). When equipped with information
about the typical patterns of motion via a Map of Dynamics (MoD), the robot will choose R1, the path that conforms with the blue arrows.
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The contributions of this paper are as follows:

1. We propose five novel cost functions for sampling-based

motion planners using different MoDs.

2. We propose two novel objective metrics to evaluate the utility

of MoDs to motion planning.

3. We develop a simulation framework for benchmarking the

utility of MoDs to global motion planning and to facilitate

reproducibility and development of further evaluations.

4. We compare four different MoDs based on their utility to

global motion planning using the novel cost functions.

The paper is structured as follows. In Section 2, we provide a

brief overview of MoD representations and summarize related work

on motion planning using MoDs. The selected MoDs are

representative to their specific classes thus constitute general

enough evaluation. In Section 3, we recall sampling-based

motion planning since it is an effective method for planning

motions of generic wheeled robots in cluttered environments,

while specifically focusing on the Rapidly Exploring Random

Trees (RRT*) algorithm by Karaman and Frazzoli (2011).

Although the proposed framework is general to motion planning

algorithms, we use RRT* as a backbone algorithm since it is anytime

optimal. Please note that we indeed aim to avoid bias in the

evaluation due to the choice of a suboptimal planner (e.g., local

minima) by ensuring that the planning duration is long enough.We

detail in Section 4 how we combine traditional cost functions (path

length and curvature) with cost functions forMoD-aware planning so

as the proposed costs can be used with any motion planner (e.g.,

navigation functions, optimization-based solutions, or other

sampling-based motion planners) using costs to compute paths.

We provide a detailed description of the MoDs used in this work

along with the proposed cost functions for the different MoDs in

Section 5. We present our benchmarking method that assesses the

performance ofmotion planning from the execution of planned paths

in human-populated environments in Section 6. We describe the

simulation framework we use to perform this benchmarking in

Section 6.3. In Section 7, we detail the specifics of the

experimental setup used in this work. We present a detailed

discussion of the results in Section 8. Finally, in Section 9 we

provide an outlook on future work and conclusions.

2 Related work

2.1 MoD types and examples

MoDs can be classified into different groups based on what class

of dynamics is being mapped. Figure 2 shows a categorization of

dynamics based on the work by Kucner et al. (2020a). Several

categories of dynamics are mentioned in Figure 2 and briefly

discussed in the following. Static objects, such as walls and

shelves, rarely change position over long periods of time. These

are modeled using ordinary geometric maps [such as occupancy

grids (Thrun, 2002), Octomaps (Hornung et al., 2013)] and are not a

subject of MoDs. Semi-static objects, such as boxes, barricades,

chairs, may change position with a relatively low frequency and as a

consequence of specific events. Occupancy grid representations are

common also when mapping semi-static objects. For example, the

work in (Krajník et al., 2016) exploits the occupancy grid in

combination with a the temporal model called FreMEn (Krajník

et al., 2017), in order to model the state changes of the semi-static

cells as a function of time. Semi-static objects are typically observed

as changes in spatial configuration.

The defining property of dynamic entities, such as pedestrians,

vehicles, or animals, is that theymove purposefully and driven by the

agents’ intentions. Dynamic entitiesmay be observed by their velocity

[Velocity fields, CLiFF-map Kucner et al. (2017)], trajectory (Kruse

et al., 1997; Bennewitz et al., 2002; Ellis et al., 2009) or through spatial

configuration changes.
MoD information of continuous media and dynamic entities is

used in a qualitatively different manner when planning the motions

FIGURE 2
The figure shows the different categories of dynamics, and how they are observed (and mapped in consequence). The crosses and ticks show
how different types of dynamics can be observed. The green ticks denote the areas of interest for this work.
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of a robot. With continuous media (e.g., wind or water), the mapped

dynamics describe the medium in which the robot operates. The

planner may use the MoD information to minimize energy

consumption and improve task efficiency: the robot may indeed

slow down due to opposing water or air currents but may never get

stuck.
With dynamic entities (e.g., pedestrians), the main goal of

the planner is not only avoiding collisions, but also preserving

task efficiency (e.g., by preventing the robot from getting

stuck). This problem, known as the Freezing Robot Problem

(Trautman and Krause, 2010), is a well-known problem in the

robotics community. Although unable to provide formal

guarantees, embedding MoD-information into planning

should intuitively reduce the time robots need to navigate

human-populated environments (as shown by the

experiments in Section 8).

In this paper, we focus primarily on motion planning using

MoDs that map dynamic entities such as pedestrians1. As seen in

Figure 2, these are typically observed as velocities, trajectories or

spatial configuration changes. We detail the commonMoDs used

to map pedestrians in Section 2.2.

2.2 Motion planning over MoDs of
dynamic entities

Prior work involving MoDs of dynamic entities can be

classified broadly into two groups: trajectory models

(Section 2.2.1) and vector fields (Section 2.2.2).

Trajectory models represent the motion patterns of the

dynamic entities as a trajectory, whereas vector fields

represent the velocity and/or direction of the entities at a

certain location in space.

2.2.1 Motion planning over trajectory models
Kruse et al. (1997) aim to address “statistical motion

planning that respects typical obstacle behaviour in order to

improve pre-planning in dynamic environments”. The

dynamic obstacles are modelled as stochastic trajectories

and a Poisson process is used to assign occurrence rates to

each of them. The stochastic trajectories and the path of the

robot are used to determine the probability of collision, which

is used in motion planning. The work is further extended in

Kruse and Wahl (1998): the workspace is represented as a 2D

grid-map where each cell contains a set of eight transition

probabilities related to adjacent cells. They evaluate the utility

of MoDs to global motion planning and while assessing

motion plans objectively, they estimate the time to reach

the goal. In contrast, our work focuses on calculating the

actual time wasted by executing motions on a robot while

replaying recorded pedestrian data.

Bennewitz et al. (2005) model typical patterns of human

motion using Gaussian Mixture Models of trajectories

(GMMT). Each motion pattern is represented by a set of

Gaussian distributions. These are estimated from observed

trajectories using the Expectation-Maximization algorithm.

From the motion patterns, Hidden Markov Models (HMM)

are derived. At the time of planning, HMMs are used to

forecast the trajectories of the observed people by using live

dynamics instead of motions encoded in the GMM map. In

this paper we define a cost function for the GMMT-map and

compare it with other MoDs.

Similarly, Fulgenzi et al. (2008) also utilize trajectory-

based MoDs in motion planning. They use Gaussian

Processes to model the trajectories of dynamic entities

and then use them to predict the future motions given the

observations. These predictions are then used to compute a

path that is most probable to avoid collisions. The work by

Fulgenzi et al. (2009) uses a similar idea but employs HMMs

to represent the moving entities. Aoude et al. (2013) discuss

the use of Gaussian Process models to represent the motion

patterns of objects. The future positions of detected objects

are predicted and then used in a modified RRT algorithm

called chance-constrained RRT (Luders et al., 2010). These

works also employ the use of live dynamics information. In

contrast, we focus on the use of MoDs in motion planning in

this paper.

2.2.2 Motion planning over velocity models
Ko et al. (2014) propose an extension to the Rapidly-

exploring Random Trees (RRT) algorithm called the

VFRRT (Vector Field RRT). The idea of an Upstream

Criterion is introduced. The Upstrem Criterion is a cost

function defined such that motions along the flow have

lower cost than motions against the flow. This used to bias

the search so that the probability of finding flow-conforming

paths is maximized. In essence, VFRRT finds paths with low

Upstream Criterion, that are paths that require low control

effort. Palmieri et al. (2017) propose the CLiFF-RRT*

algorithm using a modified Upstream Criterion. The cost

function comprises two parts: a cost due to path length [a

distance metric is employed as done by LaValle and Kuffner

(2001)] and a cost due to compliance with the speed and

direction encoded in the MoD (CLiFF-map). The CLiFF-RRT*

cost function does not utilize the covariances available in the

CLiFF-map. On the other hand, the DTC-RRT* algorithm by

Swaminathan et al. (2018) proposes a more general cost

function using all components of the CLiFF-map to

compute the MoD cost. The approach employs the

Mahalanobis distance to cost trajectories based on how

much the velocity of the robot complies with the

underlying MoD. Both these works evaluate the usefulness
1 The interested reader is referred to the work by Kucner et al. (2020b)

for a detailed overview.
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of MoD-aware motion planning in terms of quality of the

resulting trajectories. Results in simple scenarios demonstrate

the effectiveness of embedding CLiFF-maps into global

motion planning. However, both works rely on simulated

data to generate the MoD (CLiFF-map). Conversely, in this

work, we use real pedestrian data to generate the MoD. Also,

we here propose metrics based on the execution of the motion

plans to objectively gauge the utility of MoDs to global

planning.

Motion planning over MoDs of fluid media is considerably

different from motion planning over MoDs that models

dynamic entities. However, MoDs of fluid media can be

used to capture flow patterns of discrete entities in an

environment. Thus, these approaches provide valuable ideas

for designing motion planners of robots accounting for e.g.,

flow of pedestrians in a road.

