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In robotics, soft continuum robot arms are a promising prospect owing to their

redundancy and passivity; however, no comprehensive study exists that

examines their characteristics compared to rigid manipulators. In this study,

we examined the advantages of a continuum robot arm as compared to a

typical and rigid seven-degree-of-freedom (7-DoF) robot manipulator in terms

of performing various tasks through reinforcement learning. We conducted

simulations for tasks with different characteristics that require control over

position and force. Common tasks in robot manipulators, such as reaching,

crank rotation, object throwing, and peg-in-hole were considered. The initial

conditions of the robot and environment were randomized, aiming for

evaluations including robustness. The results indicate that the continuum

robot arm excels in the crank-rotation task, which is characterized by

uncertainty in environmental conditions and cumulative rewards. However,

the rigid robot arm learned better motions for the peg-in-hole task than the

other tasks, which requires fine motion control of the end-effector. In the

throwing task, the continuum robot arm scored well owing to its good handling

of anisotropy. Moreover, we developed a reinforcement-learning method

based on the comprehensive experimental results. The proposed method

successfully improved the motion learning of a continuum robot arm by

adding a technique to regulate the initial state of the robot. To the best of

our knowledge, ours is the first reinforcement-learning experiment with

multiple tasks on a single continuum robot arm and is the first report of a

comparison between a single continuum robot arm and rigid manipulator on a

wide range of tasks. This simulation study canmake a significant contribution to

the design of continuum arms and specification of their applications, and

development of control and reinforcement learning methods.
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1 Introduction

Robot manipulators are commonly used in various

applications. Among them, hyper-redundant manipulators

and continuum robot arms have potential applicability in a

wide range of applications, such as utilizing the degrees of

freedom of the body. However, controlling them is

problematic because of the softness of the material and

degrees of freedom; this makes their modeling difficult.

Dynamics models using machine learning have been

proposed in prior studies (George Thuruthel et al., 2017;

Thuruthel et al., 2017). Moreover, learning behavioral

strategies through reinforcement learning can reduce

human intervention in modeling and creating motor

commands. Accordingly, learning using reinforcement

learning can potentially solve the problem of soft robot

control by developing data-driven control methods (Bhagat

et al., 2019). Several studies have been conducted on reaching

tasks using reinforcement learning (You et al., 2017; Zhang

et al., 2017; Chattopadhyay et al., 2018; Satheeshbabu et al.,

2019; Fetchrobotics, 2020; Morimoto et al., 2021). However,

the research on soft robots and continuum robot arms,

especially with regard to reinforcement learning, depends

on the continuum robot arms owned by each research

group, and there is no investigation into comparison with

conventional “rigid” robots. In addition, the range of tasks

performed by soft robots through reinforcement learning is

more limited than that by rigid robots (Satheeshbabu et al.,

2019). Under these circumstances, it would be useful to

increase the number of tasks performed by the continuum

robot arms through reinforcement learning and to analyze the

characteristics of the continuum robot arms by comparing

them with rigid seven-degree-of-freedom (7-DoF) robot

manipulators, which are conventional rigid robot arms.

Furthermore, examining the reinforcement learning based

on the results is crucial.

Therefore, in this study, we analyzed the mechanical

characteristics of the continuum robot arms through

reinforcement learning while performing multiple tasks and

compared the results with those for a conventional rigid 7-

DoF robot manipulator. Furthermore, we propose a

reinforcement learning method for continuum robot arms

based on the results. In this study, the following four

reinforcement learning tasks were employed: reaching, crank

rotation, peg-in-hole, and ball throwing. This approach enabled

further investigation into learning and control, differently from

conventional robots to control, soft robots and continuum robot

arms in particular.

Here, there are two distinct cases in the context of soft

robotics: the case of soft body material itself, and the case of

stiffness of the actuator of a robot with rigid links, i.e., impedance

control of a robot with joints (Laschi and Cianchetti, 2014). This

study focused on the former.

2 Related works

2.1 Continuum robot arms

A continuum robot arm is one of the most typical soft robots

with a body that is flexible or connected by joints, such as ball or

hinge joints, similar to a snake or an elephant’s trunk. Unlike robots

with rigid links, a continuum robot arm can be bent and stretched at

any point (Walker, 2013). Additionally, research is being conducted

on robots that are mechanically similar to snakes and caterpillars

(Hirose and Yamada, 2009; Ishige et al., 2018, 2019; Liu et al., 2020),

for application in medicine as endoscopes (Ikuta et al., 1988) and in

disaster sites (Kumar Singh and Krishna, 2014).

2.2 Soft robot and modeling

Soft robots are less likely to harm people than rigid robots

because of their relatively low stiffness, and they are easier to

grasp because of their compliance and ability to deform and

compress. However, controlling a soft robot is often more

difficult than controlling a rigid robot, which is made of rigid

materials unlike a soft robot composed of soft materials. For

example, manipulators of soft robots have a problem of infinite

degrees of freedom because of their elasticity (George Thuruthel

et al., 2018). While most conventional bulky robots are directly

commanded by the motor of each joint, soft robots are

manipulated considering the nonlinear deformation and

elasticity caused by a movement (Wang et al., 2021).

The modeling of soft robots is usually accomplished either by

detailed analysis through simulation or by rigorously solving

approximate models mathematically while tolerating some

degree of nonlinearity. Some studies have combined these

methods with machine-learning or deep-learning methods to

improve their performance (Han et al., 2020). However, these

methods have several limitation, such as the inapplicability of

models based on Cosserat theory (Rucker and Webster, 2011) to

complex robots (Coevoet et al., 2017).

While the soft robot kinematics model can be approximated

by rigid robot models using links and joints, the dynamics and

contact model involves many parameters, and parameter

estimation is often difficult. Although some research exists on

obtaining the kinematics and dynamics of continuum robot arms

by means of compartmentalized constant strain models,

piecewise constant curvature methods, and other methods

(Hannan and Walker, 2003; Webster and Jones, 2010; Renda

et al., 2014; Escande et al., 2015), an approach different from that

for rigid robots is necessary to solve the control problems of soft

robots. In addition, some actuators have hysteresis that cannot be

neglected, such as pneumatic artificial muscles, and some prior

studies have modeled them (Zhang et al., 2019).

Therefore, data-driven control methods are considered

useful for soft robots because of modeling difficulty, and the

Frontiers in Robotics and AI frontiersin.org02

Morimoto et al. 10.3389/frobt.2022.895388

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.895388


application of reinforcement learning has been proposed (Bhagat

et al., 2019). Data-driven methods are often based on machine

learning and include sampling data by actually moving the robot

and modeling it using machine learning (Bruder et al., 2019;

Buchler et al., 2018; George Thuruthel et al., 2017; Giorelli et al.,

2015; Lee et al., 2017; Rolf and Steil, 2014; Thuruthel et al., 2017);

and learning directly implemented on the controller by moving

the robot and using reinforcement learning (Chattopadhyay

et al., 2018; Morimoto et al., 2021).

