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Buzzwire tasks are often used as benchmarks and as training environments for fine motor
skills and high precision path following. These tasks require moving a wire loop along an
arbitrarily shaped wire obstacle in a collision-free manner. While there have been some
demonstrations of buzzwire tasks with robotic manipulators using reinforcement learning
and admittance control, there does not seem to be any examples with humanoid robots. In
this work, we consider the scenario where we control one arm of the REEM-C humanoid
robot, with other joints fixed, as groundwork for eventual full-body control. In pursuit of this,
we contribute by designing an optimal control problem that generates trajectories to solve
the buzzwire in a time optimized manner. This is composed of task-space constraints to
prevent collisions with the buzzwire obstacle, the physical limits of the robot, and an
objective function to trade-off reducing time and increasing margins from collision. The
formulation can be applied to a very general set of wire shapes and the objective and task
constraints can be adapted to other hardware configurations. We evaluate this formulation
using the arm of a REEM-C humanoid robot and provide an analysis of how the generated
trajectories perform both in simulation and on hardware.
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1 INTRODUCTION

The buzzwire task is an agility based task where one holds a wire loop that encloses a long metallic
obstacle, with the goal of moving the loop from one end of the obstacle to the other end without the
two colliding. The name buzzwire refers to the electric version of the setup where each contact
between loop and obstacle closes a circuit and results in a buzzing sound. Electric and non-electric
variations of the buzzwire task are often incorporated into games for children (Köcher and
Holzmüller, 2019), but they are also used as tests and training environments of motor skill and
coordination (Budini et al., 2014; Bloch et al., 2015; Mann et al., 2018). The task can also be taken
from a competitive standpoint, where one attempts to complete the task as fast as possible, as was
featured in the 2016 Cybathalon (Degeler, 2016) as part of the prosthetic hand competition.

The buzzwire task has seen some implementations in the realm of robotics as well. Dorussen
(2021) applied reinforcement learning on a fixed robotic arm to learn how to navigate the obstacle.
Another work by Meyes et al. (2018) used the task as a basis for training a deep reinforcement
learning policy. The task was featured in the work by Žlajpah (2017) to demonstrate a method of
orientation control based on the task space of a two-arm robot. Žlajpah and Petrič (2019) again
investigated the task from an admittance control perspective where a human guides a fixed arm to
complete the task. More generally, tasks like the buzzwire task are important to the field of robotics
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because the precise motions that are required are applicable to
many different high precision scenarios such as manufacturing
tasks (Olsder and Suri, 1980; Pepyne and Cassandras, 2000; Xie
et al., 2020). Optimal control provides a powerful framework for
solving tasks that require high precision in a generalizable
manner. There are many examples in the literature of optimal
control problems that are designed to generate or implement a
path constrained trajectory (Bobrow et al., 1985; Constantinescu
and Croft, 2000; Verschueren et al., 2016; Shen et al., 2018).
Among the different approaches, direct multiple shooting (Bock
and Plitt, 1984) remains a reliable way of solving these problems
(Diehl et al., 2006).

To our knowledge, there are no examples in the literature of
humanoid robots accomplishing the buzzwire task. In our
scenario, we consider the control of the arm of the REEM-C
robot as groundwork for future full body buzzwire tasks.
Therefore, the contribution of this work is:

• The formulation of an optimal control problem (OCP) that
generates trajectories offline by way of parameterizing the
obstacle shapes and formulating mathematical constraints
to characterize the collision criteria between the obstacle
and the end-effector loop via coplanar constraints. The OCP
has an objective function that controls the trade-off between
completing the task quickly and making the end-effector’s
path more robust to collision. Such trade-offs are of
particular importance to strike in a humanoid context
where there are greater disturbances, due to stabilizers
and positioning, compared to a stationary arm.

• We validate the proposed method on three different
obstacles. By summarizing the results among different
variable initializations, we show that our constraint
formulation generates trajectories that run without
collisions and demonstrate how the terms of the
objective function can control the trade-off between total
time and robustness to collisions.