2.3 Comparisons of MoDs-informed
motion planners

In a previous collaborative effort, Vintr et al. (2020) propose a

method for the evaluation of MoD-aware motion planning.

Motion planning is performed on a finite grid using graph-

search. Then, recorded data is played back alongside a robot

executing its motions. The number of interactions between the

robot and pedestrians are counted and used as a part of the

evaluation. Stuede and Schappler (2022) also compute the

number of encounters between the robot and humans similar

to the work by Vintr et al. (2020).

In contrast to both these works, we use sampling-based

motion planners that are more popular in real world

applications with non-holonomic robots. Notice that the

pedestrians do not respond to the robot in the framework

described by Vintr et al. (2020). In this respect, we utilize a

more extensive simulation framework for the simulation

where the robot and pedestrians alike, pause execution at

intersections in order to let the others pass. In addition to

that, even though we only use one robot in this paper, the

simulation framework we propose can accommodate more

than one robot.

Chen et al. (2018) present a framework for human-aware

robot navigation. In their evaluation framework, they

describe two possibilities. In one, the humans only react

to other humans and not the robot. This is similar to the

framework by Vintr et al. (2020) although in the latter’s

work, recorded pedestrian data is replayed. In the second,

the visible-robot setting, both humans and robots react to

each other. However, they do not consider robots or humans

simply stopping to let the other pass by. In this work, we

deliberately utilize the aforementioned “stopping to let the

other pass by” because we want to evaluate the original paths

and, therefore, avoid modifying them.

3 Sampling-based motion planning

Planning the motion of wheeled vehicles operating in real

applications requires dealing with differential constraints such as

bounds on velocity and acceleration and non-holonomic

constraints. Approaches that resort to constrained optimization

to find a feasible path among two locations are generally not as

practical as sampling-based motion planners (Yang et al., 2019;

Heiden et al., 2021). Indeed, the presence of obstacles in the

environment may introduce non-convex constraints in the

optimization problem which further affect its complexity (Schoels

et al., 2020; Zhang et al., 2020). Although sampling-based motion

planners do not guarantee finding the optimal solution to a motion

planning problem in finite time, they produce reasonable solutions

quickly also in cluttered environments and can deal with kinematic

and dynamic constraints. This makes these planners well-suited

(and hence widely used) in practice to plan paths of robots moving

in real environments and subject to differential constraints (such as

of wheeled robots). In this paper, we focus on using sampling-based

motion planners for this reason.

In Sections 4 and 5, we describe how to incorporate MoD

information in traditional sampling-based motion planning

algorithms using an MoD cost function in addition to

traditional cost metrics. Notably, the cost functions described

in this paper can be used with any type of motion planner. For

clarity, we briefly recall the RRT* algorithm in Section 3. Then,

in Section 4, we present our approach to incorporating MoD

information in motion planning.

We consider a robot whose kinematics are described by the

differential equations _x(t) � f(x(t), u(t)) where x(t) is the

robot configuration and u(t) are the robot controls at time t.

For instance, the kinematic model of a non-holonomic

wheeled vehicle operating in a flat 2D environment can

be described by the vectors x = (x, y, θ) and u = (υ, ω),

where r = (x, y) is the robot position (relative to a fixed world

frame), θ is the heading, υ is the linear velocity of the robot,

and ω is its angular velocity. Let X ⊂ Rn the configuration

space, U ∈ Rm be the control space of the robot. Also, let Xobs

be the obstacle space and X free ⊆ X \Xobs be the free space.

Given a starting configuration xstart, and a goal region

X goal ⊂ X free, motion planning is the problem of computing

a trajectory β = (β1, β2, . . . , βf) = ((x1, u1), (x2, u2). . ., (xf, uf))

such that x1 = xstart, xf � xgoal ∈ X goal,

xi ∈ X free ∀i ∈ {1, 2, . . . , f}, and β obeys to the robot

kinematics and satisfies kinematic and dynamic constraints.

Let p = (x1, x2, . . . , xf) be the related path.

The RRT* algorithm by Karaman and Frazzoli (2011) is a

probabilistically complete, asymptotically optimal, single-query

sampling and searching algorithm. Given a starting configuration

xstart, the free space X free, and a goal region X goal ⊂ X free, RRT*

creates a tree τ in X free (rooted in xstart) by incrementally

sampling states in X free. Nodes in the tree correspond to

states and edges correspond to kinematically feasible motions
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(paths or trajectories) between states. The motion planning

problem is hence translated into finding the min-cost path in

the tree τ from xstart to X goal. The RRT* algorithm is shown in

Algorithm 1.

The treeis first initialized with the start state (line 1). A new state

xrand is randomly sampled via a samplingmechanism defined by the

Sampling() function (line 5). Then, Nearest Search (τ, xrand) is used

to find the node xnear in the tree that is closest to xrand (line 6). A

local planningmethod defined by Extend (xnear, xrand) is used to find

a feasible motion δ connecting xnear to a state xnew in the proximity

of xrand. This state corresponds to xrand whenever a perfect

connection is possible, or, to a new state conversely. The cost of

a path to xnew from xstart is then initialized (line 13). Then the tree is

rewired to ensure all nodes are reached with minimum-cost paths

(line 14). Please refer to the work by Karaman and Frazzoli (2011)

for a more detailed explanation.

4 Cost functions for MoD-aware
motion planning

4.1 Cost function components

In this section, we focus on the cost function cost(δ) in

Algorithm 1. Similar to the work by LaValle and Kuffner

(2001), we design this function so as the planner will aim at

minimizing the length and maximizing the smoothness of the

returned motion.

Algorithm 1. RRT* algorithm.

Letri and qi be the position and the quaternion associated

with the trajectory point βi, respectively. For each trajectory point

βi, we model the effort of moving from βi−1 to βi as the sum of the

Euclidean cost cd(βi) = ‖ri − ri−1‖ and the quaternion cost

cq(βi) � 1 − (qTi qi−1)2. The Euclidean distance cost cd(β) and

quaternion distance cost cq(β) of a trajectory β are then

computed as cd(β) � ∑a
i�2cd(βi) and cq(β) � ∑a

i�2cq(βi). Thus,
cd(β) ≥ 0 and cq(β) ≥ 0 by construction.

To incorporate MoD information, we introduce an

additional MoD-dependent cost cc into the total cost ctot

returned by the function cost(δ). In addition to our previous

CLiFF-RRT* and DTC-RRT* cost functions (Palmieri et al.,

2017; Swaminathan et al., 2018), in this paper we propose a

new definition of the cost function cc suitable also for STeF-maps,

GMMT-maps and Intensity-maps, as detailed in Section 5. All

MoD costs are designed to have lower values when a robot

trajectory adheres to the flow modeled via the MoD and higher

values otherwise. We can then define the total cost of a trajectory

as the weighted sum of the different components:

ctot β( ) � wdcd β( ) + wqcq β( ) + wccc β( ), (1)

wherewd,wq andwc are weights for the costs due to the Euclidean

distance, the quaternion distance and MoD, respectively. If wd is

set to zero, the distance metric is ignored and the resulting

trajectories are strictly flow-conforming (or flow-flouting,

depending on how cc is formulated). If wc is set to zero, the

planner behaves as a regular or MoD-unaware RRT*.

4.2 Selection of weights for cost function
components

In this section, we discuss how the weights for each MoD can

be chosen. Although it is impossible to equate the costs due to

each MoD individually, the weights can be chosen so that the

total cost (distance cost and MoD-cost) is equivalent. An

optimizing motion planner (such as RRT*) would find an

initial solution and then try to improve it. We would like to

show here that a planner would select a motion plan for

improvement that is at most γ times longer than the initial

path found, for the chosen weights.

Suppose the initial motion plan is β(i). For simplicity, yet

without loss of generality, let us assume that wq = wd = 1.

The cost of such a plan is ctot(β
(i)) = cd(β

(i)) + cq(β
(i)) + wccc(β

(i))

Now consider a candidate solution β(f). We know that β(f)

improves the initial motion plan β(i) only if ctot(β
(f)) < ctot(β

(i)).

This condition places an upper limit on the Euclidean cost (and

hence on the length considering our definition of cd) of the

candidate solution β(f) since cd (β
(f)) ≤ ctot(β

(f)) < ctot(β
(i)). In other

words, if the planner returns the trajectory β(f), then its length is

limited by ctot(β
(i)).

Suppose the worst case MoD-cost per meter is μ, that is,

cc(β
(i)) ≤ μcd (β

(i)). Suppose that cq ≈ 0, without loss of generality,

we can then write: ctot(β
(i)) ≤ (1 +wcμ)cd(β

(i)). Thus, the bounding

constraint stated before (i.e., cd (β
(f)) < ctot(β

(i))) can be

formulated as

cd β f( )( )< 1 + wcμ( )cd β i( )( ), that is cd β f( )( )< γcd β i( )( ),
which validates our claim. Since the cost functions we use all

have different μ, i.e., different worst-case MoD-cost per metre,
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we use the same γ to calculate weights (wc) for each of the cost

functions we use.