Implementing reinforcement learning to a robot controller

may fail if a command with excessive force is given during the

learning process. However, limiting high torque to prevent

breakage directly causes a narrow search range, which may in

turn cause problems that are particularly incompatible with

dynamic motion. While failure due to a high torque is a

major problem for rigid robots, the body of a soft robot can

absorb the vibrations caused by the high torque, and the softness

of its body can reduce the impact if its motion is close to the

prescribed limits. Therefore, soft robots and reinforcement

learning may be compatible (Büchler et al., 2020).

2.3 Continuum robot arms and
reinforcement learning

Much of the research on reinforcement learning for

continuum robot arms is aimed at performing specific tasks

using independently developed robots.

Investigations on reinforcement learning for continuum robot

arms using models include: research on reaching and tracking using

model-based reinforcement learning methods (Huang et al., 2018;

Thuruthel et al., 2019) using guided policy search (Levine and

Koltun, 2013); research using genetic algorithm (Goharimanesh

et al., 2020); and research using a model-free reinforcement

learning algorithm that learns and internally uses a forward

model (Centurelli et al., 2022). Model-based reinforcement

learning is feasible to some extent for continuum robot arms,

which can be modeled and are relatively simple in structure and

materials used. However, if the robot moves in 3D space or has a

large number of actuators, regardless of whether themodel is created

by humans or acquired by learning using data-driven methods, the

differences between the real and simulation robots increase, and the

learning is adversely affected (Morimoto et al., 2021). Therefore, for

selecting a reinforcement learning method that can be applied to

many continuum robot arms, a model-free reinforcement learning

method is preferable in which the robotmodel is neither provided by

a user nor the forward model acquired through learning.

There are many studies on reaching tasks using model-

free reinforcement learning algorithms. They range from

using continuum robot arms with one segment

(Chattopadhyay et al., 2018; Satheeshbabu et al., 2019,

2020) to two (Yang et al., 2019), three (Zhang et al.,

2017), and four (You et al., 2017) segments. There are also

other studies that use multi-agent reinforcement learning in

which each actuator of a multi-degree-of-freedom arm is

considered as one agent (Ansari et al., 2018; Perrusquía et al.,

2020; Ji et al., 2021). Furthermore, there are studies that use

reinforcement learning for the reaching component of the

hierarchical control of tasks involving interactions with

the environment of a continuum robot arm (Jiang et al.,

2021).

If focusing on the robot rather than the task, no study has

been conducted on continuum robot arms that simultaneously

considers the structure and characteristics of the robot. There are

studies that do not use reinforcement learning but learn to model

kinematics and design a robot’s shape (Xu et al., 2021), but such

studies end up focusing on the movement of the specific

continuum robot arm.

To summarize, existing reinforcement learning research on

continuum robot arms is essentially limited to the robots owned

by each research group. Furthermore, the tasks themselves are

mostly limited to reaching and tracking. Although there are cases

where loads are considered, there are no reports on general-

purpose tasks.

3 Experimental setup

3.1 Basics of reinforcement learning

In this paper, the following notations are used for

reinforcement learning.

The state space S and action space A are considered

continuous spaces. The number of time-steps in one episode

is T, and the time-step t at a given point is represented by the

discrete value for t ∈ [0, T]. The observation at a discrete timestep

t is denoted by st, and the command value output according to

the policy π(at|st) is denoted by at.

An immediate reward is given to an agent from the

environment according to the reward function rt = r (st, at).

The return Rt � ∑∞
k�0γkrt+k is the sum of the discounted rewards

from a time-step t using the discount factor γ ∈ [0, 1).

Furthermore, the cumulative rewards, representing the episode

rewards in one episode, are denoted by ∑T
t�0rt.

A Markov decision process (MDP) consists of (S,A, p, r),
where p is the state transition probability, and

p: S × S × A → [0,∞) is the probability density of the state

st+1 ∈ S for the next timestep t + 1, given the state st ∈ S of the

current timestep t and action at ∈ A.

3.2 Soft actor-critic

In this section, soft actor-critic (SAC) (Haarnoja et al., 2018),

the model-free reinforcement learning method mainly used in

this study, is described. SAC is an off-policy reinforcement
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learning method. Moreover, it is a maximum entropy

reinforcement learning method, which aims to improve

robustness by maximizing the entropy and improve sample

efficiency by using an off-policy method.

As SAC is a maximum entropy reinforcement learning, and

its objective function contains an entropy term, as showcased by

Eq. 1.

πp � arg maxπ ∑
t

E st ,at( )~ρπ r st, at( ) + αH π ·|st( )( )[ ], (1)

where H(π(·|s)) is the entropy term, and α is the temperature

parameter that determines the ratio of the entropy term to the

reward term and determines the stochastic degree of the policy in

outputting the action.

In SAC, the soft Q-function Qθ(st, at) and policy πϕ(at|st) are

considered, parameterized by the parameters θ and ϕ. In

addition, three objective functions are used in SAC.

The first objective function is given by Eq. 2, which is a parameter

of the soft Q-function to minimize the soft bellman residual.

JQ θ( ) � E st ,at( )~D
1
2
Qθ st, at( ) − r st, at( ) + γEst+1 ~ p V�θ st+1( )[ ]( )( )2[ ],

(2)
where D is the replay buffer, �θ is a parameter of target

Q-network, and

Vθ st( ) � Eat~π Qθ st, at( ) − α logπϕ at|st( )[ ] (3)

is the parameterized soft state value function.

The second objective function is an expression for the policy.

Jπ ϕ( ) � Est~D,ϵt~N α logπϕ at|st( ) − Qθ st, at( )[ ], (4)

where ϵt is a noise sampled from a fixed probability

distribution N .

The third objective function is related to the temperature

parameter, which is computed using the dual problem, and it is

given by Eq. 5.

J α( ) � Eat~πt −α logπt at|st( ) − αH[ ]. (5)

Notably, two Q-networks and two target Q-networks are

used to prevent bias in the policy update by preventing

overestimation of Q-values. The Q-network with the lower

Q-value is used in the calculation.

3.3 Continuum robot arm

3.3.1 Real robot of continuum robot arm
In this study, a pneumatic continuum robot arm that has the

same configuration as that proposed by Yukisawa et al. (Yukisawa

et al., 2018) was used. The robot consists of nine bellows actuators,

which are bellows-type pneumatic artificial muscles, referred to as

extensible pneumatic actuator with bellows (EPAB) (Yukisawa et al.,

2017). The actuator is composed of a rubber tube for realizing high

extensibility, a bellows-shaped tube covering the rubber tube for

limiting the elongation of the rubber in the longitudinal direction,

and parts for fixing the rubber tube and braided tube. Three

actuators are connected in parallel to form one segment, the

natural length of each segment is 23 cm, and three segments are

connected in series to form a robot. A continuum robot arm such as

this one using EPAB is a relatively standard configuration and is not

remarkably different from a suspended one using other actuators.

