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This work describes the design of real-time dance-based interaction with a humanoid
robot, where the robot seeks to promote physical activity in children by taking on multiple
roles as a dance partner. It acts as a leader by initiating dances but can also act as a
follower by mimicking a child’s dance movements. Dances in the leader role are produced
by a sequence-to-sequence (S2S) Long Short-Term Memory (LSTM) network trained on
children’s music videos taken from YouTube. On the other hand, a music orchestration
platform is implemented to generate background music in the follower mode as the robot
mimics the child’s poses. In doing so, we also incorporated the largely unexplored
paradigm of learning-by-teaching by including multiple robot roles that allow the child
to both learn from and teach to the robot. Our work is among the first to implement a largely
autonomous, real-time full-body dance interaction with a bipedal humanoid robot that also
explores the impact of the robot roles on child engagement. Importantly, we also
incorporated in our design formal constructs taken from autism therapy, such as the
least-to-most prompting hierarchy, reinforcements for positive behaviors, and a time delay
to make behavioral observations. We implemented a multimodal child engagement model
that encompasses both affective engagement (displayed through eye gaze focus and
facial expressions) as well as task engagement (determined by the level of physical activity)
to determine child engagement states. We then conducted a virtual exploratory user study
to evaluate the impact of mixed robot roles on user engagement and found no statistically
significant difference in the children’s engagement in single-role and multiple-role
interactions. While the children were observed to respond positively to both robot
behaviors, they preferred the music-driven leader role over the movement-driven
follower role, a result that can partly be attributed to the virtual nature of the study.
Our findings support the utility of such a platform in practicing physical activity but indicate
that further research is necessary to fully explore the impact of each robot role.

Keywords: socially assistive robot (SAR), robot dancing, in-home ASD care, social engagement, longitudinal study

1 INTRODUCTION

In recent years, the field of Human-Robot Interaction (HRI) has seen tremendous advancements in
understanding how to design effective interactions between humans and robots. One application of
HRI is in the use of Socially Assistive Robots (SARs) to design autism interventions, offering
opportunities for a positive impact on children’s emotional well-being, social relationships, mental
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health, and general skill development. Although HRI research has
demonstrated that robot-assisted interventions can be very
impactful in improving the quality of life of autistic children,
designing truly effective autism interventions remains an open
question, with yet more work to be done to develop a deeper
understanding of the needs of the target population, accurate
modeling of engagement and affect in humans, the objective
measures required to monitor the complex processes of child
learning and long-term behavioral changes, and the different
ways in which we can fully leverage the benefits offered by SARs.

Physical activity has been found to improve psychological
wellbeing leading to positive self-esteem and happiness in autistic
children. However, the impairments in social communication
and interaction that are characteristic of autism can influence the
play activities of children, compelling them to resort to solitary,
passive play (Memari et al., 2015; Holmes andWilloughby, 2005).
Structured physical activity programs have also been found to
positively influence social interaction and communication skills
of autistic children (Pan, 2008; Zhao and Chen, 2018). These
findings corroborate those from studies investigating the impact
of music and dance therapies for autism, reinstating the positive
relationship between physical activity and social skills (Berlandy,
2019; Thompson et al., 2014; Eren, 2015).

Music and dance also play integral roles in encouraging
children to develop spontaneous self-expression,
communication, and interaction by offering emotional and
motivational media that can often be easier for children to
assimilate. While these methods are popular in autism
therapy, the use of SARs in implementing these techniques
remains limited in the existing body of research. This is not
surprising given the challenges of real-time motion synthesis and
full-body motion realization with a humanoid robot.

In our work, we explore the use of music and dance therapy
methods through a robot-assisted dance interaction framework
that is aimed at promoting physical activity and encouraging
social engagement in children and seek to explore different
paradigms of robot behaviors within a dance interaction to
offer diverse opportunities for engagement and physical activity.

In addition, the work presented here is also motivated by the
development of in-home solutions for autism care. Providing care
for an autistic child is a demanding and challenging role that may
pose numerous stressors to the caregivers and can impact the
family at large. The social stigma associated with certain
symptomatic behaviors in autism can lead to severe mental
health challenges for the child, as well as their family.
Considering this risk, it becomes crucial for the child to
receive therapy promptly and adequately to minimize these
potential dangers. The financial burden of therapy is another
aspect to consider when assessing the impact on families. Even
when families can afford therapy services, obstacles can often take
the form of insurance restrictions and limited access to trained
professionals. It is not uncommon for children to experience
prolonged waiting periods to receive diagnostic evaluation and
therapy. Therefore, this works also aims to bridge the gap between
the demand for and accessibility of autism care with in-home
solutions and deliver effective music- and dance-based
interactions through SARs.

