
Integrated design-sense-plan
architecture for autonomous
geometric-semantic mapping
with UAVs

Rui Pimentel de Figueiredo1*, Jonas Le Fevre Sejersen1,
Jakob Grimm Hansen1 and Martim Brandão2*
1Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark,
2Department of Informatics, King’s College London, London, United Kingdom

This article presents a complete solution for autonomous mapping and

inspection tasks, namely a lightweight multi-camera drone design coupled

with computationally efficient planning algorithms and environment

representations for enhanced autonomous navigation in exploration and

mapping tasks. The proposed system utilizes state-of-the-art Next-Best-

View (NBV) planning techniques, with geometric and semantic segmentation

information computed with Deep Convolutional Neural Networks (DCNNs) to

improve the environment map representation. The main contributions of this

article are the following. First, we propose a novel efficient sensor observation

model and a utility function that encodes the expected information gains from

observations taken from specific viewpoints. Second, we propose a reward

function that incorporates both geometric and semantic probabilistic

information provided by a DCNN for semantic segmentation that operates in

close to real-time. The incorporation of semantics in the environment

representation enables biasing exploration towards specific object categories

while disregarding task-irrelevant ones during path planning. Experiments in

both a virtual and a real scenario demonstrate the benefits on reconstruction

accuracy of using semantics for biasing exploration towards task-relevant

objects, when compared with purely geometric state-of-the-art methods.

Finally, we present a unified approach for the selection of the number of

cameras on a UAV, to optimize the balance between power consumption,

flight-time duration, and exploration and mapping performance trade-offs.

Unlike previous design optimization approaches, our method is couples with

the sense and plan algorithms. The proposed system and general formulations

can be be applied in the mapping, exploration, and inspection of any type of

environment, as long as environment dependent semantic training data are

available, with demonstrated successful applicability in the inspection of dry

dock shipyard environments.
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1 Introduction

UAVs deployed in natural, industrial and urban contexts are

challenged with increasingly complex scenarios and tasks.

Deciding which regions of the environment to cover during

visual search and mapping tasks is computationally demanding.

Therefore, UAVs should be equipped with efficient active

exploration mechanisms that for improved visual search for

objects of interest while building detailed semantic maps of

the scene and avoiding the potential computational overload

of processing irrelevant sensory information. They also should be

equipped with an appropriate number of sensors that take into

account increased mapping performance and battery constraints.

This article is focused on multi-camera drone design, as well as

on developing autonomous navigation and environment

representations for inspection applications focused in shipyard

scenarios using flying multi-camera systems. The use of

autonomous UAVs in inspection tasks can improve efficiency

and task-execution speed without compromising quality. This

work addresses the implementation and evaluation of the

viability of multi-camera autonomous platform for inspection

tasks.

High visual coverage for improved mapping and navigation

can be obtained using a single drone with multiple cameras at the

cost of augmented payload and additional computation power. In

this work, we propose a systematic solution for autonomous ship

inspection tasks using a single multi-camera UAV, that uses

state-of-the-art simultaneous localization and mapping (SLAM)

techniques with cost-efficient NBV exploration algorithms to

efficiently label and geometrically reconstruct all objects in

shipyard environments using a novel utility function that

balances exploration and exploitation, using both geometric

and semantic probabilistic information (see Figure 1).

Semantic information is useful to bias exploration towards

specific known object types.

We propose a full integrated approach for autonomous

exploration and mapping that considers design, sensing, and

path planning of multi-camera UAV system, in a coupled

manner. Our mapping system is targeted at multi-camera

UAVs, includes probabilistic semantic-metric mapping

representations, and uses a path planning algorithm that

considers both semantic and geometric information for

autonomous environment reconstruction. Our target

application is the inspection of vessel structures in shipyard

environments, requiring minimal human intervention.

Our method relies on an efficient probabilistic observation

model for depth and semantic information that allows fast

computation of probabilistic measurements and continuous

Bayesian fusion on probabilistic metric-semantic grid mapping

structures,A environment representation that facilitates Bayesian

fusion, in memory-efficient 3D encoding volumetric and

semantic information provided by consumer-grade RGB-D

sensors and state-of-the-art DCNNs for 2D scene semantic

segmentation. A real-time, path planning approach that

considers both geometric and semantic probabilistic

information, in a receding-horizon probabilistic fashion, using

rapid random trees (RRTs). Our flexible method allows biasing

exploration towards specifically known object classes, while

avoiding task-irrelevant ones. Our main contributions with

respect to our previous work ? are:

1. An extensive evaluation on the trade-offs of using multi-

camera UAVs, from a power consumption, computational

and exploration and mapping performance perspective.

2. Design decisions for the selection of the number of cameras

on a UAV, based on power consumption, flight-time

duration, and exploration and mapping performance

constraints and trade-offs. To our knowledge this study is

of the utmost importance for resource constrained unmanned

applications, and this work is the first assessing the former

problem trade-offs on an UAV application scenario.