Unlike the McKibben-type artificial muscles, this robot stretches

without shrinking by utilizing compressed air. Compressed air of

0.35MPa is supplied from the air compressor, and the pressure is

adjusted by the valve to change the internal pressure of the actuator.

The compressed air is supplied via a 38 L air tank and four 550 ml

tanks to avoid pressure drop. There are nine actuators, one valve for

each actuator, and the internal pressure can be independently

controlled. One end of the robot is fixed and the other

suspended. The information that can be observed is the position

and velocity of points between the segments and an endpoint using

an OptiTrack motion capture system (Natural Point, Inc.), and the

internal pressure of each rubber tube using pressure sensors. In

addition, to verify if there is insufficient supply of compressed air, the

internal pressure just before air is supplied to each valve is also

observed.

The observation information of this robot has the following

36 dimensions: positions between segments (3 dimensions,

3 items), velocity of each point between segments

(3 dimensions, 3 items), inner pressure of each EPAB

(1 dimension, 9 items), and time derivative of inner pressure

of each EPAB (1 dimension, 9 items). Nine valves are controllable

and can be independently controlled.

3.3.2 Simulation of continuum robot arm
To simulate the robot, a robot model was developed using the

Multi-Joint dynamics with Contact (MuJoCo) (Todorov et al., 2012)

physics engine to mimic a real pneumatic continuum robot arm, as

shown in Figure 1A (Morimoto et al., 2021). The actuators of the

robot in this simulation are different because the real robot is

pneumatically driven, whereas in the simulation, cylinders are

used to drive the tendons, which are strings in MuJoCo. The body

of the robot is composed of EPABs, which are artificial muscles in the

real robot. However, each EPAB is replaced by 10 cylinders in the

simulation, which play the roles of mass, inertia, and contact.

For the geometric constraint, this continuum robot arm has

only one virtual body at the center of the three tendons in each

segment, and the distance from the center of the body is

constrained. Each cylinder has a fixed distance from the

center and forms a shape by being completely fixed to the

same cylinder that is attached to another tendon in the same

segment and in the same order counting from the end, similar to

a real robot. Moreover, each cylinder is fixed to a tendon to

reproduce a single artificial muscle. Considering the actuators,

the cylinders attached to each of the nine tendons can be
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independently controlled. Considering the degrees of freedom,

the robot can extend and rotate by connecting three fixed

cylinders with slide and ball joints, as shown in Figure 1B.

The range of motion of the robot is also shown in Figures

1C,D. In the simulation, the robot is suspended in the air

with its upper end fixed, similar to a real robot. Gravity

applies to the robot in the simulation in the same way that it

does in the real world.

The observation information of this robot has the following

36 dimensions: position of each point (3 dimensions, 3 items),

velocity of each point (3 dimensions, 3 items), length of each

tendon, which corresponds to the internal pressure of the EPAB

in a real robot (1 dimension, 9 items), and time derivative of the

length of each tendon (1 dimension, 9 items).

3.4 7-DoF arm robot for comparison

In this section, the rigid 7-DoF robot manipulator is

described, which is used for comparison to investigate the

characteristics of continuum robot arms. In this study, the 7-

DoF arm of Fetch robot (Fetch Robotics) (Wise et al., 2016) was

used as the 7-DoF arm robot for comparison. The model of the

continuum robot arm is such that its one end is fixed in space,

FIGURE 1
(A) Continuum robot arm model in the simulation. (B) Light blue objects represent the slide and ball joints. (C)Original length of each segment
and the length of each segment whenmost elongated by the actuator. (D) Examples of the posture when the actuator is operated are shown in black.
The red one is the original posture.
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and the model is suspended from it. To apply this condition to

the 7-DoF arm robot, a model hanging from the original space is

created based on the Fetch model (Figure 2A). This environment

is created by extracting the 7-DoF arm robot and part of the body

from the original environment, fixing them in the air, and

hanging them. Gravity applies to the robot in the simulation

in the same way that it does in the real world. It is not normal for

a 7-DOF arm robot to be fixed in a dangling position. The 7-DoF

arm robot can exert sufficient force to defy gravity. Therefore,

when considering kinematics and workspace, the situation is not

so different from that of an arm robot approaching a vertically

placed crank or hole. Therefore, this study concluded that there is

no change in the task’s difficulty when the 7-Dof arm robot

performs the task in a dangling position. The range of motion of

the robot is shown in Figure 2B.

The simulation environment for this robot is the model used

in the Fetch environment of OpenAI/Gym (Brockman et al.,

2016). To control the robot, position motors are installed at each

joint and operated to move the robot. The parameters for the

torque information and proportional gain are obtained from the

parameters used in the manuals (Fetchrobotics, 2020) and

mujoco-py (Ray et al., 2021).

For reinforcement learning, the joint angles and joint angular

velocities of the seven joints are used as the observation data. For

the controllable values, the position servo motors embedded in

the joints are used. Moreover, if a gripper is used, the position

servo motor for moving the gripper as well as the displacement

and velocity of the gripper are added to the observation data.

3.5 Description of tasks and environment

In this section, the original reinforcement learning tasks used

in this study and the environment for them are described. The list

of tasks and each element to be compared is shown in Table 1.

3.5.1 Reaching
Reaching is employed as a basic position-control task of the

robot. Experiments for this task were performed only on the

continuum robot arm.

In this environment, the objective was to get the robot’s

endpoints closer to the target point as quickly as possible.

Experiments in this task were conducted both on the real

robot and on the simulation model that imitates it. These

experiments were performed to demonstrate that

reinforcement-learning experiments in the simulation can be

applied to the real robot.

In this environment, the position of the target point

(3 dimensions) was added to the state space in reinforcement

learning. The number of time-steps for each episode, T, was fixed

at 300 steps and the episode did not terminate in the middle. The

period of the simulation was 2 ms. Additionally, the same action

was repeated 20 times, resulting in a policy time-step of 40 ms or

a frequency of 25 Hz. In addition, 334 episodes were conducted

for each experiment, that is, a total of approximately 100 k steps

of data were collected.

The target point for reaching was randomly determined

within a pre-determined area at the initialization of every

episode. The area consists of a cylinder with a height of 30 cm

and radius 30 cm, and a cone with a height of 30 cm above it. The

center of the bounding circle is below the fixed point of the

continuum robot arm. The bounding circle is horizontal to the

ground.