1.1 Related Work
Dance-Based cHRI Studies Several HRI studies in the past have
explored the efficacy of incorporating dance interactions in their
designs for applications ranging from autism interventions to
entertainment, human-robot trust assessment, and dance
tutoring. Pepper, a semi-humanoid robot, was used to design a
dance interaction for school-going children (Venture et al., 2017),
targeting an assessment of the children’s perception of the robot.
Another semi-humanoid robot with a mobile base, called Maggie,
was used to engage a user in partner dances (among other
interaction scenarios) (Salichs et al., 2006). Nao, a bipedal
humanoid robot platform, was programmed to perform
multiple dances targeting improvements in physical activity,
whereby the children were tasked to imitate the robot dance
steps in real-time (Ros et al., 2011). Nao was also used in another
study (Barnes et al., 2020) specifically targeting a dance-based
autism interaction for children, in which a Dance Freeze game
was implemented wherein the robot and the child both dance
when the music plays and “freeze” when the music is abruptly
paused.

Within the animaloid form factor, dance interactions were
designed using Pleo (Curtis et al., 2011), Aibo (Angulo et al.,
2011), and Keepon (Michalowski et al., 2007). The interaction
design for Pleo specifically targeted therapy, though it was not
formally evaluated with a user study. For Aibo, some basic dance
steps were manually designed, which were then randomly
combined to form multiple dance sequences. Keepon was used
in a generalized dance interaction with children where its
movements were controlled by a rhythm-based software.

Based on this review of related past work, several gaps can be
identified including: 1) a lack of automation resulting in heavy
dependence on human controller input to create real-time
responsiveness and interactivity in a human-robot interaction,
2) a small library of robot dances with a general lack of variety as a
result of manual choreography design, 3) no or limited ability of
the robot dynamically generate relevant behavioral responses to
changes in user behavior or the environment, 4) limited use of
bipedal humanoid robots for executing dynamically generated,
full-body dances, and 5) a lack of autism-specific interaction
scenarios with deliberate incorporation of the principles and
constructs of formal therapy.

These factors were used to inform the dance-based interaction
design presented in this work, which addresses all the problem
areas identified above in order to develop a more effective and
socially interactive dance interaction for autistic children.

Robot Roles in cHRI Research Robot-assisted interventions
are typically designed to target a variety of symptoms that are
commonly experienced by autistic individuals. However, most
child robot interaction (cHRI) interaction designs use the robot in
the roles of a teacher, instructor, demonstrator, behavior model,
etc., where the primary use of the robot is to teach a skill or
behavior without taking any feedback from the user that may
impact its own behavior. In this sense, it is a unidirectional
interaction since the robot mainly teaches and the child mainly
learns. There are not many available interaction scenarios in the
literature where the child takes control of the interaction while the
robot learns from them.
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For example, in an attempt to teach social skills to children, the
robot may be used as a social actor to demonstrate the skill,
thereafter, prompting the child to replicate that behavior
(Pangrazi et al., 2003; Javed et al., 2019; Desideri et al., 2017;
David et al., 2020). The robot may also be used to discourage
negative behaviors in a child, in which case it gives negative
feedback to the child upon detecting the said behavior (Robins
et al., 2012). In both cases, the emphasis is on changing the child’s
behavior by teaching the appropriate skill or behavior. It is
uncommon for the robot behavior to be controlled by the
child such that the child may teach appropriate behavior to
the robot, and in the process of teaching, also learn the
behavior themselves.

A large variety of other intervention targets can also be found
in the literature, including (but not exhaustively) improvements
in tolerance to tactile contact (Sandygulova et al., 2019), emotion
interpretation (Sandygulova et al., 2019), object identification
skills (such as vehicles and animals) (Sandygulova et al., 2019;
Desideri et al., 2017), understanding the social context from
storytelling (Elsabbagh et al., 2012), vocabulary building and
other learning goals (Desideri et al., 2017), teaching everyday
activities (such as personal hygiene and eating food, etc.) (Syrdal
et al., 2020), and improving problem-solving skills through
games (Clabaugh et al., 2019). The common theme in all
these scenarios is the use of the robot primarily in the role of
a teacher. A notable exception, however, is the application of
robots as tutors for children where they may act as a tutor, a
tutee, or both (Ros et al., 2016; Howard et al., 2017). Findings
from these studies support the use of the robots in mixed roles in
order to fully leverage their capacity to help children achieve
their learning goals.