5 Representations and cost functions

In this paper, we use one MoD from each category shown in

Figure 2: one trajectory map (GMMT-map), one velocity map

(CLiFF-map), one based on spatial configuration (Intensity-

map) and one based on the likelihood of motion directions on

a grid-based map (STeF-map). STeF-maps can be thought of as

modeling spatial configuration changes with respect to direction.

Additionally, STeF-maps model the periodicities associated to

such likelihoods. Although we choose one MoD from each

category, any other existing representation can be used in its

place as long as it represents available information about entity

dynamics.

5.1 CLiFF-map

5.1.1 CLiFF-map description
The Circular-Linear Flow Field (CLiFF) map, proposed

by Kucner et al. (2017), allows us to model velocities

probabilistically. The CLiFF-map model associates a

probability distribution over velocity (direction and speed)

to each location in the map. These probability distributions

are Gaussian mixture models. The mixture model is suitable

for describing the motion of dynamic entities. For example, at

road intersections, velocities of cars are typically along more

than one principal direction. A mixture model also allows us

to capture such variations in motion. The locations in a

CLiFF-map could be regularly-spaced locations on a grid

or arbitrary locations, where velocity information was

recorded. Additionally, the CLiFF-map can be built from

data that is incomplete or spatially sparse. This makes it

particularly suitable for mapping of dynamic media such as

wind and water since measurements can only be obtained

sparsely in a realistic scenario. However, the datasets

described in this paper are recorded with complete

observability.

CLiFF-map’s probability distributions capture both the

uncertainty in sensing and inherent variability of the

velocities. The random variable, velocity, is described in polar

coordinates as a 2D vector of the heading, θ and speed, ρ, as

follows: V � [ θ ρ ]T, where θ ∈ [0, 2π) and ρ ∈ [0, ∞). This

allows each component to be interpreted independently as

opposed to a Cartesian representation of the velocity.

The Probability Density Function (PDF) of a mixture model

can be written as

p V( ) � ∑J
j�1

πjfj V( ), (2)

where fj represents the j-th base distribution in the mixture. The

mixing factor πj is the fraction of observations that belong to the

j-th distribution in the mixture.

Since the random variable, velocity, is described in polar

form, the base distribution in the mixture is represented by a

semi-wrapped Normal distribution (SWND). An SWND is a bi-

variate Gaussian distribution of the velocity, where one of the

dimensions (the heading in CLiFF-map) is wrapped around the

unit circle. This can be written as:

fj V( ) � N SW
Σj,μj

V( ) � ∑
k∈Z

N Σj,μj

θ
ρ

[ ] + 2π
k
0

[ ]( ), (3)

where μj, Σj and k are the mean, covariance and the winding

number of the j-th distribution over V, respectively.

In addition to the aforementioned probability

distributions, CLiFF-map also models information related

to how long a location was observed. The duration for

which a location was observed is modelled as a proportion

of the total observation time. Let us consider an example to

elucidate the utility of this quantity. Consider an environment

where autonomous robots are to be deployed. The constraint is

that we desire little or no modification of the existing

environment. Therefore, all sensors are placed on the

autonomous robot. We wish to sense dynamic entities and

collect data pertaining to their velocities. This means that each

location will be observed for a different duration of time.

Additionally, during the time that each location is observed,

motion might be observed only for a portion of that.

The motion ratio, qs � Tm
s

To
s
, where Tm

s is the time during

which motion was observed at the location and To
s is the time

during which the location was observed. A motion ratio of one

indicates that whenever this location was observed, motion

was also observed. A zero motion ratio indicates that

motion was never observed in that location. The

observation ratio, ps, is the ratio of To
s and the total

observation duration for all locations (Tt): ps � To
s

Tt . An

observation ratio of one indicates that the location was

observed for the entire duration of observation, whereas a

value less than one indicates partial observation, and a value of

zero indicates no observation.

In summary, a CLiFF-map in 2D space can be denoted as

Ξ � ξs, ps, qs, ls( ) | s ∈ Z+ ∧ ls ∈ R2{ } (4)

where ξs is the set of parameters describing the distribution

with Js mixtures at location ls, that is,

((π1,Σ1, μ1), (π2,Σ2, μ2), . . . , (πJs,ΣJs, μJs)).

5.1.2 Down-the-cLiFF cost
In this section we describe the Down-The-CLiFF cost

function first introduced in our previous work (Swaminathan

et al., 2018). The DTC cost function aims to penalize trajectories

where the robot’s velocity deviates from the CLiFF-map
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probability distribution. The Mahalanobis distance is a primary

component of the cost function since it measures how close an

instance is from the underlying distribution. The cost described

below is a normalized version of the cost described in our

previous work. As we already discussed in Section 4.2,

normalization is done to facilitate easy and meaningful

selection of cost function weights.

Suppose υpoli is a velocity vector in polar coordinates, i.e., it is

composed of the heading and speed associated with the trajectory

point. Suppose there are Ji SWNDs at the CLiFF-map location

corresponding to the position of the trajectory point βi. The cost

of a trajectory point is the weighted sum of Mahalanobis

distances due to all SWNDs:

cc βi( ) � Di � ∑Ji
j�1

πj

���������������������
υpoli − μj( )TΣ−1

j υpoli − μj( )√( ). (5)

We define the Down-The-CLiFF (DTC) cost for a trajectory

as a weighted sum of all trajectory points:

cc β( ) � ∑a
i�1

Di( ). (6)

Another version of this cost utilizes the motion ratio qi available

in the CLiFF-map:

cc β( ) � ∑a
i�1

qiDi( ). (7)

q weighting in Eq. 7 would lead to lower costs for

locations with less motion. Hence, a planner using this

cost function will generate trajectories along regions with

less motion (congestion-avoiding due to q), while

simultaneously trying to match the speed and orientation

of the underlying flow (flow-conforming due to Mahalanobis

distance), where more motion was observed.

We use both (Eqs 6 and 7) cost functions in this paper to

better distinguish the utility of different types of MoD

information available. We limit the maximum value of

Mahalanobis distance to 10, which enables us to limit the

maximum cost at a trajectory point.

5.1.3 Extended upstream criterion
Another alternative for the MoD cost cc in Eq. 1 is defined by

Palmieri et al. (2017). The Extended Upstream Criterion (EUC) is

an extension to the upstream criterion proposed by Ko et al.

(2014). Analogous to Eq. 5, the EUC associated with a trajectory

point βi can be written as:

Ui � ∑Ji
j�1

‖ �μj‖ − �μj · n̂i( )( ), (8)

where �μj is the CLiFF-map mean (in Cartesian coordinates) at

the location corresponding to trajectory point βi, and n̂i � υi
‖υi‖ is

the unit tangent vector along the velocity direction at the

trajectory point βi. For consistency with Eq. 5, we also modify

the expression for EUC above to include the mixing factor πj as

follows. Again, this enables us to easily limit the maximum value

of cost (EUC) at a trajectory point.

cc βi( ) � Ui � ∑Ji
j�1

πj · 1 − cos α( )( ) (9)

where α is the angle between the vectors �μj and n̂i.

We use the motion ratio q to construct an alternative cost

function similar to Eq. 7.

cc βi( ) � Ui � qi ∑Ji
j�1

πj · 1 − cos α( )( ) (10)

5.2 STeF-map

5.2.1 STeF-map description
STeF-Map (Molina et al., 2018), which stands for Spatio-

Temporal Flow Map, is a representation that models the

likelihood of motion directions on a grid-based map by a set

of harmonic functions, which capture long-term changes of

crowd movements over time.

5.2.1.1 Spatial representation

The underlying geometric space is represented by a grid,

where each cell contains k temporal models, corresponding to

k discretized orientations of people motion through the given

cell over time. Since the total number of temporal models,

which are of a fixed size, is k × n where n is the total number of

cells, the spatio-temporal model does not grow over time

regardless of the duration of data collection. This allows the

model to make probabilistic predictions of the likely flow of

people in a certain direction for a given cell at any instant

of time.

5.2.1.2 Temporal framework—FreMEn

The temporal models, which can capture patterns of people

movement, are based on the FreMEn framework (Krajník et al.,

2017). FreMEn is a mathematical tool based on the Fourier

Transform, which considers the probability of a given state as a

function of time and represents it by a combination of harmonic

components. The model not only allows representation of

environment dynamics over arbitrary timescales with constant

memory requirements, but also prediction of future environment

states based on the patterns learned. The idea is to treat a

measured state as a signal, decompose it by means of the

Fourier Transform, and obtain a frequency spectrum with the

corresponding amplitudes, frequencies and phase shifts. Then,

transferring the most prominent spectral components to the time

domain provides an analytic expression representing the

likelihood of that state at a given time in the past or future.

Assuming that the directions of people movement are affected by
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patterns that might be periodic, STeF-map applies the FreMEn

concept to discretized directions of people movement through a

particular cell.