• We evaluate and discuss the discrepancy between playing
the trajectories on hardware versus simulation. We also
identify challenges that come from performing the task on
the hardware and discuss strategies to alleviate the issues
that will be pursued in future work.

2 METHODS

In this work, we use the humanoid robot REEM-C “Seven” that
we have in our lab at the University ofWaterloo. The humanoid is
manufactured by PAL Robotics, Barcelona, Spain. Using its Hey-
5 hand (Catalano et al., 2014) it firmly grasps the end-effector
containing a copper loop, as shown in Figure 1.

2.1 Modeling the Robot
We model the motions of the robot arm holding the loop end
effector as a rigid-body 7-DoF articulated manipulator whose
equations of motion can be written as the system of ordinary
differential equations (Siciliano and Khatib, 2016):

M q( )€q + C q, _q( ) _q + g q( ) � τ, (1)

FIGURE 1 | REEM-C grasping the loop end-effector and moving it along the buzzwire obstacle with an illustration of the end-effector intersecting the obstacle. The
loop plane circle is in gray, with the centre, κ(q), and normal, κ′(q), in green. The reference point, at position ϵ(β), and the tangent, ϵ′(β) (in red) move along the wire. In the
top right corner, the left arm of the REEM-C is pictured with joint axes labelled J1 through J7.
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where the vector q ∈ R7 is the joint positions, _q ∈ R7 is the joint
velocities, €q ∈ R7 is the joint accelerations, M(q) ∈ R7×7 is a
positive definite mass matrix, C(q, _q) ∈ R7×7 is a matrix of
centrifugal and Coriolis effects, g(q) ∈ R7 is a vector of
gravitational terms and τ ∈ R7 is a vector of joint torques
applied by the manipulator’s actuators. Coulomb friction and
viscous friction are neglected in these equations of motion. Note
that the low-level controllers for the REEM-C are kinematically
driven, so joint accelerations are the primary input for the
problem while the limits on joint torques are verified in the
constraints to ensure that the motors can perform the motion.

We define the function κ(q) ∈ R3 as the centre position of the
loop end-effector following from the robot’s kinematics
(including the loop end-effector tool) and κ′(q) ∈ R3, ‖κ′(q)‖2 �
1 as the normal vector that is perpendicular to the 2D plane the
loop is aligned with.

2.2 Wire Obstacle Parameterization
We assume that the obstacle is represented with cubic splines that
interpolate among a set of discrete control points along the shape
of the obstacle. The splines are parameterized according to
normalized arc length, β, so that β = 0 is the start of the
obstacle and β = 1 is the end. This has an advantage over
directly parameterizing the obstacle with respect to time
because it allows the solver to adjust the rate of traversal of
the obstacle so it can adapt to different segments. So, for example,
it can slow down at tight corners and speed up on easier straight
segments. Therefore, the function ϵ(β) ∈ R3 describes the
Cartesian coordinates of the points along the obstacle, while
the function ϵ′(β) ∈ R3, ‖ϵ′(β)‖2 � 1 is the normalized tangent
vector of the obstacle at β. We further parameterize βwith respect
to time, along with taking its first ( _β) and second (€β) derivatives
as additional control variables.

2.3 Optimal Control Formulation
Letting tf be the total time taken to execute the trajectory, our
optimal control problem is summarized by the following non-
linear program (NLP):

t
f,€q,€β

tf + ∫tf

0
α‖κ q t( )( ) − ϵ β t( )( )‖2 − ]κ′ q t( )( )⊤ϵ′ β t( )( )[ ]dt{ }

(2)
such that

€q � _q

dt
, _q � q

dt
, €β �

_β

dt
, _β � β

dt
(3)

qmin < q t( )< qmax (4)
_qmin < _q t( )< _qmax (5)
€qmin < €q t( )< €qmax (6)

q
... min < €q t + Δt( ) − €q t( )