We used the lack of bidirectional learning scenarios in cHRI
for autism-specific interactions to inform the work presented
here, which explores the paradigm of learning-by-teaching, such
that the robot can both lead and follow the child as their dance
partner.

2 MATERIALS AND METHODS

In our robot-assisted dance interaction design, the robot gains
social awareness through multimodal behavioral sensing and acts
with a high level of autonomy to engage a child in a dance activity.
The process involves the four main stages: 1) sensing the
behavioral cues through facial expression and pose capture, 2)
interpreting the sensor data to understand the user engagement
state (which is composed of an emotional state, an attentional
state, and a physical activity level), 3) utilizing the user state
information to decide the next best action for the robot to
perform, and 4) executing the selected action.

This cycle is repeated until the interaction ends and is
illustrated in Figure 1. The robot may act as either a leader or
a follower-a decision that is made by a reinforcement learning-
based module that learns from the social cues to decide the best
course of action for the robot. This decision-making process is
not discussed in this paper since its focus is on the evaluation of
the two robot roles.

System Overview Our robot-assisted dance-based interaction
system consists of several important components. The
multimodal behavioral sensing comprises a facial expression
analyzer that uses Affectiva’s Affdex software (McDuff et al.,
2016) and a 3-dimensional human pose analyzer that uses the
Microsoft Kinect (v1) (Zhang, 2012) (or OpenPose (Cao et al.,
2019) for remote data collection). It also includes a sequencer for
all interaction events which contains an RL-based decision-
making component that determines the most suitable next
action in order to personalize the robot behavior for each
user. In addition, all the commands intended for the robot are
sent through a central controller module that handles all the
communication with the robot. The leader role dances are
generated by a trained sequence-to-sequence (S2S) (Sutskever

FIGURE 1 | An overview of the control architecture for our largely
autonomous child-robot dance interaction. Our system implements a cycle
where it senses behavioral cues from a user, interprets these to determine
user engagement, decides a suitable role for the robot to assume next,
and then executes the selected robot action (Written informed consent was
obtained from the individual(s) AND/OR minor(s)’ legal guardian.).

FIGURE 2 | The main system components in our dance interaction
design. These consist of the pose and facial expression analyzers that process
behavioral cues from the user. The interaction events sequencer executes all
the steps in our interaction design, within which the RL-based decision
maker uses the behavioral data to determines the best robot action. The S2S
network generates the robot dance sequences in the leader mode and the
observed user pose data is used directly to create the follower mode robot
movements and musical output. The pose mapper creates a mapping of the
human poses for the robot body and the robot controller communicates all the
received commands to the robot.
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et al., 2014) network that is implemented as an individual module.
The follower role music is produced by a music orchestrator
(Sandygulova et al., 2019) that generates music in correlation with
the user’s poses. And lastly, we implemented a pose mapping
module that realizes the dance poses in both roles onto the robot
in real-time. Figure 2 illustrates these system components.

The facial expression analyzer was implemented in C#, the
pose analyzer for Kinect was written in C++, the music
orchestrator was written in Java, and all other components
were implemented in Python, with TCP/IP connectivity to
facilitate communication between the various components.

Interaction design There are several mechanisms that we
incorporated into our dance-based interaction with a robot. Some
of these were based on the techniques and concepts that are
implemented in autism therapy such as prompt fading, preferred
prompt types, reinforcements, and time delay. Other mechanisms
discussed here were included to facilitate the interaction and/or
encourage engagement, such as equipping the robot with the
ability to socialize with the child and ensuring that the child
remained in control of terminating the interaction.

2.1 Prompt Hierarchy
Stimulus prompts are supportive antecedent strategies used to
encourage learning, promote independence, and nurture
confidence in learners. Prompt fading (Cengher et al., 2018) is
a strategy where, once the learner becomes familiar with the
target, the prompting is systematically faded until the learner can
produce the correct response without any external stimulus.

We used this as an inspiration to create a prompt hierarchy for
our robot-mediated interaction, which includes 3 levels:

• Verbal (level 1): These include direct instructions to
perform dances or increase the energy in the
performance, or even general encouragement to improve
the performance, but include no gestures. Examples: 1)
“Come on! I know you can do better than that!” and 2)
“Now can you show me your coolest dance moves?"