5.2.1.3 Building the model

The STeF-map model assumes that it is provided with people

detection data, containing person position, orientation and

timestamp of the detection (x, y, α, t). At the beginning of the

model construction, each cell is associated with k bins,

corresponding to the discretized orientation of people motion,

each with an associated temporal model. When building the

model, the x, y positions are discretized and assigned to the

corresponding cell and the orientation α is assigned to one of the

k bins, whose value is incremented by 1. In other words, the

number of people detections occurring in each orientation bin of

each cell is counted. After a predefined interval of time, the bins

are normalized, and the normalized values are used to update the

spectra of the temporal models by the scheme described by

Molina et al. (2018) in their work. Then, the bin values are

reset to 0 and the counting again is started again. Notice that

when building the model the total number of detections in each

cell is not used, only the relative number of occurrences among

all k orientations.

5.2.1.4 Making predictions

To predict the behaviour of human movement through a cell

at a future time t, the probability for each discretized orientation

θ, (θ � i 2πk and i ∈ {0 . . . k − 1}), associated to that cell is

calculated as

pθ t( ) � p0 +∑m
j�1

pj cos ωjt + φj( ), (11)

where p0 is the stationary probability, m is the number of the

most prominent spectral components, and pj, ωj and φj are their

amplitudes, periods and phases.

The spectral components ωj are drawn from a set of ωs that

covers periodicities ranging from hours to 1 week with the

following distribution:

ωs � 7 · 24 · 3600
1 + s

, s ∈ 0, 1, 2, 3, 4, . . . , 15. (12)

The choice ofm determines howmany periodic processes are

considered for prediction. Settingm too low could mean omitting

other less prominent environment processes, while setting it too

high might decrease the generalization capabilities of the model.

5.2.2 STeF-map cost function
Analogous to Eq. 9, we define the Extended Upstream

Criterion for STeF map as follows:

cc βi( ) � Ui � ∑K
k�1

pk 1 − cos α − k − 1( ) π
4

( )( ){ } (13)

where α is the heading angle associated with the trajectory point

βi, and pk is the predicted probability provided by the STeF-Map

model of finding people moving for each of the k orientations in

the location associated with the destination node. For all the

experiments, the value of k was set to 8.

5.3 GMMT-map

5.3.1 GMMT-map description
In this section, we present the probabilistic modelling

technique proposed by Bennewitz et al. (2002), which we refer

to as GMMT-map (Gaussian Mixture Model Trajectory map).

The GMMT-map aims to model trajectories of persons using the

following intuition: when humans move around in an

environment our motion is not random. Instead, we tend to

exhibit typical patterns related to our activity or destination.

Thus, the trajectories are modelled as motion patterns described

by probability distributions.

The input data used to build the GMMT-map is a collection

of trajectories, where each trajectory is a sequence of 2D

positions. When the model is built, the data is clustered into

M different motion patterns. Each motion pattern is represented

by a sequence of K Gaussian distributions.

Suppose μmk is the mean position of the k-th point along the

m-th motion pattern and σ is the standard deviation along both x

and y directions. The GMMT-map can be written as a mixture

model with M components as

p τ( ) � ∑
m

πm ∏K
k�1

N μmk, σ( ), (14)

where τ is the random variable describing the trajectory and

πm is the mixing factor of the mth motion pattern or cluster.

πm signifies the proportion of total trajectories that belong to

motion pattern m. The base distribution in the mixture

model is a product of Gaussians. It is also the probability

distribution describing the mth motion pattern and can be

written as

p z( ) � ∏K
k�1

N z|μmk, σ( ). (15)

Amodified EM algorithm is used to build the GMMT-map

where the means are iteratively improved. The input to the EM

algorithm is a set of trajectories, each consisting of the

positions and timestamps of the observed pedestrian or

entity. In the original work by Bennewitz et al., the mixing

factors are not computed. Thus, the expression for recursively

computing the responsibilities implicitly assumes that the

mixing factors for all mixtures are equal, in the original

paper. In contrast, we compute the mixing factors and use

them to compute responsibilities.
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5.3.2 GMMT-map cost function
Analogous to previous sections, we find a suitable cost

function that uses the GMMT-map to compute the MoD cost

(cc from Eq. 1). We utilize the EUC modified specifically for the

GMMT-map as shown in Eq. 16. The cost is zero if the trajectory

point lies farther away than one standard deviation from a

Gaussian.

Ui � ∑m
m�1

πmbmt 1 − σ−1‖μmt − ri‖( ) 1 − cos αmt( ), (16)

where

bmk � 1: ‖μmk − ri‖< σ,
0: otherwise.

{
In Eq. 16, μmt is the mean of the m-th motion pattern that is

closest to ri; ri is a vector describing the position at βi; αmt is the

angle between the heading at βi and the direction of the m-th

motion pattern at its t-th Gaussian (the Gaussian closest to ri).

The direction of m-th motion pattern at its k-th point is an

implicit quantity in the GMMT-map since the K Gaussians are

ordered by the index k in each of the M motion patterns. Once

the closest Gaussian is identified, the direction is used to compute

the cosine distance. The sum of Ui over all trajectory points gives

us the cost due to GMMT-map for the entire trajectory similar to

Eq. 6, and is omitted in this section.

5.4 Intensity-map

5.4.1 Intensity-map description
Intensity map is the simplest MoD in our analysis.

Similar to CLiFF-map and STeF-map, we use a regularly

spaced grid. At each cell i in the grid the intensity is

defined as

Qi � ni
max n0, n1, n2, . . . , nN( ), (17)

where ni is the number of observations at cell i and N is the total

number of cells in the grid. Note that the normalization using the

maximum value of observations is used to limit the maximum

intensity value to 1.

5.4.2 Intensity-map cost function
TheMoD-cost (cc) due to intensity map is simply the value of

intensity at the position corresponding to the trajectory

point. That is, the Intensity cost Ii at trajectory point βi is

defined as

Ii � Q ri( ) � Qj, (18)

where ri is the position associated with trajectory point βi as

before, and j is the cell where point ri falls in the grid.

6 Evaluation method

In the previous sections, we have detailed contributions 1 and 2 of

this paper (see Section 1).Wenowdetail our simulation framework for

benchmarking the utility of different MoDs for global motion

planning (contributions 3 and 4). The experiments are split into

one preparatory phase (MoD-building) and two evaluation phases:

1. MoD-building: we use data to build the four different MoDs

described in Section 5.

2. Planning: we use the representations built in the previous step in

our loosely-coupled planning architecture to generate dynamics-

aware paths between sets of predefined start and goal locations.

3. Execution: we use the multi-agent coordination

framework (Section 6.3) to simulate the execution of

the motion plans while replaying recorded pedestrian

data and record the impact of human behaviour on the

execution of the planned paths (see performance indices

in Section 6.2).

The code supporting these steps is open-source. Instructions

are available at https://ksatyaki.github.io. We explain the general

details of the evaluation method: experiment setup and

evaluation metrics. In the following section (Section 7) we

describe the different parameters used in our experiments.

6.1 Planning phase metrics

During the planning phase we record the cost of solutions

resulting from each of the motion planners. For each solution, we

record the Euclidean distance cost (cd), quaternion distance cost

(cq), and MoD cost (cc) (see Eq. 1). The main aim of these metrics

is to motivate the need for the experiments based on execution of

trajectories. In other words, although the metrics from the

planning phase show some important characteristics of the

planned motions, it is not enough to gauge the utility of

MoDs to motion planning per se.

6.2 Execution phase metrics

Recall that the objective of this study is not only to gauge the

utility of MoDs to motion planning, but also to compare the

different MoDs based on their utility to global planning. We

propose to do this by measuring the time wasted by the robot and

pedestrians as the robot executes the planned motions alongside

the pedestrians. We also expect to see what type of MoD

information is more valuable with respect to reducing the

time wasted. Similarly, we could compare the execution of

motions from all the different planners.

Since we wish to measure the utility of execution of motions

generated by the global planners, we limit local planning in order
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to measure the effect of global planning alone. That is, the local

planner does “as little as possible” by pausing the execution of

motions, thereby not modifying the original path. In other words,

replanning is not considered because we want to guage the

original motion plans and not the replanned motions. Thus,

in our case the local planner behaves as follows: the robot should

simply pause execution when a human is about to cross its path.

The robot resumes execution along the path when the human has

passed.

Notice that instead of the robot pausing to let the human pass-

by, a human could pause to let the robot pass-by. In essence, three

possibilities exist: 1) adamant human, 2) adamant robot and 3)

cooperative agents. Adamant humans means that humans always

gets precedence and the robot always waits. Adamant robot is the

opposite behaviour, where robots are given precedence. In real

scenarios, similar to human interactions, we might expect that

whoever is closer to the intersection point would pass-by while the

other one waits. That is, the agents engage in a cooperative

manner. In our experiments we test only the cooperative

strategy owing to the high number of experiments.

In summary, we measure two quantities in order to objectify

the utility of MoDs to motion planning: time wasted and success

rate of execution. We measure the time wasted by calculating the

duration a robot or pedestrian waits for the other to pass-by or

crossover as already described in the previous section.

twaste � twaste, robot + twaste, pedestrian (19)

When robots or humans get stuck waiting for eachother,

replanning is necessary in order to continue execution. In our

simulator based on the coordination-framework, a deadlock has

occurred when replanning is necessary (discussed further in

Section 6.3). Therefore, success rate of execution is the

percentage of executions that did not result in a deadlock,

i.e., where replanning was not necessary.