Δt < q
... max

(7)
τmin < τ q t( ), _q t( ), €q t( )( )< τmax (8)

_q 0( ) � 0, _q tf( ) � 0, β 0( ) � 0, β tf( ) � 1, _β t( )≥ 0.0 (9)
−δ < κ′ q( )⊤ κ q( ) − ϵ β( )( )< δ (10)

‖κ q t( )( ) − ϵ β t( )( )‖2 < ρ (11)
κ′ q t( )( )⊤ϵ′ β t( )( )> μ. (12)

In the spirit of the agility task, the objective, Eq. 2, is
designed to minimize the time taken to complete the task,
with auxiliary terms, which will be explained below, that
allow tuning the trajectory for robustness. The system
dynamics are described by Eq. 3. As Eq. 3 takes the form
of ordinary differential equations, they are actually
implemented via their closed form quadratic formulas
between the time step Δt (e.g., qi+1 � qi + _qiΔt + 1

2€qiΔt2).
The constraints of the robot are included through Eqs
4–6, 8, which are the joint position, velocity, acceleration,
and torque limits of each of the seven joints. To
accommodate the non-instantaneous input response
(i.e., avoid bang-bang solutions), Eq. 7 adds jerk
constraints. Finally, Eq. 9 ensures that the joint motions
start and end at rest and the path parameter starts at 0 and
ends at 1 (restricting it from moving backwards in the
sequence).

A unique aspect of the buzzwire task is that the wire
obstacle must be contained within the loop end-effector
and ideally it should be centred. To relate the intersection
of the end-effector centre, κ(q), and the target obstacle point,
ϵ(β), Eq. 10 is added to enforce that these two points are
coplanar on the end-effector normal κ′(q), which would
normally be represented through the equation κ′(q)⊤(κ(q) −
ϵ(β)) = 0. Eq. 10 is given a slack of δ = 10−4 for numerical
purposes during optimization. Next, Eq. 11 is implemented to
ensure that the distance between κ(q) and ϵ(β) does not exceed
a certain threshold. Because κ(q) and ϵ(β) can be assumed to
be co-planar, Eq. 11 represents the distance of the two points
within the circle. We note that ρ cannot exceed the radius of
the circle, else a collision will occur. Figure 1 provides an
illustration of the points relative to the end-effector and the
obstacle. As an auxiliary optimization term, ∫tf

0
α‖κ(q(t)) −

ϵ(β(t))‖2 dt is added to the objective function Eq. 2 as an
option to reduce the euclidean distance to increase trajectory
robustness.

Another important aspect in this problem is constraining the
orientation of the end-effector relative to the obstacle. As the
normal vector of the end-effector, κ′(q), becomes orthogonal to
the obstacle tangent, ϵ′(β), the edges of the circular end-effector
get closer to the obstacle, reducing the tolerance to
perturbations that may lead to collisions as compared to
when the vectors are parallel. At the same time, some
amount of angular tolerance is required between the two
vectors to account for maneuvering around corners of the
obstacle. Taking this into consideration, Eq. 12 ensures that
κ′(q) and ϵ′(β) remain aligned so that κ′(q)⊤ϵ′(β) does not drop
below μ = 0.55 (i.e., the angle between these two vectors cannot
exceed 56°). Therefore, the objective function Eq. 2 contains the
term ∫tf

0
−]κ′(q(t))⊤ϵ′(β(t)) dt to bias the vectors to remain

parallel. While the auxiliary terms described above are used to
reduce the task-space errors, it is also possible to add similar
terms to reduce joint acceleration, jerk, or torque as well. This
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would have the effect of making the arm motions more smooth
and easier to run on hardware.