Our probabilistic observation model approximates the 3D

covariance matrix by its principle component, corresponding

to the predominant axial noise. This allows fast probabilistic

fusion of 1-dimensional noise in 3D grids. Unlike previous

FIGURE 1
A UAV platform endowed with a multi stereo camera system for autonomous drone navigation applications. (A) The proposed design is general
enough to easily attaching a total of 5 stereo vision cameras around the UAV frame (i.e., front, left, right, back, bottom) for (B) high field-of-view RGB-
D and semantic visual analysis. (C) Live-mission image of an autonomous UAV dockyard inspection task using our (D) semantic-aware receding
horizon path planner and volumetric-semantic mapping representation.
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RRT based planning methods, our hybrid approach accounts

for both semantic and geometric data, using information

theoretical principles, and prioritizes attention to high

entropy regions. The reminder of this article is structured

in the following manner: first, in Section 2, we revise state-of-

the-art works on semantic and geometric environment

representations as well as NBV planning algorithms for

autonomous mapping and robotics applications. Then, in

Section 3 we describe in detail the proposed methodologies

for autonomous exploration. The results in Section 4 evaluates

the solutions for autonomous mapping and navigation, in a

realistic simulated shipyard environment. Finally, discuss our

main contributions, limitations of our methods, and future

improvements in the final conclusions section.

2 Related work

Environment representations and active vision

methodologies for autonomous exploration and mapping used

in navigation applications are thoroughly evaluated in the

remainder of this section.

2.1 Drone applications

Today, there exist numerous of different applications for

aerial drones. Among those are the maritime industry Chamoso

et al. (2014), agriculture Mogili and Deepak (2018), traffic

surveillance Bozcan and Kayacan (2020), and construction

management Li and Liu (2019).

Collaborative operation of a set of UAVs was proposed for

detecting oil spills in the sea Chamoso et al. (2014). Within

precision agriculture problems, crop monitoring, crop height

estimations, and pesticide spraying are some of the most

important tasks. In the work Mogili and Deepak (2018) the

authors state the various important components embedded in the

UAV, such as IMUs for measuring angular rates and forces, a

magnetometer to measure the magnetic field, GPS to provide

geo-location, camera to capture motion and objects, 2D Laser

scanners to capture the shape of objects, and barometer to

measure pressure.

In construction management logistics, on-site

constructions, maintenance, and demolition are

investigating in order to discover the potential optimization

in how UAVs can achieve cost-effective solutions and to cut

carbon emissions Li and Liu (2019). 3D models can be created

from 2D imaging data by aerial photogrammetry. Having a

generic solution across applications is of the utmost

importance since there are many different applications

tasks to be handled. However, when diving into different

applications, specific accuracy requirements require

customized solutions.

The low-level control of the UAVs is typically not in focus

when dealing with high-level autonomy in industrial

applications. A micro-controller based off-the-shelf solution is

normally chosen. High-level goals, such as way-points, have the

maximum latency budget and are sent to the low-level flight

controller. For instance, PX4 Meier et al. (2015) is a low-cost

standardized platform supporting ROS Quigley (2009), which is

a node-based multi-threaded open-source robotics framework

for deeply embedded platforms, adopted in this work.

2.2 Mapping representations

Visual mapping representations are essential long-term

memory mechanisms in robotics navigation tasks such as

inspection, as we target in this article.

2.2.1 Metric representations
The most used metric mapping representation in the

literature is called probabilistic 3D occupancy grids. These,

represent the environment as cells, each one having a binary

state representing occupied and free space, being popular for

autonomous navigation since access, memory use, collision

checking, and path planning can be made efficient through

the use of octree data structures Hornung et al. (2013).

Elevation maps Herbert et al. (1989) are a more compact

2.5D representation that encodes probabilistic height-levels on a

2D grid Michel et al. (2005), being convenient for legged

locomotion applications Gutmann et al. (2005). Nevertheless,

these are typically unsuitable for applications where the agent has

to navigate between objects at distinct heights (e.g., complex

infrastructures or natural environments). Multi-level surface

maps Triebel et al. (2006) overcome this setback by relying on

a list of heights for each cell. Despite being cheap in terms of

memory use, their main drawback resides on the impossibility of

explicitly distinguishing between unknown and free space, which

is essential for environment exploration and safe navigation

tasks. Recently, the idea of using continuous representations

in mapping has also attracted great attention in the robotics

community O’Callaghan et al. (2009).

2.2.2 Semantic representations
The methods for semantic segmentation existing in the

literature can be divided as follows. Methods based on 2D

grayscale or RGB images and methods based on RGB-D point

cloud data.