In order to simulate and to perform our experiments we make

use of amulti-agent coordination framework, whichwe discuss next.

6.3 Multi-agent coordination framework

In our evaluation, we use the multi-agent loosely-coupled

coordination framework by Pecora et al. (2018); Mannucci

et al. (2019) as a proxy for simulating the behaviour described

in the previous section. The agents compute their motions to

their current goal independently (i.e., without considering

other agents), and their progress along the committed paths

is supervised by a centralized coordinator which posts

precedence constraints among pairs of agents to avoid

collisions at intersections, as well as deadlocks and

blockings. We have here extended the framework to include

uncontrollable agents (e.g., pedestrians) by partitioning the

intersections into two subsets: 1) robot-robot and robot-

pedestrian intersections (henceforth called critical sections)

where safety is ensured by the central coordinator, and 2)

pedestrian-pedestrian intersections, where we assume the two

interacting agent will locally coordinate by themselves. For

each critical section, a precedence constraint will be imposed,

defining which among the two agents should yield, where and

until when (see also Figure 3).

6.3.1 Definitions
Let R and H be the sets of robots and humans,

respectively. With a small abuse of notation, the symbol

□i refers to variable □ of agent i in this section. Let Ri(xi) be

the collision space of the agent i when placed in a

configuration xi and Ei(pi) be the agent’s spatial envelope,

that is, a polytope bounding the allowed spatial deviations

while driving along the path piAndreasson et al., 2015). Consider a

pair of agents (i, j) so as agent i or j is a robot with paths pi and pj.

Collisions may happen only in the set S � {(xi, xj) ∈ X i × X j |
Ri(xi) ∩ Ej(pj) ≠ 0/ ∨ Rj(xj) ∩ Ei(pi) ≠ 0/}. Let Cij be the

decomposition of S into its largest contiguous subsets. Each

set of configurations Cij ∈ Cij is called a critical section. We

parametrize each path pi using the arch length ζi ∈ [0, 1] so as

pi(0) � xstarti and pi(1) ∈ X goal
i . Furthermore, let ℓi ∈ [0, 1] be the

FIGURE 3
Three robots navigating along paths p1, p2, and p3. Spatial envelopes and critical sections are shown on the left; gray arrows indicate precedence
constraints; detail of the precedence constraint regulating robots 2 and 3 as they navigate through C23 is shown on the right.
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arc length at which agent i first intersects Cij along its path pi, that

is, pi(ℓi) � infpiCij.

New paths, the resulting critical sections, and precedences

regulating access to them are computed/revised at a user-

definable frequency 1/Tc, while the fleet is in motion. The

high-level control period Tc is typically chosen to be in the

range [0.5, 2] seconds. The smaller the control period, the

quicker agents react to progress of other agents (e.g.,

exhibiting less rubber-banding when queuing), and the

more efficient the overall performance of the fleet is

(Pecora et al., 2018).

Precedence orders are determined by user-provided heuristic

function h: [0, 1]2 × Cij ↦ {0, 1} with h(ζi, ζj, Cij) = 1 indicating

that i≤ Cijj, i.e., agent i yields for agent j at the critical section Cij.

A commonly used heuristic is:

hdist ζ i, ζj, Cij( ) � 1, if ℓj − ζj ≤ ℓi − ζ i
0, otherwise.

{ (20)

The above heuristic realizes the “closest goes first” principle.

This allows the agents to “follow” each other into critical

sections, thereby avoiding the need to pre-define discrete

areas of space for exclusive use of individual agents.

Conservative models of the agents’ dynamics are used to

exclude precedences which are not dynamically feasible;

similarly, a model of the communication channel can be

exploited to ensure safety under imperfect communication

(Mannucci et al., 2019). Given a precedence order i< Cijj, the

precedence constraint 〈pi, pj, �xi(t), suppjCij〉 is defined by

computing the configuration �xi(t) at which the agent i is

required to yield as:

�xi t( ) �
max ℓi, rij t( ){ } if ζj ≤ sup

pj

Cij

1 otherwise

⎧⎪⎨⎪⎩
rij t( ) � sup

ζ∈ ζ i ti( ),uCi[ ]
E ζ i t( ),ζ[ ]
i ∩ E

ζj t( ), sup
pj

Cij[ ]
j � 0/

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

where E[a,b]
i is the subportion of the envelope Ei for ζi ∈ [a, b].

At the end each coordination loop, the closest constraint

(called critical point) is updated and communicated to each

agent. Safety holds indeed if all agents commit to stop in their

current critical point (Pecora et al., 2018).

6.3.2 Modeling humans
The motions of the two types of agents are computed as

follows: the motions of robots in the set R follow the loosely-

coupled approach (each path is computed by the robot’s

planner and its trajectory obeys the precedence constraints

imposed by the coordinator); the motions of humans in the set

H are known (recorded trajectories) and hence replayed. A 2D

simulation tool provided by the coordination framework

(Pecora et al., 2019) is used to simulate the planned/

recorded motions of robots/humans. Three possible test

conditions—adamant human, adamant robot and

cooperative agents—may be brought about by altering the

heuristic h ∈ {hh, hr, hdist}, respectively.

In this paper, we use the cooperative agents heuristic. The

cooperative agents setting is achieved by employing the hdist
heuristic shown in Eq. 20, reflecting the assumption that humans

and robots cooperate to achieve the “fairest” outcome in giving

precedence. This means that the agent closest to the critical

section get precedence.

Although we do not use it in this paper, we also show the

possible heuristic for the adamant human case for completeness.

The adamant human heuristic gives a human precedence over a

robot at critical section Cij if the robot has not entered the critical

section yet and the human is closer than a threshold distance d to

critical section:

hh ζ i, ζj, Cij( )
�

1, if i ∈ R, j ∈ H, ℓi − ζ i ≤ d and ℓj − ζj ≤ d
0, if i ∈ H, j ∈ R, ℓi − ζ i ≤ d and ℓj − ζj ≤ d

hdist ζ i, ζ j, Cij( ), otherwise.

⎧⎪⎪⎨⎪⎪⎩
(21)

The adamant robot heuristic hr defines the opposite behavior,

namely, humans yield to robots when both are in proximity of a

critical section. By employing these heuristics in the

coordination framework, we are able to replay the recorded

trajectories of people alongside a robot executing its motions.

Such a framework for simulation enables us to rapidly test

multiple scenarios with several planners.

7 Description of experiments

In this section, we describe the parameters and data used in

the different phases of our experiments.

7.1 Data and MoD-building

We use two different datasets: 1) simulated, and 2) real

world data.

The first dataset is built using PedSim (Vasquez et al.,

2014), a commonly used open-source pedestrian simulator.

We simulate a set of workers moving in a warehouse-type

environment. In this environment, people tend to follow well

defined motion patters as described by the different colored

paths in Figure 4. Most workers move through different stock

areas of the warehouse to store pallet or pickup goods in the

shelves area in the bottom (blue, purple, red). Other workers

(managers) instead tend to move close to the walls. Using this

simulation setup (i.e., definitions of pedestrian groups and way
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points, as shown in Figure 4), we have generated two separate

datasets for MoD-building and testing by running the

simulator twice while recording the pedestrian trajectories,

as shown in Figure 5.

The second dataset comprises real pedestrian data from

the ATC mall dataset [The Asia and Pacific Trade Center,

Osaka, Japan, first described by (Brščić et al., 2013)]. This data

set was collected with a system consisting of multiple 3D range

sensors, covering an area of about 900 m2. The data has been

collected between 24 October 2012 and 29 November

2013 every week on Wednesday and Sunday between 9:

40 and 20:20, that gives a total of 92 days of observation. In

the ATC dataset, we pick the first six consecutive days for

training (MoD-building) and use the next 2 days for testing

(execution phase experiments) as shown in Table 1. The

resulting MoDs are shown (togheter with the executed

paths) in Figure 6 (CLiFF) and Figure 7 (all).

7.2 Planning phase

The setup of this phase consists of: 1) selecting the

planning parameters such as planning duration, vehicle

type, max vehicle velocity and path resolution, 2) choosing

the appropriate MoD weight for each MoD’s cost function (see

Section 4.2), and 3) selecting the set of start and goal locations

for planning.

All our experiments consider a car-like vehicle and

Reeds-Shepp paths as extend function (Reeds and Shepp,

1990) in line 7 of Algorithm 1. We chose a maximum vehicle

velocity of 1 m
s and a path resolution of 0.05 m for all

planners in all environments. We also use uniform

sampling of the state-space in line 5 of Algorithm 1 and a

planning duration of 5 and 15 min in the PedSim and ATC

experiments, respectively. We chose these values to give the

planners enough time to find solutions that are as optimal as

possible after a finite duration.