The reward function r(t) is defined as

r t( ) � −‖x t( ) − g t( )‖, (6)

where x(t) is the position of the tip of the manipulator at time-

step t, and g(t) is the position of the target point. Notably, x(t) =

(xx(t), xy(t), xz(t)), and g(t) = (gx(t) gy(t), gz(t)). Therefore, the

close the manipulator tip is to the target point, the higher is the

reward. Accordingly, if the tip of the manipulator approaches the

FIGURE 2
7-DoF arm robot hanging model. (A) The backward, leftward, and upward directions of the image are the positive x, y-, and z-axis directions
respectively. (B) Range of motion of the robot.
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target point as quickly as possible, the accumulated reward is

large.

In addition, this reward function only takes values less than

or equal to zero; therefore, the episode reward is negative. The

position of the manipulator, other than the tip of the

manipulator, is not relevant to the reward.

3.5.2 Crank rotation
Crank rotation is employed as a robot task related to classical

position control. In addition, an environment was created with

an obstacle between the robot and crank to investigate the effect

of the obstacle on learning.

This environment is an original environment as shown in

Figure 3. In this environment, the goal is to turn the crank at the

bottom of the robot as fast as possible in the same direction with

the robot arm hanging in the air. As shown in Figure 3C, a real

continuum robot arm can perform this task from a kinematic

point of view.

3.5.2.1 Setting up experiments in crank rotation task

The continuum robot arm is initially in the extended state

and hanging downwards. In the continuum robot arm

environment, the distance between the lowest point in the

initial state and disk of the crank was 17.5 cm if there was no

postural randomness as described below, and the distance

between the crank and upper end, which is the fixed point of

the continuum robot arm, was 1.0 m.

The initial state of the 7-DoF arm robot was set similar to

the original initial condition set by OpenAI. In the 7-DoF arm

robot environment, the distance between the fixed point and

disk of the crank was 1.0 m if there was no postural

randomness. As for the horizontal position relationship, the

axis of rotation of the disk was almost directly below the

lowest point of the initial state and almost directly below the

position of the uppermost link for the continuum arm and 7-

DoF arm robot, respectively.

The radius of the disk was 20 cm, and its height was 6 cm.

The orientation of the disk was such that the axis of the cylinder

was vertical to the ground. In addition, a handle was installed on

the disk. The handle was 3 cm in diameter, 40 cm in length, and

was fixed such that the axis of the handle’s cylinder existed at a

point 17 cm from the center of the disk. The axis of the handle

was fixed at a point 17 cm from the center of the disk and aligned

vertically with the ground.

TABLE 1 The list of tasks and elements to be compared.

Special characteristic Crank rotation Peg-in-hole Boll thorowing

Redundancy ✓ ✓ —

Anisotropy — — ✓
Precise control — ✓ —

Dynamic movement ✓ — ✓
Influence of the initial state of the robot ✓ ✓ (Not affected by initial state)

Impact of environmental clutter ✓ ✓ —

FIGURE 3
Crank model. (A) is continuum robot arm model, (B) is 7-DoF arm robot model, and (C) shows an actual continuum robot arm performing a
crank rotation task.
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3.5.2.2 Environment

In this environment, the position in 3-D space of the crank

(3 dimensions), rotation angle (1 dimension), and rotation

angular velocity (1 dimension) are added to the state space in

reinforcement learning. Notably, the gripper was not used.

The number of time-steps, T, for each episode was fixed at

1000 and the episode did not terminate in the middle. The period

of the simulation is 2 ms, and the same action is repeated

20 times, resulting in a policy time-step of 40 ms. In addition,

1000 episodes were conducted for each experiment.

The reward function r(t) at time-step t is defined as

r t( ) � _θ t( ), (7)

where _θ(t) is the angular velocity of the crank. A higher reward is

given for faster rotation of the crank in a particular direction.

There are no constraints to prevent the manipulator from

moving away from the handle or disk and no rewards to

encourage this.

In addition, a penalty term is not set for subtracting the

reward if the addition to the actuator is large. This is because, as

mentioned above, the need for penalty terms is smaller for soft

robots than for rigid robots. Additionally, penalty terms are not

introduced because they can inhibit learning.

3.5.3 Peg-in-hole
Peg-in-hole is adopted as a task related to classical robot

manipulation, which requires both position and force control.

Furthermore, similar to the crank rotation environment, an

environment was created with obstacles between the

robot and crank to investigate the effect of obstacles on

learning.

This environment is an original environment as shown in

Figure 4. In this environment, the objective was to insert a stick

attached to the end of a robot arm hanging in the air into a hole at

the bottom of the robot as quickly as possible. As shown in

Figure 4C, a real continuum robot arm can perform this task

from a kinematic point of view.

3.5.3.1 Setting up experiments in peg-in-hole task

A rod with a radius of 1.5 cm and length 10 cm was attached

to the end of the robot for both the continuum robot arm and 7-

DoF arm robot. A square plate of 40 cm length square with a

4 cm length square hole was located underneath the robot. Its

thickness was 10 cm, the same as the length of the rod.

The peg was fixed to the end of the continuum robot arm or

the end-effector of the 7-DoF arm robot. The orientation of the

peg was the same as the orientation of the tip of the continuum

robot arm or the end-effector of the 7-DoF arm robot.

In the continuum robot arm environment, the distance

between the plate and the lowest point of the robot was

17.5 cm. Additionally, the distance between the plate and

upper end of the robot, which is the fixed point of the

continuum robot arm, was 1.0 m. In the 7-DoF arm robot

environment, the distance between the fixed point and board

was 1.0 m if there was no postural randomness. Considering the

relationship of the horizontal positions, the hole was almost

directly under the lowest point of the initial condition and almost

directly under the position of the uppermost link for the

continuum robot arm and 7-DoF arm robot, respectively.

3.5.3.2 Environment

In this environment, the position of the hole (3 dimensions)

was added to the state space in reinforcement learning. The

number of time-steps for each episode, T, was fixed at 1000 and

the episode did not terminate in the middle. The period of the

simulation was 2 ms. Additionally, the same action was repeated

20 times, resulting in a policy time-step of 40 ms or a frequency of

25 Hz. In addition, 1000 episodes were conducted for each

experiment.