The joint limits qmin and qmax were taken from the URDF
(Unified Robot Description Format) provided by PAL Robotics.
The controllers on REEM-C bounded the joint velocity limits to
_qmin � −1.5 rad/s, _qmax � 1.5 rad/s. The acceleration and jerk
limits were determined experimentally. We found that the
hardware was much less generous than the limits specified in
simulation, with large errors occurring if the limits were left too
high. Likely, joint tracking errors and non-ideal step responses of
the actuators required the more conservative limits. Ultimately,

we found that €qmin � −1.0 rad/s2, €qmax � 1.0 rad/s2, q
... min � −2.0

rad/s3, and q
... max � 2.0 rad/s3 resulted in trajectories that were

suitable to run on the hardware. The torque limits τmin and τmax were
based on the effort limits provided by the URDF. For the problem
specific constraints, we chose ρ = 0.01 m, since remaining centred
along the wireframe is important to avoid collisions.

The optimal control problem (Eqs 2–12) is discretized using
the direct multiple shooting method (Bock and Plitt, 1984), where
each of the discretized shooting nodes were partitioned evenly
throughout the duration.We used a total of 100 shooting nodes in
our problem to ensure that the path constraints were

FIGURE 2 | (A) Frames from the optimized trajectory on Obstacle-A executed by the REEM-C arm in the Gazebo simulator (top row) and the same trajectory
executed on the full REEM-C humanoid hardware from a front view (middle row) and top-down view (bottom row). (B) Frames from the optimized trajectory on Obstacle-
B executed by the REEM-C arm in the Gazebo simulator (top row) and the same trajectory executed on the full REEM-C humanoid hardware from a front view (middle
row) and top-down view (bottom row). (C) Frames from the optimized trajectory onObstacle-C executed by the REEM-C arm in the Gazebo simulator (top row) and
the same trajectory executed on the full REEM-C humanoid in the Gazebo simulator from a top view showing the sine shape on the top portion of the wireframe
(bottom row).
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continuously satisfied. The number of shooting points has an
impact on both the accuracy of the solution and the
computational complexity. More shooting points will ensure
that the constraints are satisfied at more points of the
trajectory, but will also add additional variables to the NLP
and hence make the solver run for longer. We used the
CasADi framework (Andersson et al., 2019) to setup the NLP,
along with the Interior Point Optimizer (Wächter and Biegler,
2006) using the MUltifrontal Massively Parallel sparse direct
Solver (Amestoy et al., 2019, 2001). The Rigid Body Dynamics
Library (Felis, 2017) was used to compute the forward kinematics
(κ) and the inverse dynamics (τ), using RBDL-Casadi bindings
(Michaud et al., 2021) to ensure gradients could be calculated
through the kinematics functions for the NLP solver.

3 RESULTS AND DISCUSSION

With the optimal control problemdescribed, wewill now analyze the
solutions on three different obstacles. We first define the physical
setup for the problem, then discuss the implications of variable
initialization, analyze different configurations in simulation, and
finally compare the gap between simulation and hardware.

3.1 Physical Setup
Physically, the end-effector was made with 1.6 mm diameter
copper wire that protrudes 13 cm from the handle and is
tapered with a 5 cm radius circular loop. We designed three
obstacles for the end-effector to traverse. Obstacle-A, as shown in
Figure 2A, has a right angled arch-like structure, that is parallel to
the Y-plane, with each side length being 30 cm long. Obstacle-B,
as shown in Figure 2B, has a similar height, but has a radial arc
out of the Y-plane with a radius of 17.5 cm. Obstacle-C, as shown
in Figure 2C, is the most complex, consisting of a sinusoidal
pattern and additional bends out of the Y-plane. The cubic splines
for these obstacles and a video overview of the trajectories can be
found in the Supplementary Material. We constructed obstacles
A and B by bending the 1.6 mm diameter copper wire according
to printed projections of the structure. However, we did not
construct obstacle-C because the wire was not rigid enough to
support its out of plane bends; instead, obstacle-C was only
evaluated in simulation and therefore serves as a theoretical
benchmark. While the obstacles may seem simple from the
perspective of a coordinated human, one must take into
account the available workspace in the hardware. The REEM-
C arm has a workspace in front of the robot that has a volume of
about 40 cm × 40 cm × 40 cm. Consequently, the obstacles that
are present approach the limits of what the arm can do without
enabling full body motion.