State-of-the-art methods for image segmentation are based

on deep-learning architectures Ronneberger et al. (2015); He

et al. (2017) that learn from large annotated datasets to regress

from 2D images to object masks that encode the layout of input

objects. Mask R-CNN He et al. (2017), for instance, extracts a set

of blobs from images, each associated with a class label, a

bounding box, and the object mask (i.e., segmentation). It
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combines ResNet He et al. (2016) or a Region Proposal Network

(RPN) Ren et al. (2017) backbone for feature extraction (which is

shared across the three stages) with a Fully Convolutional

Networks Long et al. (2015) for semantic segmentation, which

uses a per-pixel softmax and multinomial cross-entropy losses.

Semantic-metric representations attempt to combine both

geometric with semantically meaningful information Ashour

et al. (2020). Volumetric Convolutional Neural Networks

(CNNs) for 3D object classification and segmentation

Maturana and Scherer (2015); Zhirong et al. (2015); Charles

et al. (2017) are based on the idea of using CNNs on voxelized

structures. However, these representations are constrained by

their resolution and computational cost of expensive 3D

convolutions, being currently unsuitable for real-time

applications. In this work, we use BiseNet Yu et al. (2018) for

image semantic-segmentation since it is robust, fast and small in

size Hu et al. (2019), and easy usage, making it suitable for

perception applications running on embedded systems (e.g.,

UAVs) with low budget computational specifications. To

obtain a 3D representation in real-time, we fuse the 2D

semantic information provided by BiseNet with depth

measurements provided by consumer-grade RGB-D cameras,

which are efficiently fused in a probabilistic 3D octogrid structure

Hornung et al. (2013). Supervised training of deep neural

networks rely on the availability of large annotated data sets,

hand-labeled in a laborious and time consuming manner, which

may be impracticable for applications and machine learning

tools, requiring large data sets. Therefore, we explore the use

of synthetic data, generated in a realistic virtual environment to

overcome the reality gap.

2.3 Active perception

In this article, we tackle the problem of controlling the

viewpoint(s) of a sensor(s) to improve task performance. The

active vision problem is of the utmost importance in robotics

applications Scott et al. (2003); Chen et al. (2011), and has been

continuously redefined since the work of Aloimonos et al. (1988).

More specifically, our goal is to autonomously decide where to

next move a UAV at each point in time to improve task

performance, according to some criteria—in our case,

geometric and semantic mapping quality.

2.3.1 Next-best-view planning
NBV planning has been widely studied by the robotics

community and plays a role of primordial importance on

object reconstruction Hou et al. (2019), autonomous mapping

Isler et al. (2016), and safe navigation Brandão et al. (2020) tasks,

to name a few.

Existing NBV approaches Delmerico et al. (2018) may be

categorized as one of the following: Frontier and information-

driven planning. Frontier-based planners Yamauchi (1997);

Dornhege and Kleiner (2013) guide the cognitive agent to frontiers

between unknown and free space, which benefits exploration.

Information-driven methods rely on probabilistic environment

representations and select the views that maximize expected

information gains Delmerico et al. (2018) by using ray casting to

back-project probabilistic volumetric information on candidate views.

However, most existing approaches differ in the information gain

definition. One way of tackling the problem is to incrementally

compute and target a sensor at the next best view according to

some criteria (e.g., optimize reconstruction quality). For example,

Brandao et al. (2013) proposes a NBV algorithm that greedily targets

the gaze of a humanoid robot at points of maximum entropy along a

path. Other work proposes to use the average information-theoretic

entropy over all voxels traversed via ray casting Kriegel et al. (2015).

Such an approach has been further extended to include the

incorporation of visibility probabilities as well as probability of

seeing new parts of the object Isler et al. (2016). Recent work also

extends information gain with considerations of self-occlusion and

applies it to sensor scheduling Brandão et al. (2020).

Incremental techniques such as random tree sampling

LaValle (1998) build tree representations of space using

sampling. Such methods include Rapidly-exploring Random

Tree (RRT) methods, or their variants RRT* Karaman and

Frazzoli (2011) and RRT-Connect Kuffner and LaValle

(2000). Since considering all the possible views is

computationally intractable, RRT-based methods consider a

subset of all possible views at each planning step. The tree is

randomly expanded throughout the exploration space. In NBV

methods, a utility function is used during the expansion of the

tree to compute the expected information gain of sensor views

according to some criteria.

In the works closest to ours, of Bircher et al. (2018), the

authors propose a receding horizon “next-best-view” planner for

UAVs that computes a random tree in an online real-time

manner. The quality of each node in the tree is determined by

the amount of unmapped space captured by the path the sensor

makes until that location. A receding-horizon approach is then

used—at each planning step, the first edge of the best branch is

executed until the complete exploration of the environment is

achieved.

3 Methodologies

In the rest of this section, we describe the proposed system

and methodologies for active exploration and semantic-metric

mapping.

3.1 System overview

The proposed drone system for autonomous inspection is

depicted in Figure 2, and consists of a UAV built for mapping
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tasks, that comprises multiple cameras, Inertial Motion Units

(IMUs), and an altimeter (see Figure 9). Our navigation system

relies on an off-the-shelf visual-inertial SLAM system with loop

closing, and re-localization capabilities Mur-Artal and Tardós

(2017), which is fed with RGB-D data provided bymultiple stereo

cameras and IMUs measurements, for improved robustness on

self-motion tracking performance Bloesch et al. (2015).