FIGURE 4
Peg-in-hole model. (A) is continuum robot armmodel, (B) is a 7-DoF arm robot model. The rightward, backward, and upward directions of the
board are the positive x-, y-, and z-axis directions, respectively, and (C) shows an actual continuum robot arm performing a peg-in-hole task.
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The reward function r(t) is defined as.

r t( ) � −‖x t( ) − g t( )‖ + I t( ), (8)
where

I t( ) � 1, |xx t( ) − gx t( )|< rh ∩|xy t( ) − gy t( )|< rh ∩|xz t( ) − gz t( )|< 0.1cm
0, else

{ ,

Where x(t) is the position of the tip of the rod attached to the

manipulator at time-step t, g(t) is the position of the deepest

part of the hole, and rh is the length of one side of the square

hole. Notably, x(t) = (xx(t), xy(t), xz(t)), g(t) = (gx(t) gy(t),

gz(t)). The first term on the right-hand side of the reward

function is the auxiliary reward such that the closer the stick

is to the hole, the more the reward is given. The second term

on the right-hand side is the success reward, which is given if

the stick goes deep into the hole. Accordingly, if the stick

approaches the hole as quickly as possible and goes deep into

the hole, the accumulated reward is large. Similar to crank

rotation, a penalty term is not set for this case

that subtracts the reward if the addition to the actuator is

large.

This setup results in the number of time-steps in one

episode, T, being fixed at 1000; therefore, the maximum

cumulative reward is 1000, and it never actually reaches

1000 because there is a negative reward for reaching as an

auxiliary reward. In addition, although two types of robots

were compared, the minimum time to reach the time-step t

(where I(t) = 1) is considered different because the properties

of the two robots are different; therefore, a comparison for the

maximum value of the cumulative reward is not strictly

possible.

3.5.4 Ball throwing
In this experiment, we investigated the effect of the properties

of continuum robot arms, such as direction dependence, on

reinforcement learning by performing a throwing task that

requires the robot to apply force to an object other than the robot.

This environment is an original environment as shown in

Figure 5. The goal of this environment is to throw a ball grasped

at the end of a robot arm hanging in the air as far as possible in a

specified direction.

FIGURE 5
Ball throwing model. (A) is continuum robot arm model, (B) is 7-DoF arm robot model, and (C) shows an actual continuum robot arm
performing a ball throwing task.
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3.5.4.1 Setting up experiments in ball throwing task

The continuum robot arm grasps the ball at the start of an

episode by bending the bottom segment, whereas the 7-DoF arm

robot is manipulated by two plates (grippers) attached to the end

of the robot that act as fingers and move independently by

actuators. As in the other environments, the upper end of the

robot was fixed and did not rotate; however, for the 7-DoF arm

robot, we created another environment in which the root can

rotate.

3.5.4.2 Environment

In this environment, the position (3 dimensions) and velocity

(3 dimensions) of the ball as well as the target direction vector

(2 dimensions) of the throw on the plane were added to the state

in reinforcement learning at a certain time t. For the 7-DoF arm

robot, information about its position (1 dimension x 2) and

velocity (1 dimension x 2) were added to the state space because a

gripper grasps the ball. Moreover, an actuator was added to the

action space for moving the gripper (1 dimension x 2). In

addition, a 7-DoF arm robot environment with a rotatable

root was created in this experiment to check the effect of

symmetry. In this environment, the joint rotation angle

(1 dimension) and rotation angular velocity (1 dimension) for

root rotation were added to the state space. Moreover, the

actuator (1 dimension) was added to the action space for

moving the joint.

The number of time-steps for each episode, T, was fixed at

150, and does not end in the middle of the episode. The

simulation period is 2 ms, and the same action is repeated

20 times, resulting in a policy time-step of 40 ms or a

frequency of 25 Hz. In addition, 5000 episodes are conducted

for each experiment.

The reward r(t) is defined as

r t( ) � bt − b0( ) · t, (9)

where bt is the ball position at timestep t, b0 is the initial ball

position, and t is the target direction vector from the initial ball

position of the throw. Moreover, a higher immediate reward is

obtained if the ball exists farther in the target direction.

3.5.5 Characteristics of each task

We believe that evaluating robots in the tasks focused on in

this paper will allow us to investigate the properties required for

arm robots. The Table 1 shows the characteristics of the robots to

evaluate in each task.

We first focus on redundancy as a property of continuum

robot arms. We can check the robot arm’s redundancy with

crank rotation and peg-in-hole tasks. The ball-throwing task

confirms the anisotropy of the robot. In addition, arm robot

locomotion can be static and requires precision or dynamic

movement; the peg-in-hole task evaluates precision control

performance. The ball-throwing and crank-turning tasks

assess dynamic locomotion. Crank rotations and peg-in-hole

confirm the effects of environmental clutter. We believe that the

task-focused in this study confirms many of the characteristics

required for a continuum robot arm.

4 Comparison of real robot and
simulation model

In this section, we confirm that the simulation model used in

this study can play a role in replacing the real robot. For this

purpose, reaching experiments were conducted with both the real

FIGURE 6
(A) Return of reaching. (1): the real robot, (2): the simulation model. (B) Reaching with a real robot using a learned policy. The red point is the
target point.
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robot and the simulation, and they were compared to confirm the

validity of the model.

4.1 Methods

A reaching environment was used in this experiment. SAC

was used as the reinforcement-learning method. The SAC

parameters are the same as in (Haarnoja et al., 2018). The

experiments with real robots used a single GeForce RTX

2080 Ti GPU and an Intel Octa-Core Processor i9-9900K

CPU. The learning method and environmental setup are

the same.

Only two experiments were conducted with real robots, and

30 experiments were conducted with simulations. In the

experiment using the real robot, time must be allowed

between episodes to fill the tank with compressed air and to

suppress the swaying of the continuum robot arm. Furthermore,

the rubber tube of the robot sometimes punctures, and its repair

also requires time. Therefore, it took approximately 20 h to

collect and train 100 k steps of data. Therefore, only two

experiments were conducted using a real robot.

4.2 Result and discussion

The experimental results are shown in Figure 6.

The final results and learning progress are different because

of the strictly different characteristics of the robots, but the trends

are similar. The mean final cumulative reward is −76.4 for the

real robot and −36.6 for the simulation.

This suggests that the simulation used in this study is useful

as an experimental environment that can substitute for a real

robot with a continuum robot arm. Therefore, subsequent

experiments will be conducted using the simulation to

improve the experimental efficiency.

5 Characteristic analysis of
continuum robot arms using
reinforcement learning

5.1 Methods

SAC was used as the reinforcement learning method. The

SAC parameters were the same as in (Haarnoja et al., 2018).

5.1.1 Setting up experiment to investigate effect
of randomness on learning

This section details the effects of randomness in the initial

state of the robot and environment on learning.

5.1.1.1 Randomness of environment

For environmental randomness, different randomness

criteria were considered for crank rotation and peg-in-hole.