3.2 Variable Initialization
One aspect that has an impact on the solution is the choice of
initial variables along the shooting nodes for the NLP solver.
We found that setting the joint positions to arbitrary values
(e.g., q = 0) resulted in the solver becoming stuck at infeasible
points (i.e., a point where the problem constraints are violated
and the solver cannot find a way to approach a point where the

constraints are satisfied). An inverse kinematics algorithm is
needed to initialize q to a configuration that is closer to
meeting the task space constraints to help convergence. But
there are challenges in transplanting IK solutions as
initialization points for the NLP. First, any joint
configuration that satisfies the task space constraints along
the obstacle is not unique. This is because the task is
constrained to 5 degrees of freedom (DoF) by way of the 3-
DoF euclidean constraint (Eq. 11), plus the 2-DoF orientation
constraint (Eq. 12), since the dot product still leaves rotation
about ϵ′(β) undetermined. As there are 7-DoF in arm, the IK
solutions cannot be unique. Second, is the challenge of
reachability in the choice of IK solution. If we take an IK
solution that satisfies the constraints at one point of the
obstacle, the ability to reach subsequent points on the
obstacle is not guaranteed to exist when we consider the
joint limits and the singularity conditions of the arm. As a
result of these notions, the solver may need to be restarted
with different initializations before it finds a solution.

We leverage the TRAC-IK inverse kinematics solver
(Beeson and Ames, 2015) to initialize q. Our strategy takes
the IK solution for β = 0 to initialize q at all of the shooting
nodes. We generate 50 different IK configurations by
randomly varying the unconstrained rotational DoF about
the axis of ϵ′(0), as described above. We observed that about
68 of 150 initializations converged while the remaining
became stuck at infeasible points. This is not a large issue
from the offline planning perspective this paper takes because
one can simply restart the procedure with a new IK
configuration. We also briefly examined using the RRT-
Connect Kuffner and LaValle (2000) path planning
algorithm to initialize the intermediate nodes. While the
initialized states were able to converge successfully, the
extra runtime needed for RRT-Connect to find a feasible
sequence of q made it uncompetitive compared to our
original approach. Having a method that can quickly
initialize the joints to a feasible state prior to optimization
will be useful for online trajectory generation and is therefore
a topic to explore in future work.

TABLE 1 | Summary of optimized trajectories over 50 different initializations. The
median time (tf) and 95% translation threshold (γ*) ± their interquartile range are
reported among the instances that converged. The p-values come from testing the
change of tf and γ* between (α=0, ]=0) to (α=30, ]=1) and (α=30, ]=1) to (α=150,
] = 5), using Mann-Whitney U tests, assuming a threshold of significance of 0.05.
The p-values were adjusted with Bonferonni corrections for the multiple tests done on
γ* and tf, respectively.