Our probabilistic observation model that combines metric

and semantic visual cues, which are efficiently fused in a

volumetric octogrid structure Hornung et al. (2013), and a

NBV planner that uses both geometric and semantics for

exploration.

3.2 Multi-camera drone system design

In our CAD model, we attempt to minimize the weight to

achieve better flight performance and flight duration. At the same

time, we want to minimize the length of parts to avoid vibrations

while ensuring we can mount camera sensors in the location and

orientation we want. Camera sensors are attached to the quad

base frame (DJI F450), together with a battery mount for easy

battery change. We use Jetson Xavier NX as our onboard

computer and the Pixhawk 4 as the low-level flight controller

(see Figure 9).

The system utilizes a set of camera sensors

S � S1, . . . ,SNs{ } (1)

which are rigidly attached to the UAV body base frame B, and
whose poses are assumed deterministic and known from the

kinematics model.

3.3 Probabilistic volumetric-semantic
occupancy mapping

To represent the environment enclosing the autonomous

planning agent we consider a 3D uniform voxel grid structure.

Let m = {mi} be the environment map data structure, where each

voxel mi � {mo
i , m

s
i } with mo

i ∈ {0, 1} denoting a random

occupancy variable, and ms
i ∈ {1, . . . , Kc} a semantic variable

representing object class. Recursive Bayesian volumetric

mapping Thrun et al. (2005) is employed to sequentially

compute the posterior probability distribution over the map,

given sensor observations z1: t � {zo,11: t, . . . , zo,Ns
1: t ; z

s,1
1: t, . . . , z

s,Ns
1: t }

and sensor poses p1: t � {p1
1: t, . . . , p

Ns
1: t} obtained through the

robot kinematics model and an off-the-shelf SLAMmodule, from

time 1 to t

P m|z1: t, p1: t( ) � ∏
i

P mi|z1: t, p1: t( ) (2)

considering the occupancy of cells are independent. Updates can

be recursively computed in log-odds space Moravec and Elfes

(1985) to ensure numerical stability and efficiency using the

following iterative probabilistic sensor fusion model

L mi|z1: t, p1: t( ) � L mi|z1: t−1, p1: t−1( ) + L mi|zt, pt( ) + L mi( )
(3)

with

L .( ) � log
P .( )

1 − P .( )[ ]
where L (mi|zt, pt) represents the inverse sensor model, L (mi|z1:

t−1, p1:t−1) represents the recursive term and L (mi) the prior.

FIGURE 2
Overview of the proposed autonomous navigation system for localization and semantic-metric mapping of shipyard environments.
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Considering that the map is initially unknown, i.e. P(mi) = 0.5,

eliminates the last term of Eq. 3.

3.4 3D semantic segmentation

Our method for semantic segmentation relies on a DCNN

encoder-decoder segmentation network, named BiseNet Yu et al.

(2018), that receives RGB or grayscale images as input, and first

encodes the image information and then decodes it again, and

outputs a probability distribution over the known object

categories for each pixel (u, v).

BiseNet comprises two different branches. The spatial

pathway which encodes low-level information, and the context

one which mainly encodes high-level context information. A

Feature Fusion Module is used to fuse features from these two

paths. First, these are concatenated, and then batch

normalization is used to balance the scale of the features.

Finally, the concatenated features are pooled and re-weighted

using a weight vector.

In this work, we use BiseNet because it is compact, fast,

robust, and easy to use, being suitable for remote sensing

applications running on embedded systems (e.g., UAVs) with

low computational specifications Hu et al. (2019). For each

pixel (u, v), the network outputs a probability distribution

pc(u, v) ∈ PKc over the set of known classes C, where Kc

represents the number of known classes. For training

the network, we use the categorical Cross-Entropy loss

function

CE � −log esp∑C
j e

sj
⎛⎝ ⎞⎠ (4)

where sj is the CNN output score for the class j ∈ C, and sp the

positive class.

At run-time, the probability distributions over all classes and

image pixels, gathered with BiseNet, are fused with the

corresponding depth image, from known extrinsics, to obtain

a semantic point cloud (see Figure 3A). Each resulting point

cloud data point comprises geometric (3D), color (RGB), and

semantic (multi-class) information.

3.5 Efficient probabilistic sensor fusion
model

Our sensor depth noise model is based on the one proposed

in Nguyen et al. (2012), which considers that single point

measurements zot,k are normally, independent, and identically

distributed (iid) according to

zot,k|m, pt ~ N zo*t,k;Σo
t,k( ) (5)

with

Σo
t,k � diag σ lt,k, σ

l
t,k, σ

a
t,k( )

where zo*t,k denotes the true location of the measurement and σ lt,k
and σat,k represent the lateral and axial noise standard deviations,

respectively.