For crank rotation, two randomness criteria were considered:

whether the initial angle of the crank handle is randomly selected

from a point on the circumference for each episode and whether

the position of the crank changes for each episode. The axis of

rotation of the crank did not change. If the initial angle of the

handle was randomly determined, the initial state rotation angles

of the disk and handle were determined by sampling from 360°

using a uniform distribution. If the position of the crank changes

FIGURE 7
Environment with obstacle. (A,B) are crank models. (C,D) are
peg-in-hole models. (A,C) are continuum robot armmodels. (B,D)
are 7-DoF arm robot models.
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for each episode, it was determined by uniformly sampling from

the area of a cylinder with a radius of 20 cm and a height of

40 cm. The orientation of the cylinder was such that its axis was

vertical to the ground.

Next, for the peg-in-hole, a random change was considered in

the position of the board with a hole for each episode. The

randomness was determined by uniformly sampling the area of a

cylinder of radius c ∈ {2, 5, 10 cm} and height c [cm] centered on a

reference point in the direction horizontal to the ground with

constant c.

5.1.1.2 Randomness of Robot’s state at initialization of

environment

The effect of randomness in the robot’s initial pose was

investigated to analyze the characteristics of a continuum robot

arm using reinforcement learning.

The randomness of the robot’s initial state was determined by

whether the initial angle and angular velocity of each joint in the

robot are randomized at the beginning of the episode in

reinforcement learning. For this randomness comparison,

three different environments were created in the experiment:

one without randomness, and the other two with different

degrees of randomness. The degree of randomness was set

differently for the continuum robot arm and the 7-DoF arm

robot, and the number of joints in the robot was considered so

that the degree of randomness is almost the same. To achieve this,

the range of the random sampling was set 10 times different for

the value used to determine the randomness, taking into account

the difference in passive degrees of freedom.

For the continuum robot arm, the randomness of each joint

was independently sampled from −0.001 to 0.001 for low

randomness and from −0.01 to 0.01 for high randomness,

using a uniform distribution. The values were added to the

default values using the arc degree method for ball joints and

centimeters for sliding joints. For the 7-DoF arm robot, the initial

angle of each joint was randomly sampled using a uniform

distribution independently from −0.01 to 0.01 for low

randomness and from −0.1 to 0.1 for high randomness. The

values were added to the default value using the arc degree

method.

FIGURE 8
Return of the crank rotation. (A) Continuum robot arm: no obstacle, no randomness of initial posture. (B) Continuum robot arm: no obstacle,
high randomness of initial posture. (C) 7-DoF arm: no obstacle, no randomness of initial posture. (D) 7-DoF arm: medium obstacle size, and high
randomness of initial posture. The legend indicates the position of the crank and initial angle of the handle: (1) random/fixed, (2) random/random, (3)
fixed/fixed, (4) fixed/random.
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FIGURE 9
Performing a crank rotation task according to an acquired policy. (A) continuum robot arm. (B) 7-DoF arm.

FIGURE 10
Return of peg-in-hole. (A) Continuum robot arm: no obstacle, no randomness of initial posture. (B) Continuum robot arm: no obstacle, high
randomness of initial posture. (C) 7-DoF arm: no obstacle, no randomness of initial posture. (D) 7-DoF arm: medium obstacle size, and high
randomness of initial posture. Randomness of a hole position: (1) nil, (2): low, (3): medium, (4): high.
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5.1.1.3 Setting up experiment to investigate effect of

obstacles on learning

An environment was created to check the influence of

obstacles by placing obstacles between the initial position of

the robot manipulator and crank in the crank rotation

environment as well as between the initial position of the

robot manipulator and hole in the peg-in-hole environment.

The situation is illustrated in Figure 7. As illustrated,

obstacles were placed at fixed positions in the

environment to observe their effects. The large obstacle

had a radius of 15 cm and height 6 cm. The medium-sized

obstacle had a radius of 10 cm and height 6 cm. The small

obstacle had a radius of 5 cm and a height of 6 cm. Note that

only crank rotation was set for the obstacles of intermediate

size. The obstacle floated 50 cm above the crank and the

board with the hole.

FIGURE 11
Results of throwing a ball experiment. (A) Continuum robot arm. (B) 7-DoF arm robot. (C) 7-DoF arm robot using a root joint. The legend
indicates the direction of the target.
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5.2 Result

In this section, the results of the experiments are presented.

Note that, the same type of experiment was performed 16 times,

each with different seed values.

5.2.1 Results and discussion of crank rotation
The experimental results in the crank rotation environment

are shown in Figure 8. Here, only the representative results are

shown. The results for all experimental conditions are provided

in the Supplementary Material. Figure 9 also illustrates the task

being carried out by the acquired policy.

From the experimental results of the continuum robot

arm in an obstacle-free environment, the cumulative reward

shows that crank rotation depends on the randomness of

neither the environment nor initial posture. However, for the

7-DoF arm robot, the cumulative reward does depend on the

randomness of the environment, which is the initial handle

rotation angle. Moreover, the speed of learning verifiably

slows down because of such randomness. This tendency is

also observed in the environment with obstacles, but the

dependency on the initial handle rotation angle of the 7-DoF

arm robot is more pronounced in the case with

obstacles, and the difference is larger. Additionally, the

reinforcement-learning results generally deteriorate if the

obstacle is large.

The reason the performance of the 7-DoF arm robot

deteriorates in terms of the cumulative reward for

reinforcement learning even in the case of a small obstacle

may be that the crank cannot be turned properly because of

the constraints of the robot configuration. In fact, the robot

appears to flick the handle if there is an obstacle present. In

addition, the performance drops significantly if there is a large

obstacle and the initial angle of the handle is random. This is

because it is difficult to turn the crank if the handle is not in a

place where it could be played well, whereas the popping motion

is acquired.

From the experimental results in an obstacle-free

environment, the continuum robot arm is more robust to

environmental randomness and less robust to the initial

posture of the robot. In contrast to the continuum robot arm,

the 7-DoF arm robot is less robust to environmental randomness

considering the position of the handle but more robust to the

initial posture of the robot. The effect of the randomness in the

position of the handle is the same as in the case of an obstacle.

The fact that the speed of convergence of reinforcement learning

slows down if there is randomness in the initial angle of the

handle for the 7-DoF arm robot may be because it requires more

precise control than the continuum robot arm for tasks that

require contact with objects. However, the continuum robot arm

may have been able to perform the task even if it moved slightly

imprecisely in tasks where it only needed to get a feel for the

environment by interacting with it.

For the 7-DoF arm robot, the cumulative reward is smaller in

the presence of small obstacles, and this significantly impacts the

learning performance. Therefore, the continuum robot arm is

proposed to be more suitable for position control in the presence

of small obstacles. However, if small obstacles are present, the

cumulative reward of reinforcement learning for the continuum

robot arm decreases significantly, whereas the effect on the 7-

DoF arm robot is smaller than that of the continuum robot arm.

This is because the 7-DoF arm robot successfully rotates around

large obstacles, while the continuum robot arm cannot.