In Section 4.2, we saw how the weight wc can limit the

maximum path length for a zero-MoD-cost path. Suppose

the path resolution is 0.05 m. This path contains 1
0.05 � 20

points per meter. The worst case MoD-cost per meter (μ) is

μ = 20M, where M is the worst case MoD-cost at a path/

trajectory point. For DTC cost, M = 10, due to our limit on

the maximum value of Mahalanobis distance. For the CLiFF-

map EUC, M = 2, due to the maximum value of cosine

distance. The values of wc for each planner (see Table 2)

FIGURE 4
Set of waypoints and paths used to simulate workers in a warehouse-like environment using the PedSim simulator. Different colored arrows
show the paths taken by different groups of pedestrians. Circles in light pink show the way points.
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are arrived at by setting the weighted worst case MoD-cost

per meter (wcμ) to 4 for all cost functions. In accordance with

Section 4.2, γ = 1 + wcμ. We choose a γ = 5, which means that

if an initial solution is found to have this worst case MoD-cost

(per metre), the planner would accept a zero-MoD-cost plan

provided that its length is not greater than 5 times the length

of the initial solution. Table 2 shows a list of all planners, their

corresponding shorthands, along with their cost functions

and MoD-weights.

Finally, we select different start and goal pairs Figures 6

and 8 and pedestrian reference trajectories. The related paths

are displayed in Figures 5,10. For the PedSim experiments we

choose two simple start-goal pairs. This setup is deliberately

simple in order to emphasize the utility of MoDs to motion

FIGURE 5
Pedestrian paths from time-point t1 used for execution phase experiments in the warehouse environment.

TABLE 1 Days and dates from the ATC dataset used for training (MoD-building) and testing (execution experiments).

Date Day

Training 24 October 2012 Wednesday
28 October 2012 Sunday
31 October 2012 Wednesday
04 November 2012 Sunday
07 November 2012 Wednesday
11 November 2012 Sunday

Testing 14 November 2012 Wednesday
18 November 2012 Sunday

FIGURE 6
The CLiFF-maps and paths generated by the DTC-q (A) and CLiFF-EUC-q (B) planners in the ATC environment.
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FIGURE 7
The different MoDmaps and paths generated by the respective planners (A–E) in the ATC environment. The STeF-map plots (F–J) show arrows
in each cell that corresponds to the discretized orientation with the highest predicted probability of motion at the respective time-points.
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planning as we shall see in Section 8. For the ATC

experiments, we select start-goal pairs such that all areas

of the map are covered: one start-goal pair in the hall area

(S2-G2), one spanning the entire map (S3-G3) and two that

span both the hall and corridor areas partially (S1-G1 and

S4-G4).

For STeF-map based planners we select five different

time-points for planning, since STeF-map models

temporal changes in motion patterns (see Section 5.2).

Note that we also use the same time-points for the

execution phase discussed in the next section. Due to the

unavailability of real temporal data in PedSim (we would

have had to manually add virtual temporal data), we do not

use the STeF-map and the associated planner in the PedSim

experiments.

7.3 Execution phase

In this phase we simulate the execution of the motion

plans generated in the previous phase as explained in Section

6. For testing the execution of the generated motion plans,

the testing part of the dataset. The pedestrian trajectories

from the testing part is replayed as the robot motions are

simulated. While simulating the robot using the

coordination framework, we use a trapezoidal velocity

profile with a maximum velocity of 1 m/s and a maximum

acceleration of 1 m/s2. The coordination period is 1 s, i.e., the

coordination framework computes/revises the critical

sections and precedences every second.

7.4 Summary of experiments

Here we summarize the experiments in the PedSim and

ATC environments (also shown in Table 3). For

the ATC dataset, we use the first six available days for

MoD-building and the next 2 days for execution-based

benchmarking (Table 1). For PedSim, We generate two

different datasets using the same setup (Figure 4). All our

planners (Figure 2) use uniform sampling of the state space

and the Reeds-Shepp vehicle type and its associated extend

function. We use a path resolution of 0.05 m. In PedSim,

each planner runs for 5 min, and in ATC, each planner runs

for 15 min. We have defined two start-goal pairs for PedSim

(Figure 8) and four for ATC (Figure 9). For the execution-

based benchmarking, we cut-out 90 and 120 s starting at

different time-points from the appropriate dataset. In ATC

TABLE 2 Table showing planner shorthands, MoD-type, the MoD-cost function used and chosen values of wc for all planners used.

Planner shorthand MoD type MoD cost MoD weight

MoD-unaware (Figure 9) (Figure 8) 0.00

DTC CLiFF-map DTC cost (Eq. 6) 0.02

CLiFF-EUC CLiFF-map CLiFF EUC (Eq. 9) 0.10

STeF-EUC STeF-map STeF EUC (Eq. 13) 0.10

GMMT-EUC GMMT-map GMMT EUC (Eq. 16) 0.10

Intensity Intensity-map Intensity Cost (Eq. 18) 0.20

DTC-q CLiFF-map DTC cost with q (Eq. 7) 0.02

CLiFF-EUC-q CLiFF-map CLiFF-EUC with q (Eq. 10) 0.10

TABLE 3 Summary of experiments in the PedSim and ATC environments.

Property ATC environment PedSim environment

1 Number of scenarios 4 (see Figure 8) 2 (see Figure 9)

2 Planning time-points 13:08:20, 18:00:00, 21:00:00 (14 November 2012), 14:46:40, 19:46:40
(18 November 2012)

six arbitrarily chosen durations from the testing
dataset

3 Planning runs for STeF-EUC 10 runs per planning time per scenario -

4 Planning runs for other planners 10 runs per scenario 10 runs per scenario

5 Planning duration 15 min 5 min

6 Total number of motion plans 400 100

7 Total number of execution phase
experiments

1,200 600

8 Total time taken for all experiments 140 h 40 h
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we choose five different time-points (from the 2 days

marked for execution-based benchmarking). Similarly, in

PedSim we choose six different time-points. Selected

moments from the experiments in the ATC environment

are shown in the video available at https://youtu.be/

oUWOQENuHFc.

8 Results

In this section we look at the results from the planning and

execution phases of the experiments. As discussed in the previous

section, we perform these experiments in two environments,

PedSim and ATC, using the corresponding datasets. First we

look at the planning phase results that we use to motivate the

need for experiments based on execution. Next we present the

execution phase results from the PedSim environment and reason

about them using themotion plans. It is possible to explain results in

the (simple) PedSim scenarios using the motion plans, to some

extent. Next, we present the results from the ATC dataset that are

harder to explain by simply looking at the motion plans.

8.1 Planning phase results

We now look at traditional metrics used in conjuction with

motion plans. Specifically, we look at graphs showing different

metrics based on the motion plans themselves.

Figure 11 shows boxplots of Euclidean distance cost (cd),

quaternion distance cost (cq) and weighted MoD cost (wccc)

from the pedsim warehouse (a)–(c) and ATC (d)–(f). Note that

as mentioned in Section 7.2, we do not use the STeF-map and the

associated planner in the PedSim experiments because of the lack of

real temporal data in PedSim. As expected, the MoD-unaware

planner results in the least Euclidean and quaternion distance

cost. Obviously, MoD-cost is undefined for MoD-unaware

planner, which does not consider MoD-information. In the ATC

environment, Figure 11D–F, GMMT-EUC’s quaternion distance

cost overlaps with that of the MoD-unaware planner in all cases,

whereas CLiFF-EUC, DTC, STeF-EUC and Intensity have

comparably higher quaternion distance cost. The GMMT-EUC

cost does not change as much locally as DTC, CLiFF-EUC,

STeF-EUC and Intensity costs, and therefore, the turns are fewer

(see Figure 6). This is due to the nature of the maps and their cost

functions, i.e., GMMT-map consists of motion patterns represented

as a trajectories and the cost function is weighted by the standard

deviation as seen in Eq. 16. The effect is that, GMMT-EUC-cost is

FIGURE 8
The occupancy map of the PedSim warehouse. The start and
goal poses for the robot are outlined red and green, respectively.
Both x and y axes are in meters.

FIGURE 9
The occupancy map of the ATC shopping mall. The start and goal poses are outlined red and green, respectively.
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zero in regions outside one standard deviation of the distributions

defined in the GMMT-map. However, the other MoD-costs are

non-zero for all regions where observations (pedestrians) exists.

Because of this, the MoD-cost is also lower for GMMT-EUC

compared to other MoD-aware planners.

However, these metrics do not provide an indication as to

which cost function would lead to the best execution efficiency.

As we have mentioned before, the only connection between the

MoDs is the data that is used to generate them and the choice of

weights. Recall that we have chosen the weights such that Next,

we look at the execution phase results.

8.2 Execution phase results

First we look at the results from the PedSim warehouse

environment. This setup is deliberately simple in order to

emphasize the utility of MoDs to motion planning.

Specifically, in this case, it is easier to reason why MoD-

aware planners are better, and which MoD-aware planners

are better, by looking at the generated paths and the

objective measures. However, in the ATC environment,

it is harder to judge the utility of MoDs by looking only

at the generated motion plans.

8.2.1 PedSim warehouse
Figure 12 shows the waiting times using boxplots with the

corresponding success percentage (as defined in Section 6.2)

shown on top of each boxplot. Figure 13 shows the paths and

MoD-maps for the PedSim warehouse environment. We have

two simple scenarios as shown in Figure 8: Scenario 1, where the

robot goes from right to left, and Scenario 2, where the robot goes

from left to right. The corridor in the bottom has two distinct

flows as can be seen from the CLiFF-map in Figure 13B: blue

arrows in the top half of the corridor indicate motion is towards

the right, and yellow arrows in the bottom half of the corridor

indicate that the motion is to the left.