With the view of reducing computational complexity, we

consider that noise is predominant in the axial direction (σa≫ σl),

corresponding to the main component of the covariance matrix.

This assumption allows approximating the 3D covariance matrix

by a 1D variance and rely on cost efficient 1D cumulative

distributions, for efficient probabilistic Gaussian fusion on 3D

volumetric maps. For each measurement zot,k, we then update the

FIGURE 3
(A) Our architecture for 3D semantic segmentation. Sample training images collected in (B) Unreal Engine, (C) Gazebo, and a (D) real
environment, respectively.
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corresponding closest grid cellmi with the probability enclosed

within the cell volume approximated as follows

P mi|zot,k, pt( ) ≈ Fz zot,k +
δ

2
( ) − Fz zot,k −

δ

2
( ) (6)

where δ represents the grid resolution and Fz (.) the cumulative

normal distribution function of z, where the axial error standard

deviation can be approximated by a simple quadratic model

σat,k ≈ λa‖zot,k‖2 (7)

with λa being a sensor specific scaling factor. All other cells

belonging to the set of voxels traversed through ray casting (from

the origin to endpoint zoi ) are updated as being free with

probability Pfree. This approximation considers that map

resolution and perceptual noise have the same magnitude

while at the same time allowing to reduce the computational

burden of sensory fusion. The associated semantic measurements

zst,k, with probabilities given by P(zst,k|It, pt) � {P1, . . . , PKc} are
independently updated, according to

P ms
i,t|zst,k, pt( ) � ηP zst,k|It, pt( )P ms

i,t−1|zs1: t−1, p1: t−1( ) (8)

where η is a normalizing constant. The semantic probabilities can

be updated efficiently in log-odds space [Ls0, . . . , LsK], for each
class k and cell i according to:

Lsk ms,k
i,t |zs,k1: t, pt( ) � Lsk ms,k

i,t−1|zst−1,k, pt−1( )+
+ Lsk ms,k

i,t |zst,k, pt( ) + Lsk ms,k
i,0( ) (9)

where the inverse sensor model is given by

Lsk ms,k
i,t |zst,k, pt( ) � log

P ms,k
i,t |zst,k, pt( )

P ms,0
i,t |zst,0, pt( )⎛⎝ ⎞⎠ (10)

and where k = 0 represents the pivot class (e.g., the unknown

object class).

3.6 Semantic-Aware next-best-view
planning

The proposed receding horizon NBV planner is based on

Bircher et al. (2018). At each viewpoint, the planner generates a

set of rays R that end if they collide against a physical surface or

reach the limit of the map.

For a given occupancy map representing the worldm, the set

of visible and unmapped voxels from configuration ξk is Visible

(m, ξk). Every voxel mi in this set lies in the unmapped

exploration, and its ray does not cross occupied voxels. In

addition, it complies with the sensor observation model

(i.e., inside the Field of View (FOV) and maximum sensor

range). The expected information gain Gain(nk) for a given

tree node is the cumulative volumetric gain collected along

the rays cast from ξk, according to

Gain nk( ) � Gain nk−1( ) + G Visible m, ξk( )( )e−λcost σk
k−1( ) (11)

where nk is defined as the node k in the RRT, and G (Visible

(m, ξk)) is the local information gain obtained from the visible

and unmapped voxels in map m seen from configuration ξk
(i.e., pose of the camera at node nk). The original

TABLE 1 Semantic segmentation network performance on the
validation (AirSim) and test set (Gazebo).

Overall Acc Mean Acc FreqW Acc Mean IoU

Val 0.944 0.959 0.896 0.922

Test 0.977 0.965 0.955 0.930

TABLE 2 Dataset used for training and validating the semantic segmentation networks.

Total of images in dataset Total of images containing category

Total Real Simulation Sky Floor Ship Harbor
wall

Unknown

Train 58761 57 58704 42495 55066 42349 34048 41961

Val 131 131 0 121 128 102 126 130

TABLE 3 Dataset used for training (AirSim), validating (AirSim), and testing (Gazebo) our scene semantic segmentation network for shipyard
environments. The dataset specifications include the number of images and classes in each partition.

# of Images # Sky # Floor # Ship # Harbor wall # Unknown

Train 49648 35353 45833 35281 28406 34951

Val 9930 7088 9177 7027 5587 6953

Test 184 175 174 153 177 72

Frontiers in Robotics and AI frontiersin.org07

Pimentel de Figueiredo et al. 10.3389/frobt.2022.911974

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.911974


formulation of Bircher et al. (2016) defines the local

information gain as

G Visible m, ξk( )( ) � ∑
i

Ig mi( ) (12)

with

Ig mi( ) � 1 if P mo
i( ) � 0.5 i.e. unknown( )

0 otherwise (i.e. free or occupied){ (13)

Our approach main difference resides on the information gain

definition. It leverages both the volumetric and semantic

information entailed by each voxel. We model volumetric

entropy at each voxel mi as

Ho mi( ) � −P mo
i( )ln P mo

i( )( ) (14)
and the semantic entropy as a sum over per-class entropy

Hs mi( ) � ∑KC

k�1
Hs

k mi( ) (15)

with per class-entropy Hs
k(mi) equal to

Hs
k mi( ) � −P msk

i( )ln P msk
i( )( ) (16)

where P(msk
i ) is the probability of cell i being of class k.