Moreover, if the obstacle is large, the continuum robot arm’s

“inability to perform fine motion control” outweighs its “ability

to interact with the environment using its hands”.

5.2.2 Results and discussion of peg-in-hole
Next, the experimental results in the peg-in-hole

environment are shown in Figure 10. Here, only the

representative results are shown. The results for all

experimental conditions are given in the Supplementary

Material. All experiments were terminated with the same

number of samples. This is because, in this study, it was

sufficient to know the trend in each environment. Therefore,

it is not necessary to compare the final performance of the two

environments, and the comparison of learning speeds is not

needed.

From the experimental results in an obstacle-free

environment, the continuum robot arm is observed to be

considerably affected by the randomness of the environment.

The randomness of the initial state is also found to be more

susceptible if the randomness of the hole position is high.

Furthermore, if the randomness of the initial posture

increases, the tolerance to the randomness of the hole position

decreases. For the continuum robot arm, if the randomness of the

initial posture is high, the effect of the randomness in the hole

position for peg-in-hole is dominant, regardless of obstacles.

For the 7-DoF arm robot, the effects of initial posture and

hole location randomness are evidently negligible. In the case of

the 7-DoF arm robot, the cumulative reward is lower if there is an

obstacle, especially if there is no randomness in the initial

posture, indicating that the effect of the obstacle cannot be

ignored.

From the experiments in the environment without obstacles,

the cumulative reward evidently decreases if the initial posture of

the continuum robot arm is disorderly, unlike the crank rotation

environment. However, the ability to respond to obstacles is the

same as in the crank rotation environment.

In addition, the peg-in-hole task requires precise position

control and compliance control. The highest cumulative reward

is obtained if there is no environmental randomness in the 7-DoF

arm robot. Moreover, the equivalent cumulative reward is

obtained if there is no environmental randomness, indicating

that the rigid robot has an advantage over the soft robot in precise

control. However, if the environment is random, there are cases
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in which the continuum robot arm has a better cumulative

reward, indicating that the soft robot may be more suitable.

For peg-in-hole, reinforcement learning is achieved in the

presence of large obstacles although the performance of the

continuum robot arm is degraded because of the large passive

degree of freedom. This contrasts the case of 7-DoF arm robot,

which does not insert the stick into the hole at all. These results

indicate that passive degrees of freedom and redundancy are

effective for some tasks.

5.3 Results and discussion of ball throwing

The results of the throwing experiment are shown in

Figure 11. The results show the cumulative reward and

distance, i.e., the distance of the target direction vector from

the initial ball position to the landing point. For the continuum

robot arm, the results are almost the same, regardless of the

direction; however, for the 7-DoF arm robot, there is a difference

depending on the direction. In the environment where the root

does not rotate, the difference is larger than that in the

environment where the root can rotate, possibly because of

fewer degrees of freedom.

These results indicate that the continuum robot arm can

achieve similar performance for cumulative reward, regardless of

the direction; however, the 7-DoF arm robot is highly dependent

on the direction. Although the 7-DoF arm robot has redundancy,

some motions are observed to be easier than others, depending

on the joint arrangement, and the difference cannot be

completely prevented by rotating the root. Although this

aspect can be improved by statically rotating the arm

beforehand, the anisotropy may become a problem in end-to-

end learning. However, the continuum robot arm is less

dependent on the direction because of the symmetry of the

structure and is consequently more suitable for anisotropic tasks.

5.4 Discussion on characteristic analysis of
continuum arm using reinforcement
learning

The properties of the typical hanging type continuum robot

arm used in this study are discussed through a comparison with a

rigid 7-DoF robot manipulator.

The results of the throwing experiments indicate that the

continuum robot arm is more resistant to anisotropy than the 7-

DoF robot arm. However, this may be because of the symmetrical

structure of the robot used in this study. Additionally, such a

structure is easy to realize in the continuum robot arm.

From the experimental results in the crank rotation and peg-

in-hole environments, the rigid 7-DoF robot manipulator

performed noticeably well in the latter environment where

precise position control is required. However, in the crank

rotation environment, where some choice of action is allowed

and the aim is to rotate the crank, the continuum robot arm

performed particularly well if environmental randomness exists

for cumulative reward. This may be because the crank rotation

task can be performed by only applying force to the crank in a

specific direction, and does not require precise control while the

direction of force application is correct. For continuum robot

arm, the elasticity and continuity of the body makes it easy for it

to wrap around the handle and push it, as well as absorb the

randomness of the environment. Furthermore, since the reward

for turning the crank in this experiment is angular velocity and

not rotation angle, it is possible that the initial environmental

randomness does not affect the reward.

However, in the peg-in-hole environment, where position

control is required, the initial randomness negatively influences

learning. For the same reason, it is possible that the randomness

of the initial position and position of the hole in the peg-in-hole

environment significantly impact learning by considerably

affecting the task execution. However, the fact that this effect

is particularly significant for the continuum robot arm suggests

that it may be difficult to obtain a wide range of precise motions

by simple reinforcement learning.

The initial posture of the robot, obtained by the given clutter,

differs from that of a 7-DOF arm in that a continuum robot arm

contains many poses that cannot be reached by actuator

manipulation. This is due to the softness and redundancy of

the robot.

As for the initial state randomness, in real world, the

continuum robot arm itself may shake because of wind, the

task completed prior, or being lifted by human hands. We believe

these properties are responsible for the randomness of the

environment affecting the experimental results of the

continuum robot arm.

Reducing these effects may help facilitate learning; a simple

improvement method is proposed in the next section as well.

Referring to the characteristics in Table 1, we consider that

the continuum robot arm is superior to the 7-DoF arm in

redundancy and anisotropy. The results indicate that the 7-

DoF arm is highly effective for static precision control. On the

other hand, the results indicate that the continuum robot arm is

highly effective for dynamic movements, as demonstrated by the

ball-throwing task. The results differ depending on the task set

for the randomness of the initial state and the environment.

6 Proposed reinforcement learning
method based on results of
characteristic analysis

Based on the experimental results of characterizing a

continuum robot arm, the disadvantage of continuum robot

arm control is the unavoidable effect of initial state

randomness in an environment where precise position control
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is required. Considering the results, a method is proposed to

improve the performance of reinforcement learning in a

continuum robot arm.

6.1 Methods

In this section, a simple method is proposed to reduce the

effect of the initial posture randomness on the continuum robot

arm by adding a certain period of time for the arm to be in a

contracted state before the start of the episode. In this study, a

type of continuum robot arm that can be extended by applying

force to the actuators was used. Therefore, the command values

of all nine actuators were set to zero to reduce the randomness in

the initial posture by allowing a certain period of time without

any extension. In this experiment, this mechanism is called the

“reset phase.”