Obstacle α ν γ* (cm) p-value tf (s) p-value

A 0 0 0.036 ± 0.001 — 2.958 ± 0.079 —

A 30 1 0.040 ± 0.002 4 × 10−9 3.045 ± 0.169 4 × 10−2

A 150 5 0.045 ± 0.001 7 × 10−8 3.551 ± 0.013 7 × 10−8

B 0 0 0.034 ± 0.001 — 3.920 ± 0.021 —

B 30 1 0.038 ± 0.001 3 × 10−8 3.979 ± 0.047 1 × 10−5

B 150 5 0.039 ± 0.003 1 × 10−2 4.586 ± 0.048 7 × 10−9

C 0 0 0.027 ± 0.002 — 5.964 ± 0.063 —

C 30 1 0.031 ± 0.002 3 × 10−4 6.293 ± 0.303 1 × 10−5

C 150 5 0.034 ± 0.001 1 × 10−6 6.966 ± 0.487 9, ×, 10−5
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3.3 Simulation Summary
In our analysis, we compare the solutions between three
different versions of objective functions on each of the three
obstacles. The three configurations of the objective function
(Eq. 2) were one with (α = 0, ] = 0), that corresponds to the
time-optimal objective, another with (α = 30, ] = 1) that has a
moderate mix of reducing time and task space errors, and one
with (α = 150, ] = 5) that has a heavier emphasis on reducing
task space errors. The goal of this analysis is to determine
whether the proposed objective serves its purpose of allowing a
trade-off between minimizing time and reducing the chances
of collision with the obstacle. Table 1 shows the results in
simulation summarized over the 50 different initializations.
The trajectories were generated on a computer with an AMD
Ryzen 3700X CPU, with 32 GB of RAM on the Debian Linux
operating system. The median of the computational runtime to
generate the trajectories was 15 s for obstacle-A, 25 s for
obstacle-B, and 42 s for obstacle-C.

Of the problems that converged, we note that the median tf
increases as the obstacle gets more complex. Between the three
objective function configurations we observe that (α = 30, ] = 1)
have longer execution times than (α= 0, ]=0) and (α= 150, ]=5) are
longer than (α = 30, ] = 1), with statistical significance evaluated with
Mann-Whitney U tests, with the threshold of significance set to p =
0.05.While these effects are consistent, themagnitude differs between
the configurations. The (α = 30, ] = 1) configuration has a relatively
small impact on time, while (α = 150, ] = 5) is more substantial in
magnitude. The difference in time also varies among the obstacles. In
the simpler obstacles A and B, the change in median time is less than
a 10th of a second for (α = 30, ] = 1) and up to half a second for (α =
150, ] = 5). But for the more complex obstacle-C, we can see that the
change inmedian time grows to about three-tenths of a second for (α
= 30, ]=1) and one second for (α= 150, ]= 5).Ultimately, the impact
of this time trade-off will depend on how important it is to the task
versus the chances for collision.

In terms of measuring robustness of the trajectories, we want to
determine how much we can perturb the obstacle in the task space
before a collisionwould occur. In this sense, we play back each of the
solutions while randomly translating the obstacle by γ, a vector
between 0 and 5 cm, and record whether a collision occurs. With
1,000 trials of translating the obstacle by different γ, we take γ* to be
the maximum threshold of translation where 95% or more of the
playbacks run without collision. In Table 1 we can see that γ*
steadily decreases as the obstacle gets more complex. By
observation, the number of corners and tight turns, particularly
in obstacle-C, can substantially reduce the error tolerance for the
trajectory. As with time, γ* changes significantly as the ] and α
change in terms of Mann-Whitney U tests. With (α = 30, ] = 1),
there is a proportionally large increase in collisionmargin, with only
a small penalty in time. In contrast, we start to see diminishing
returns with (α = 150, ] = 5), where the time penalty becomes more
significant compared to the increase in collisionmargin. This shows
the impact of choosing the weights in the objective function
appropriately to balance the trajectory time with respect to
robustness to collision. In this scenario, we consider (α = 30, ] =
1) to be a suitable compromise.

3.4 Simulation-Hardware Comparison
We now experiment with running the trajectories on the physical
robot and compare how they differ from simulation due to the
limitations imposed by the hardware. We selected example
trajectories that were generated for all three obstacles using the α
= 30, ] = 1 configuration and played them on the REEM-C robot
holding the handle outside of the wire obstacles, averaging the results
over 10 runs.Figure 3A compares the euclidean error of κ(q) and ϵ(β)
between simulation and hardware, while Figure 3B shows the
angular offset between κ′(q) and ϵ′(β). While the orientation
corresponds rather closely, the hardware euclidean error deviates
from simulation, particularly for obstacles B and C, as the joints
struggle to keep up. One approach that could alleviate this is by
adding joint acceleration, jerk, or torque penalty terms into the
objective function, as suggested in Section 2.3, to make it easier
for the motors to keep up, particularly when hardware limits are
inaccurate. Future work will add these terms into the objective
function and weigh the trade-off between reducing acceleration/
jerk/torque, task space errors, and time minimization.