We propose two different probabilistic information

gain formulations. The first alternative accounts only

for the occupancy information the voxel provides,

according to

Ig mi( ) � −Ho mi( ) (17)
The second formulation incorporates semantic constraints as a

weighted summation of the information gain per class, across all

voxels:

FIGURE 4
Pixel-level confusion matrix of our semantic network in gazebo and real-world images. (A) Gazebo (93% IoU score), (B) Real-world (76.6% IoU
score).

FIGURE 5
Scenario used for evaluation in (Gazebo/ROS) simulation.
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Ig mi( ) � Ho mi( )∑
k

ws
kH

s
k mi( ) ∑

k

ws
k � 1 (18)

where ws � [ws
1, . . . ,w

s
Kc
] corresponds to a user specified weight

vector, representing task-dependent class specific exploration biases.

As in Bircher et al. (2018), the path that is selected by the

UAV is picked by choosing the largest cumulative-gain node in

the RRT and executing the first segment of the path towards that

node in a receding-horizon manner.

Finally, compared to Bircher et al. (2018), instead of sampling

position and orientation uniformly in the RRT, we generate positions

uniformly but greedily pick the orientation that leads to the highest

gain from a quantized set of pre-defined number orientations.

4 Experiments

In this section, we perform a set of experiments in a realistic

virtual environment to assess the performance of the proposed

approaches in a UAV-based dockyard inspection scenario. All

experiments were run on an Intel® i7-10875H CPU with a

GeForce RTX 2080 graphics card.

4.1 Semantic segmentation

4.1.1 Semantic segmentation evaluation metrics
In order to access the performance of the image

segmentation module, we rely on the pixel accuracy Pacc(C)

metric:

Pacc c( ) � #TP c( ) + #TN c( )
#TP c( ) + #TN c( ) + #FP c( ) + #FN c( ) (19)

where true positive (TP), false positive (FP), true negative

(TN), and false negatives (FN) represent pixels classified

correctly as c, incorrectly as c, correctly as not c, and

incorrectly as not c, respectively.

4.1.2 Semantic datasets description

The dataset utilized for training our semantic segmentation

network is generated using a combination of Unreal Engine

4 Gestwicki (2019) and AirSim Shah et al. (2018) to create a

realistic virtual dockyard environment, and to extract images,

and the corresponding labels. Figures 3B–D shows examples of

generated images. On the top is the image captured from the

environment, and on the bottom the corresponding labeled

image.

The UAV used for recording the dataset contains five

cameras, four mounted on each side of the drone and one

on the bottom. These cameras generate images at 1Hz while the

UAV is performing the inspection route from different heights.

The environment consists of a shipyard comprising different

vessels with different textures, containers, cranes, and tiled/

concrete floor, as well as multiple objects (e.g., puddles of water)

scattered around on the floor. To increase the dataset

variability, shadows and illumination conditions are

dynamically changed based on the simulated daytime and

weather.

FIGURE 6
Example reconstruction evolution over NBV planning steps with our method. Octomap colored according to most height (A) and most likely
semantics (B).
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We quantitatively assessed the performance of our

BiseNet network model Yu et al. (2018)) for an input size

of 512 × 288. We show the performance on Table 1. In order

to assess the performance of our network in semantic

segmentation of vessel environments, we split the dataset

into two different cases. In the first case (see Table 2), we used

the AirSim dataset partition for training, and the Gazebo one

for validation and testing, with the end goal of assessing the

overall pipeline performance. In the second case (see Table 3),

we trained the network with both AirSim (99.9%) and real-

world labeled images (0.1%), with the ultimate goal of being

able to test the pipeline in a real shipyard environment. We

used less than 40% of the real images for training due to the

reduced size of the real labeled images dataset. We

hypothesize that performance in the real case would

significantly improve by increasing the real images dataset

size. Figure 4 shows the resulting confusion matrices for both

the Gazebo and Real environment test datasets. In the first

case, the network is able to successfully learn how to bridge

the domain gap between both simulation and real

environments, with high accuracy both in simulation

(93%) and real domains (76.6%). Furthermore, with only

57 (≈ 0.001%) real-world labeled training samples, we are

able to bridge the gap between AirSim and the real-world

environment, achieving an overall accuracy of 76.6 (see

Figure 4B). We hypothesize that accuracy would vastly

improve by using more real-world training samples and/or

domain randomization and adaptation techniques Dehban

et al. (2019). We note that the more robust classification

performance on the Sky, Floor, and Harbor wall is due to the

fact that color and shape properties have significantly less

variability and are known a priori when compared to the ship

and the “pivot” unknown classes. To improve this

performance gap, one would need to extend the training

dataset for this classes, by either randomizing color and/or

extending the shape portfolio in simulation, or by increasing

the variability of the real dataset.