In the first scenario (moving from right to left in

Figure 8), the CLiFF-EUC, the DTC and the Intensity

planners tend to avoid the crowded area (i.e., corridor)

entirely. While the CLiFF and GMMT planners do not

explicitly include information about the intensity of the

flow, given the cost functions in Eqs 9, 16, they implicitly

account for intensity in this scenario, since there are no

distributions where there has been no flow observed. The

time wasted is consequently very low for MoD-aware

planners (median below one second) whereas the MoD-

unaware planner wastes 9 seconds (median).

In the second scenario (moving from left to right in

Figure 8), the DTC planner and Intensity planner avoid the

flow entirely, whereas the CLiFF-EUC planner and GMMT-

EUC planner try to follow the flow within the corridor.

Although the time wasted is comparable to that of other

planners, the success rate of the planners (that is, where

robot motions can be completed without replanning as

seen in Section 6.2) is higher for DTC and intensity

planners. Judging by the results in Figures 12, 13, it is

better to avoid the flow altogether in this scenario, rather

than attempting to enter and follow it, which means that

intensity information is more important to the motion

planner than information about direction.

Although CLiFF-EUC and GMMT-EUC account for

intensity implicitly, their costs are zero (by design) when

the robot’s velocity vector is aligned with the direction

modelled in the MoDs. Since DTC-cost is based on the

Mahalanobis distance, the velocity vector should match

the underlying distribution, otherwise the cost is high.

This means that, if the flow of pedestrians has very low

spread (as they do in our PedSim setup), DTC-cost along

these regions is likely to be very high (due to the low

FIGURE 10
Pedestrian paths from time-point t1 used for execution phase experiments in the ATC environment.
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covariance especially in direction). This is why DTC avoids

the corridor area entirely. In summary, planners that avoid

the flow of people altogether have higher success rates than

planners that enter the corridor.

In the case of these experiments with simulated data, it was

possible (to some extent) to gauge the quality of plans based on the

plots. That is, planners that avoided the corridor area, produced better

results during execution. However, in the case of the ATC

environment, it becomes increasingly difficult to reason about the

plans (see Figure 6). Also, comparing the planning phase results from

PedSim environment (Figure 11) to the execution phase results

(Figure 12, it is clear that planning phase metrics alone are not a

good indicator of the quality of the paths. TheMoD-unaware planner

has the lowest distance costs, but inevitably leads to difficulties when

executing motions alongside other agents (pedestrians). Therefore,

objective metrics from execution of motion plans is important.

8.2.2 ATC dataset
For the experiments with real-world data from the ATC data

set, we begin our analysis by presenting graphs of the waiting

times for each planner. Figure 14 shows waiting times for each

planner categorized by the scenario. For instance, Figure 14A

FIGURE 11
Planning phase stats from the pedsim warehouse (A–C) and ATC (D–F) respectively. First row (A,D) is the Euclidean distance cost, second row
(B,E) is Quaternion distance cost and third row (C,F) is weighted MoD cost per meter. Means are shown in pink and medians in yellow.
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shows the waiting times due to execution of paths from each

planner for scenario 1, at all time-points. Similarly, Figure 14

shows the results categorized by the planning time-point. For

example, Figure 14A shows the waiting times for each planner

from all scenarios, at time-point 1. Finally, Figure 16 shows the

different MoD maps and paths generated by the respective

planners in the ATC environment.

It is clear from the overall boxplot (Figure 15F) that MoD

planners lead to less waiting time (both mean and median)

compared to the MoD-unaware planner. Moreover, only the

CLiFF-EUC planner has a smaller success rate compared to

MoD-unaware planner. In summary, we make the following

observations: 1) GMMT-EUC gives the best results when

executing plans in the ATC scenarios. It has nearly 100%

success rate, and the mean waiting time of ~6 s compared to

a mean waiting time of ~12 s for the MoD-unaware planner after

200 executions (5 time-points × 4 scenarios × 10 plans). 2)

Intensity has the shortest waiting times (mean and median) but

suffers from lower success rate. 3) Only STeF-EUC produces

higher mean waiting time compared to the MoD-unaware

FIGURE 12
Waiting times and success rate (on top) for Scenario 1 (A) and Scenario 2 (B) from PedSimwarehouse environment. Means are shown in pink and
medians in yellow.

FIGURE 13
Paths generated by different planners and related MoDmap for Scenarios 1 (A–E) and 2 (F–J) in the PedSimwarehouse environment. Column-
wise from left to right: MoD-unaware planner, DTC, CLiFF-EUC, GMMT-EUC, Intensity.
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planner. But, it too has a higher success rate compared to MoD-

unaware planner.

Next, we break down these results first by scenario and then

by time-point.

8.2.2.1 Scenario-wise analysis

In Scenario 2, the robot starts at end of the long corridor

area and passes through the large hall area. Since there is a

larger area for the planner to find low-cost solutions, all MoD-

aware plans waste less time compared to the MoD-unaware

planner. In particular, the DTC planner and the GMMT-EUC

planner have 100% successful execution and zero median time

wasted (see Figure 14B). The full CLiFF-map planners (DTC-

q and CLiFF-EUC-q) have similar waiting times to the

Intensity planner, but higher success rate than

Intensity planner. When comparing to their “non-q”

counterparts, the use of q value improves the success rate

of CLiFF-EUC by 2% while the success rate of DTC drops by

6%. In this scenario, planners utilizing direction explicitly

(GMMT-EUC, CLiFF-EUC and DTC planners) have low

waiting times.

The robot has to enter the corridor from the hall area in

Scenario 1 and has to leave the corridor in Scenario 4. The

MoD-unaware planner wastes more time while leaving the

corridor (Scenario 4) than while entering (Scenario 1). In

Scenario 1 (entering the corridor), DTC and CLiFF-EUC waste

more time than MoD-unaware planner on average. This is

reduced when utilizing the motion ratio q (DTC-q and CLiFF-

EUC-q). In Scenario 4, DTC-q and CLiFF-EUC-q have

similar waiting times to their “non-q” counterparts, but

have 2% better success rate. However, GMMT-EUC and

Intensity seem to perform similarly in both situations.

Intensity information seems most relevant while entering/

leaving the corridor since both the GMMT-EUC

planner and the Intensity planner have very low spread in

time wasted.

FIGURE 14
Waiting time and success rate for Scenario 1–4 (A–D) respectively, from the ATC environment. Means are shown in pink andmedians in yellow.
Whiskers extend from 0 to 99%.
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Scenario 3 involves the longest distance between start and

goal. Consequently, the time saved by MoD-aware planners is

most pronounced in this case. Intensity (explicit intensity

information) and CLiFF-EUC and DTC (explicit direction)

planners have lower mean and median waiting times and

higher success rate than MoD-unaware planner. The time

FIGURE 15
Waiting time and success rate for time-points 1–5 (A–E) respectively, from the ATC environment. Means are shown in pink and medians in
yellow. Whiskers extend from 0 to 99%.

Frontiers in Robotics and AI frontiersin.org22

Swaminathan et al. 10.3389/frobt.2022.916153

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.916153


wasted is also considerably smaller for MoD-aware planners

compared to the MoD-unaware planner, except DTC planner.

DTC-q has much higher success rate and lower waiting times

compared to its “non-q” counterpart. The GMMT planner

(utilizes direction explicitly and intensity implicitly) has the

best results in Scenario 3. DTC-q planner (utilizes both

direction and intensity explicitly) has slightly lower mean

waiting time compared to GMMT, but also 2% lower

success rate.

8.2.2.2 Crowdedness

In order to understand what testing time-points are more

crowded than others, we use Fundamental Diagram (FD) of flow.

FDs represent the relationship between pedestrian velocity and

crowdedness. Duives et al. (2015) provide an overview of

different types of fundamental diagrams. In this paper, we use

X-T plots (Edie (1963) as cited by Ni and Leonard (2006)).

In X-T plots, the space is divided into uniform square cells. In

addition, the time domain is also split into regular time periods.

Crowdedness is computed at each cell (x, y, t) using the time

spent by each unique pedestrian in the particular cell within the

particular time period. Essentially, crowdedness is computed

using several crowdedness maps—one grid-map per time

period. Additionally, a velocity value is associated to each cell

at all time periods—the maximum velocity experienced at the

cell. By plotting the crowdedness versus the velocity, we obtain

the fundamental diagram. Finally, a histogram is created from the

fundamental diagrams. Figure 17 shows the fundamental

diagrams (2d-histograms) computed using X-T maps, of the

corridor and hall areas. Dense peaks in the histogram plot of the

FDs, such as those seen in first three columns of Figure 17, mean

that the same region has or different regions have the

corresponding velocity and crowdedness values at various

time periods. Conversely, in the last two columns of

Figure 17, the velocity and crowdedness values are spread out,

i.e., at various time periods, the crowdedness and velocity values

vary a lot.