Despite this, the recorded hardware joint trajectory was still
verified to be able to run without collisions if the obstacles were
nominally positioned and constructed. A better analysis of hardware
joint limits will be conducted in the future to more accurately set the
constraints for the optimal control problem.

Finally, we ran the trajectories on the full physical setup with the
end-effector enclosed in obstacles A and B, as shown in Figure 2. The
obstacle formed an open-loop circuit so that if the end-effector made
contact with the obstacle, the circuit would close and illuminate an
LED. We were able to run the trajectories in both cases without
making contact with the wire for both obstacles, but there were a
number of challenges in getting these to work. As described in
Section 3.3, the obstacle and robot had to be placed very precisely,
with only a few centimetres of tolerance allowed before collisions
would occur. Even with careful measurements between the obstacle
and the robot’s base, variations in the joints of the legs and torso still
have a significant impact on the placement and orientation of the
shoulder. As mentioned above, inaccurate joint velocity limits meant
that the wrist joints were not entirely able to track the trajectories. The
loop on the end-effector needed to be oriented precisely to prevent
collisions. Also, because the copper wire was non-rigid, the loop
would oscillate during motion which could be a source of collisions.
Finally, the construction errors from handcrafting obstacles is
another difference from simulation.

In terms of extensions to other hardware configurations, our
formulation can generalize to any configuration that can grasp an
end-effector with a circular loop and have sufficient workspace to
follow the obstacle through the 5-DoF task space constraints.
Configurations with additional degrees of freedom will add to the
problem’s computational complexity via adding more problem
variables. Apropos of full body motion, the current formulation
makes the assumption that the robot remains stable during motion;
therefore extensions to full body motion will need to add additional
constraints to ensure that the robot does not topple. The use of
centroidal dynamics with full-body kinematics as in Dai et al. (2014),
could be an attractive way to utilize full-body motion in a
computationally feasible manner.
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4 CONCLUSION AND PERSPECTIVES

In this work, we have proposed an optimal control
formulation for generating trajectories to accomplish the
buzzwire task under a time-minimization strategy. The set
of constraints proposed in the formulation model the

limitations of the hardware and the criteria for collisions
of the end-effector on the obstacle. By adding auxiliary terms
to the objective function to reduce position and orientation
error, we allow a trade-off in terms of speed and robustness
from collisions due to disturbances in the hardware or the
setup. We demonstrate that this formulation is effective in

FIGURE 3 | (A) Euclidean distance between the end-effector centre and the target obstacle position throughout the simulated (red) and hardware trials (blue) for
obstacles A, B and C. (B) Difference in orientation between the obstacle tangent and the end-effector normal for obstacles A, B and C (simulations in green and
experiments in magenta). The dashed grey lines indicate the time when the end-effector is at the sharp bend of the obstacle.
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both simulation and hardware using the arm of the REEM-C
humanoid robot.

A goal of this work was to lay the foundation for completing
buzzwire tasks using the full body of humanoids. Therefore,
future work will involve extending the number of controllable
degrees of freedom to include the torso and legs. This would
include 1) allowing for motions of the upper body and legs
while standing, and 2) also allowing the robot to take steps and
accomplish traversing obstacles of arbitrary length. More
sturdy materials and precision will be needed in crafting the
obstacle and end-effector to reduce the discrepancy between
simulation and reality. The final extension would be
performing the buzzwire from arbitrary, non-preplanned
positions. This would need to have a very accurate system
for estimating the obstacle’s shape (e.g., vision with depth
sensing), as even a few centimetres of error will result in the
trajectory failing.
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