In this work we opted to sacrifice accuracy to achieve low

memory consumption and fast computation, which were

required for deployment in a real system. Therefore we

have chosen BiSeNetv2, instead of other better performing

ones such as Mask RCNN. However, other similar

architectures such as HarDNet Hong et al. (2021) and

Chao et al. (2019), would be suitable alternatives, as

demonstrated in le Fevre Sejersen et al. (2021). We

emphasize that the main focus of this work was on using

probabilistic semantic information for NBV planning.

4.2 Multi-camera system evaluation

In order to be able to quantitatively and qualitatively

measure the performance of the proposed mapping and

planning approaches, a realistic shipyard environment (see

Figure 5) was created using the Gazebo simulator Koenig and

Howard (2004). The environment consists of a dry-dock

measuring 145 × 30, ×, 8 m, containing a crane,

FIGURE 7
Mapping occupancy performance temporal evolution of our NBV planning in simulation. Each iteration includes planning, act, and sensing
acquisition and fusion in the volumetric-semantic grid. (A) Per-method, (B) Per-class, (C) Per-camera.

TABLE 4 Average information gain per iteration step.

M = 1 M = 3 M = 5

Bircher et al. (2016) 15.2 34.5 72.19

Ours (geometric only) 23.9 39.5 82.2

Ours (geometric + semantics) 16.6 45.8 81.08
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1 container, and a dry dock. An intelligent, active mapping

algorithm should maximize task-related rewards, in this case,

information gathering, by focusing on rewarding viewing

directions. We constrain the UAV planner to output

positions within this volume since mapping and inspecting

the top of the UAV is time-consuming and costly from an

economical perspective. More specifically, time should not be

spent on mapping and inspecting parts of the ship that can be

mapped and repaired outside the dry dock since every hour in

the dry dock is extremely costly.

In our experiments, the occupancy probability threshold was

set toPocc= 0.7 and the axial noise standard deviation scaling factor

was set to λa = 0.005. In each experiment we let the observer collect

T = 2000 observations (i.e.sense, plan and act iterations). Each

experiment was repeated 10 times to average out variability in

different simulations due to the randomized nature of our

algorithm and non-repeatability influenced by multiple

simulation factors, including separate threads for Gazebo’s

physics and sensor generation, as well as non-deterministic

latencies involved in inter-process communication.

4.2.1 Performance evaluation metrics
We assessed our NBV planning for active and autonomous

exploration performance evaluation, using the following metrics:

• the temporal information gain (or temporal entropy

reduction):

Ig � − ∑
mi∈m

Ht mi( ) (20)

which is a performance metric of the knowledge regarding the

surrounding environment, gathered in the probabilistic

volumetric map m, up to time t.

Ig/T � 1
T
∑T
t�1

Igt (21)

When normalized by the number of planning steps it represents

the temporal average global information gain per step (i.e., motion

planning, sensor acquisition and insertion into the occupancy grid):

• amount of occupied cells (surface coverage)

SCt � ∑
mi∈m

1 Pt mi( )( ) (22)

which is a measure of task-completeness and quantifies the surface

covered during reconstruction, where Pocc represents a user specified

probability threshold of the volume being occupied.

SC/T � 1
T
∑T
t�1

Igt (23)

when normalized by the number of reconstruction steps it

represents the average surface coverage per step.

Finally, we evaluate the computational performance

(i.e., efficiency) of the methodologies by measuring sensor

fusion and planning times.

4.2.2 Receding horizon multi-camera geometric
and semantic NBV planning

We first analyzed the influence of different camera setups influence

in the trade-off between reconstruction accuracy, planning, and run-

timeperformance. For the number of cameras,we consideredM∈ {1; 3;
5}, placed on the front (1), sides (3), back, and bottom (5).

The map resolution was set to δ = 0.4m to cope with the task

requirements. The assessed map information was considered

within the bounds of the motion and planning workspace. We

compare the performance of our method to the state-of-the-art

NBV planning approach of Bircher et al. (2016).

TABLE 5 Average mapping computational times (ms) per iteration step.

Sky Floor Ship Harbor wall Unknown Total

Bircher et al. (2016) - - - - - 52.3

Ours (geometric only) - - - - - 55.6

Ours (geometric + semantic) (Uniform) 0 20.2 16 10 4 53.2

Ours (geometric + semantic) (Vessel Bias) 0 10.7 35.1 4.1 5 57.4

TABLE 6 Average occupancy per iteration step.

M = 1 M = 3 M = 5

Baseline Hornung et al. (2013) 43.3 121.5 203.7

Ours (geometric only) 80.2 170.3 290.9

Ours (geometric + semantics) 170.2 230.3 364.9

TABLE 7 Average computational times (ms) per iteration step.