Continuum robot arm robots are susceptible to their own

initial state. Therefore, a reset phase to fix the initial state is

considered adequate. However, this reset phase resets its own

state and does not affect the randomness of the surrounding

environment, such as the target position.

The time to give the zero-command value was 500 steps in all

experiments, and because each time-step was 40 ms in all

environments, the time was 20 s.

SAC was employed as the reinforcement learning algorithm,

same as in the characteristic analysis. The rest of the settings were

also the same. Any reinforcement learning method can be

employed and does not have to be reinforcement learning

because of the characteristics of the operation.

FIGURE 12
Peg-in-hole using a reset phase for a continuum arm. Each of the three graphs has a different magnitude of noise in the initial posture. (A) No
randomness. (B) Low randomness. (C) High randomness. Randomness of a hole position: (1) nil, (2) low, (3) medium, and (4) high.

FIGURE 13
Crank rotation using a reset phase for a continuum arm. Each of the three graphs has a different magnitude of noise in the initial posture. (A)No
randomness of initial posture. (B) Low randomness of initial posture. (C) High randomness of initial posture. The legend indicates the position of the
crank and initial angle of the handle: (1) random/fixed, (2) random/random, (3) fixed/fixed, and (4) fixed/random.
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In this section, the peg-in-hole and crank rotation

environments were used without any obstacle using a

continuum robot arm. Additionally, the effects of initial

posture randomness were considered, same as in the

characteristic analysis.

6.2 Results

The results of the experiment are shown in Figures 12, 13.

Note that the same type of experiment was performed 16 times,

each with different seed values.

For the peg-in-hole environment, there is no difference in the

cumulative reward if there is no randomness in the initial

posture. Moreover, the randomness in the environment,

i.e., the location of the hole, is low compared to Figure 10,

which is the result of an experiment without a reset phase.

However, if the randomness of the hole position is high in the

absence of initial randomness or if the randomness of the hole

position is nil, low, or medium in the presence of initial

randomness, the reset phase improves the cumulative reward

obtained by reinforcement learning. In the same case, if the

randomness of the hole locations is particularly high, the reset

phase does not contribute to increasing the cumulative reward.

As for the crank rotation environment, the results without a

reset phase (Figure 8) show limited effect of initial posture

randomness, and the same is true for the present results.

In addition, the actual number of steps required for learning

in the simulation is 500 steps more per episode in the proposed

method, and we cannot deny the possibility that this is because of

the increase in the number of samples. An experiment with

1500 steps per episode was conducted to confirm that the

cumulative reward obtained as a result of reinforcement

learning is not larger because of an increase in the number of

samples. The corresponding result is shown in Figure 14. This

result clearly indicates that the learning performance does not

improve because of the increase in the number of samples.

6.3 Discussion

The proposedmethod aims to reduce the effect of initial posture

randomness, which is useful for the peg-in-hole environment, but

not for the crank-rotation environment. As mentioned earlier, peg-

in-hole requires precise position control to insert a peg into a hole,

whereas crank rotation requires only pushing a handle and tends to

require large motions. Therefore, the control required for crank

rotation is less precise than that for peg-in-hole in which the robot

uses the contact with the handle to touch it. Consequently, even if

the initial posture is random, the performance may be sufficiently

good for the cumulative reward of reinforcement learning. It is also

possible that the large amount of motion was absorbed by the

system. However, for peg-in-hole, precise position control is

required to reach the approximate position of the hole. In the

absence of a reset phase, the effect of the initial posture may cause a

decrease in the cumulative reward of reinforcement learning. These

results indicate that the continuum robot arm, which is one of the

soft robots, is not as good at precise position control as the 7-DoF

arm robot, which is a stiffer robot; however, eliminating the effect of

the initial posture randomness can improve the performance to a

certain extent.

This approach could also be helpful when applying control

models learned from simulations on soft robots to real robots. It has

the potential to improve robustness to disturbances such as load and

deviations between the simulation model and the real robot.

7 Conclusion

In this study, for the first time, multiple types of tasks were

performed by a single continuum robot arm in a simulation. The

performance of the continuum robot arm was comprehensively

examined for the first time by comparison with a rigid robot.

Furthermore, based on the results of this investigation, a method

for improving performance in reinforcement learning was

proposed.

We first verified if the simulation model created can

substitute for experiments on a real robot. Subsequently, the

characteristics of a continuum robot arm, a soft robot, were

analyzed by performing reinforcement learning on several tasks

and comparing it with a rigid 7-DoF robot manipulator made of a

rigid material in the simulation. Based on the results, a reset

phase was incorporated as a reinforcement learning method for

FIGURE 14
Result of peg-in-hole task with other conditions using a
continuum arm. The number of steps per epoch: 1500 (the
number of episodes: 1000). The legend indicates the randomness
of initial posture: (1) nil, (2) low, and (3) high.
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the continuum robot arm to improve its performance in tasks

that require precise control. Notably that the continuum robot

arm used in this study is one of the most common suspended

continuum robot arms compared to other robots driven by

actuators; therefore, it is an appropriate choice to study the

general properties of continuum robot arms.

To analyze the characteristics of continuum robot arms, four

tasks were performed using model-free reinforcement learning:

reaching, crank rotation, peg-in-hole, and throwing. The

comparison between the two types of robots demonstrated the

effects of environmental randomness as well as the randomness

of the robot’s initial posture, anisotropy, and behavior if there are

obstacles in space. The randomness of the initial posture and

presence of obstacles was observed to significantly impact the

reinforcement learning for the continuum robot arm. To the best

of our knowledge, no other study has investigated the

characteristics of reinforcement learning and continuum robot

arms in such a comprehensive manner. Moreover, no studies

have been found in which several different tasks were performed

using the same continuum robot arm through reinforcement

learning, as in this study.

The proposed reinforcement learning method that

incorporates a reset phase is particularly useful for tasks that

require precise control, and may be useful for controlling a

continuum robot arm that is not good at such tasks.

As for future work, although we performed reinforcement

learning of the continuum robot arm using multiple tasks, the

number of tasks is limited; therefore, verifying the results of this

study using a wide range of tasks is necessary. In addition, the

characteristics of the soft robot are not limited to those discussed in

this study; for example, viscoelasticity, the degree of redundancy, and

differences due to the drive source are some other aspects. Therefore,

further clarifying the characteristics of the continuum robot arm and

proposing a new reinforcement learning method may be achievable

by considering another characteristic. In addition, the continuum

robot arm is more suitable for tasks involving interaction with the

environment than the rigid 7-DoF robot manipulator; however, the

effects of obstacles on the continuum robot arm cannot be ignored.

Therefore, it is necessary to develop a method that can both reduce

the influence of obstacles and maintain tolerance to environmental

randomness.
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