8.2.2.3 Planning-time-point-wise analysis

When looking at the results classified based on time-point of

planning (Figure 15) in conjunction with the crowdedness maps, a

few inferences can bemade: 1) Success rate of the planners is greater

in time-points 4 and 5 compared to 1, 2 and 3. 2) Median time

wasted by all MoD-aware planners is lower than that of MoD-

unaware planner in time-point 3, 4 and 5. 3) Fundamental diagrams

for time-points 2 and 3 show dense peaks (at higher crowdedness

values) compared to 4 and 5. This means that the velocity and

crowdedness are both spread out more in the latter case.

It can be seen from the fundamental diagram of time-point

1 that some pedestrians slow down or stop (dense peak at zero

velocity and high crowdedness). This is possibly why the MoD-

aware planners do not waste less time. When crowdedness and

velocity are more spread out (time-points 4, 5) the MoD-aware

planners have better success rate and lower time wasted than the

MoD-unaware planner. When crowdedness and velocity show

dense peaks (time-points 1–3), the difference between the

planners in terms of time wasted is less pronounced. This is

probably because MoD-awareness does not benefit the planners

as much at these levels of crowdedness as it does at lower levels of

crowdedness. However, the median time wasted and success rate

are both better for at least one MoD-aware planner in all cases.

Especially, GMMT-EUC has the best success rate at time-points

1–3. DTC-q performs similarly to GMMT-EUC at all time-

points, while having slightly lower success rate.

A major difference in the MoD-maps from the ATC dataset,

compared to the PedSim warehouse is that the MoD-maps are

much denser. Simulated pedestrians in the PedSim warehouse

follow specific paths with little variability in the paths. This

results in the MoDs being sparse. That is, for example, CLiFF-

map distributions are absent where no motion was observed

and some intensity-map values will read zero. Therefore all

planners in the PedSim warehouse environment will implicitly

account for intensity information. However, in the ATC

environment, besides Intensity-map, only the GMMT-map

accounts for intensity information (implicitly, due to the

nature of the GMMT model). Notice that although the

CLiFF-map model is capable of accounting for intensity via

q, the motion ratio, we have not used it in the cost function in

order to better discriminate the effect of different kinds of

dynamics information.

The CLiFF-q and DTC-q planners have the same or better

success rate compared to their “non-q” counterparts at all time-

points.

FIGURE 16
Waiting time and success rate all scenarios and all time-
points. Means are shown in pink and medians in yellow. Whiskers
extend from 0 to 99%.
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8.2.2.4 Summary

The results from the ATC environment can be summarized

as follows:

• In the hall regions (Scenario 2), planners utilizing direction

information have better waiting times and success rate.

• While entering and leaving the corridor (Scenario 1 and 4),

planners utilizing intensity information have better waiting

times and success rate.

• When there is a combination of hall and corridor areas,

planners utilizing intensity (Intensity and GMMT-EUC

planners) have better waiting times and success rate.

• When crowdedness values are more spread out (from the

FDs), the MoD-aware planners show considerably better

results (compared to the MoD-unaware planner) than

when the crowdedness values are concentrated.

• Overall, the GMMT-EUC planner followed byDTC-q have

the best results in terms of time wasted during execution of

motions (waiting time) and percentage of executions

completed without replanning (success rate).

9 Discussion

9.1 Possible avenues for future work

In this paper we have proposed objective metrics to evaluate

the utility of MoDs to global motion planning. In this section, we

discuss possible avenues for future research and development.

With regards to the benchmarking framework, the

experiment ends if the robot needs to replan. The multi-

agent coordination framework currently provides the ability

to modify motion plans both at the global level (via calls to the

motion planner) and at the local level (by leveraging the

concept of spatial envelopes to allow bounded deviations

from the nominal path). However, a fast replanning

method is lacking. This entails that robots can potentially

re-plan, but only by calling the global planner, which may

increase the waiting time unfairly. If fast replanning, for

example, TEB planner by Keller et al. (2014), is indeed

available, it is possible that a robot does not waste several

seconds waiting for an agent while it computes a new plan.

This means that all experiments would potentially succeed

and one could count the number of times replanning was

necessary instead of the success rate.

Another possible improvement to the simulation framework

is to enable replanning for pedestrians/uncontrollable agents.

This makes it possible for a pedestrian to navigate around a robot

that might be stuck waiting for the pedestrian or vice versa. Also

if replanning is possible for agents and the robot, although the

total time wasted could be large, the mission can be finished.

To evaluate the practical utility of using MoDs for motion

planning, we have proposed a simulation framework which includes

real-world trajectories to simulate humanmotions. This choice aims

to allow repeatability of experiments. Real-world experiments are

indeed hard to reproduce, besides the difficulty in finding enough

participants and ensuring safety standards. However, performance

in terms of human-robot interaction (e.g., the level of robot

FIGURE 17
Histograms of Fundamental Diagrams of flow of the long corridor (A–E) and hall (F–J) areas of the ATC environment. Column-wise from left to
right: time-points 1–5.
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acceptability and perceived safety) still requires real-world data due

to the low fidelity of current simulators, and these metrics are

equally important for robots operating in human-populated

environments. To this end, we plan to extend our real-world

evaluation to include subjective metrics (such as questionnaires

about acceptability) to investigate the impact of MoDs-aware

planners on perceived safety.

We have tested different cost functions using the RRT* planner

in a simulation framework. In real experiments, where planning

duration is more important, it might be advantageous to consider

other planners such as space-lattice planners, anytime A*, etc. If, on

the other hand, we continue to use sampling-based motion

planners, we would need sophisticated sampling techniques so as

to reduce the planning duration required to obtain low-cost

solutions. In this paper, in order to focus on the objective quality

of the generated motion plans, we have given the planners an

arbitrarily large enough amount of time to generate motion plans.

When planning in real-time, more informed sampling functions

would be necessary for the generation of motion plans (and re-

plans) in a reasonable amount of time.

9.2 Conclusion

Previous research in the area of human-aware motion planning

and motion planning in dynamic environments has focused heavily

on live dynamics information. Also, oftentimes, it is assumed that

the entirety of the environment is visible. The use ofMoDs (maps of

dynamics) entail that a robot can plan human-awaremotions also in

regions that it cannot currently observe. For instance, even a simple

MoD such as the Intensity map can help robots bemore efficient (as

seen from the results in Figure 16) without the need for additional

sensors in the environment.

We have discussed how to incorporate an additional MoD-cost

to the cost function typically used inmotion planning.We have also

presented three new cost functions, for STeF-map, GMMT-map

and Intensity-map, and proposed minor changes to existing cost

functions for CLiFF-map. The cost function and their respective

MoDs emphasize different aspects of the dynamics information

such as intensity, direction, speed, etc., that can be relevant for

different applications. Based on the application, one might choose

an appropriateMoD and cost function. For instance, when avoiding

crowds is a lot more important than following the flow, one might

use the Intensity-map alone. When both are important, one might

use the CLiFF-map with the corresponding cost function that

includes intensity information. When the flow of people is very

strict (such as in the simulated environment in Figure 5), the

GMMT-map may be used.

We have tried to address the problem of assessing and

quantifying the utility of incorporating environmental dynamics

information available as MoDs in motion planning. Our

contribution in this regard is that we have motivated the need

for execution-based benchmarking by pointing out that traditional

metrics alone are not enough to gauge the benefits of MoD-

awareness in a motion planner (Sections 8.1 and 8.2.1). Besides,

we have designed novel metrics that objectively gauge the utility of

MoDs. These metrics measure the efficiency of a robot and the

disruption it causes. By measuring the time wasted by a robot and

the percentage of successful executions, we quantify the

efficiency of the robot. By measuring the time wasted by

the pedestrians we quantify the disruption caused by the

robot. These metrics are not only applicable to gauge the

utility of MoDs in motion planning, but also the utility of

other types of dynamic information. For instance, these

metrics may also be employed to evaluate the utility of a

motion prediction in motion planning for a robot.

We have presented a benchmarking method involving these

objective metrics for conducting evaluations (Section 6). This

contribution is novel in the sense that it is the first work to

evaluate the utility of MoDs in motion planning that is based on

execution of motion plans and not merely on the motion plans

themselves.

We have motivated the need of a simulation framework

capable of reproducing real-world experiments in Section 1.

The simulation framework we propose allows us to reuse

existing pedestrian datasets, thereby reducing the data

collection effort that might otherwise be necessary.

Besides, a framework based on simulation entails that

benchmarking is easily reproducible and can be done

rapidly compared to testing in the real world. Just as the

metrics, the simulation framework is not exclusive to testing

the utility of MoDs: it is equally applicable in evaluating the

utility of both MoDs and live dynamics information.

We have also conducted and presented a thorough

comparison of motion planners that use the different

MoD-aware cost functions (Section 8.2). The results show

that cost functions that account for both direction and

intensity information produce the most efficient (least

time wasted) motion plans. These results suggest that

MoD information benefits the efficiency of execution of

paths. Furthermore, the results helps further development

of both MoDs and their cost functions with respect to their

utility to motion planning.
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