Planning Mapping

Bircher et al. (2016) 70.3 43.3

Ours (geometric only) 82.2 41.2

Ours (geometric + semantics) 101.5 170.2
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Figure 6 shows a mapping process until full reconstruction.

Figure 7 demonstrates the advantages of utilizing multiple

cameras placed around the UAV. For this particular scenario,

on average, the use of multiple cameras not only improves

coverage quality but also time to full coverage. Full

environment mapping is achieved with around

1,600 iterations. As can be seen in Table 4 our semantically

informed planning method gathers more information per

iteration step, than the semantically agnostic method of

Bircher et al. (2016). Also, in qualitative terms, the use of

cleverly placed multiple cameras, reduce the number of holes

in the map and increases the surface area before full battery

depletion.

For evaluating the advantages of incorporating semantics we

considered two distributions for the class weights

C � Sky, Floor,Vessel,HarborWall,Unknown{ } (24)

An unbiased uniform one

wk � 0.25, 0.25, 0.25, 0.25, 0.25{ } (25)
to impose a purely geometric-driven exploration task,

uninformed to semantics, and a biased one to bias exploration

towards structures belonging to vessels

wk � 0.1, 0.1, 0.6, 0.1, 0.1{ } (26)

As seen in Table 5 biasing exploration towards specific object

classes improves task performance in terms of the mapping

accuracy for the class of interest (i.e., vessel). Figure 7B shows

resulting reconstructions in the simulated shipyard scenario.

Tables 6 and 7 compares the computational performance of

the different mapping approaches for a different number of

sensors and observation models. The results qualitatively show

that our observational model can obtain good mapping

performance compared to the one of Hornung et al. (2013).

4.3 Multi-camera drone system design

In order to select the most suitable camera configuration

for our autonomous flying system, we considered not only

time-to-full-coverage results in the previous section but also

measured battery power consumption across multiple designs

(i.e., different number of sensors) while hovering the UAV

FIGURE 8
Battery consumption profile.

FIGURE 9
The proposed final drone system design. (A) CAD Model, (B) Real prototype.
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with different numbers of cameras (for 5 different runs). As

can be seen in Figure 8, the power consumption

(proportional to lithium batteries voltage) increases with

the number of cameras. Higher total weight and

computational processing (including the full localization

and mapping system) lead to faster battery depletion.

Hence, although improved visibility and faster full

environment mapping coverage can be achieved with

more cameras (M = 5) when considering power

constraints and flight duration—which we show in

Table 8—M = 3 is a more appropriate design choice for

this use-case. The final drone design is shown in Figure 9.

4.4 Experiments with real-data

To validate our system design, we conducted a final

experiment in a real dry dock scenario (see Figure 10) located

in Fayard, Denmark. The selected multi-camera system design

comprised 3 cameras located on the front (Zed 2), left and right

(Zed minis) sides of the drone. We let the UAV explore the

environment until battery depletion. As can be seen in Figure 10

we were able to successfully build a geometric color map of the

dry dock environment, as well as extracting semantics in an

8 min flight. However, due to the impossibility of extracting

ground truth data, we were not able to assess the performance of

our method in terms of reconstruction accuracy.

TABLE 8 Hovering time until battery depletion (minutes).

Cameras M = 1 M = 3 M = 5

Flight Time 8.79 ± 0.86 8.17 ± 0.41 6.00 ± 0.99

FIGURE 10
Mapping task performed with our final system design. (A) The developed drone system navigating in a real shipyard environment, (B) Example
captured frames and corresponding semantic segmentation’s obtained with our system, (C) Color map.
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5 Conclusions and discussion

In this work, we proposed a complete solution for autonomous

navigation usingmulti-camera UAVs that incorporates probabilistic

semantic-metric mapping representations for receding horizon

NBV planning. The navigation algorithm leverages both semantic

and metric probabilistic gains in order to decide where to move the

UAV in order to optimize the visual data collection quality of vessel

structures in shipyard environments.

We proposed a probabilistic observation model for depth

information that allows fast computation of probabilistic range

measurements and continuous Bayesian fusion on probabilistic

volumetric grid mapping structures. Finally, we introduced a

real-time, receding-horizon probabilistic path planning approach

that considers both geometric and semantic probabilistic

information for planning, using RRTs. Our method is flexible

and allows biasing exploration towards specifically known object

classes. We assessed the proposed methodologies on a realistic

simulation environment (Gazebo) in a set of experiments and

demonstrated the benefits of the proposed pipeline for UAV-

based inspection tasks, in particular the trade-offs of using single

or multiple stereo cameras. To our knowledge, this study is of the

utmost importance for resource-constrained unmanned

applications, and this work evaluates the previous problem trade-

offs on a UAV application scenario. For future work, we intend to

explore sensor scheduling acquisition strategies, to decrease

computational load. Also, we intend to extend the semantically

informed approach to multi-UAV, and try the proposed

methodologies in different scenarios.
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