• Verbal and gestural combined (level 2): The robot delivers
the same verbal prompts but is accompanied by gestures to
emphasize the verbal instructions. These are simple gestures
such as a brief dance sequence (like a shimmy), a thumbs up,
a fist pump, etc. to support the verbal instructions.

Incentive (level 3): This level is included to improve the child’s
attention span by providing a non-task break. There is evidence to
support the use of breaks and rest during learning tasks to
improve task performance (Toppino et al., 1991; Ariga and
Lleras, 2011). This led us to include children’s jokes within
this prompt category to provide an opportunity for the child
to relax and refocus on the task at hand. The jokes are
accompanied by meaningful, relevant gestures and the
punchlines are followed by the playback of a laugh track.
Examples: 1) “What is brown, hairy, and wears sunglasses? A
coconut on vacation.” and 2) “What do you call a dinosaur that is
sleeping? A dino-snore!"

The prompt fading strategy was implemented across
interaction sessions as well. This means that if, for example, a

child produced a desirable behavior upon receiving a level 3
prompt (incentive) for robot action A in interaction session 1, if
the child requires a prompt for action A in session 2, the
prompting will begin at level 2 (verbal + gestural), hence
fading prompts across sessions as well as within sessions to
promote independence.

2.2 Reinforcement Hierarchy
Reinforcement is a reward or a stimulus that follows a behavior
that makes the behavior more likely to occur in the future. In line
with the prompt hierarchy, we created a hierarchy of social
reinforcers as a means to give positive attention to a child
upon displaying a desirable behavior (Kamana, 2012). The
purpose, once again, is to reduce the dependence on prompts
such that unprompted positive behaviors are rewarded more than
those that require prompting.

Our reinforcement hierarchy has 4 levels that progressively
increase in the intensity of positive attention.

• Verbal (level 1): These are simple verbal encouragements to
reinforce the positive behavior. Example: “Good job! You
did it!”

• Verbal and gestural combined (level 2): These include verbal
reinforcers that are slightly more positive than those used in
level 1, and are also accompanied by simple, positive
gestures to support the verbal encouragement. Example:
“That was good! You’re a great dancer!” accompanied with a
thumbs-up gesture.

• Verbal with a celebratory dance and applause track (level 4):
These include verbal reinforcers at the same level of
positivity as in level 3, alongside a celebratory dance, as
well as a brief applause soundtrack played in the
background to form the highest level of reinforcement
that the robot can provide. Example: “Bravo! I totally
love your dance moves! Will you teach me too? I would
love to dance like you!” accompanied by a short dance
celebration.

The reinforcement levels are inversely related to the prompt
levels; if a positive behavior is elicited without a prompt from the
robot, level 4 reinforcement is given, but if a positive behavior is
observed after delivering a level 3 prompt, only a level 1
reinforcement is provided.

2.3 Time Delay
Time delay refers to the amount of time between giving an
initial instruction to a child and providing a prompt to help
them follow the instruction (Neitzel and Wolery, 2009). When
a child is first learning a new skill, the instruction and the
prompt may be given simultaneously, for example, the
instructor may ask a child to pick up their books while also
pointing at the books. However, as the child becomes more
adept at understanding the instruction, the time delay between
the instruction and the prompt may be increased, subsequently
helping the child complete the task more independently. These
strategies are employed until the child no longer needs any
prompts to execute the task or skill.
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In our interaction, we implemented a constant time delay of
10 s between the instruction and the first prompt, as well as
between all the following prompts in the hierarchy. This provides
an ample amount of time for the music playback and the
accompanying robot dance, during which all child behaviors
are monitored to evaluate the response.

2.4 Termination Control
Autistic children are known to perform better in environments
that are structured and predictable (Ferrara and Hill, 1980;
Schadenberg, 2019), showing improvements in responsiveness
to environmental stimuli when they occur consistently and
predictably. The child-robot dance interaction presented in
this work is a turn-based activity that concludes each turn by
asking the user if they would like to continue participating in the
interaction with the robot. This feature was implemented
specifically as a measure for decreasing unpredictability,
thereby minimizing possible sources of anxiety and, hence,
increasing compliance. Additionally, by consistently offering
this choice to the child at the end of every turn, not only are
they able to maintain control over their participation, but they
also learn to make decisions and think for themselves, thereby
improving their self-esteem (Maxwell, 1989).

2.5 Robot Socialization Techniques
The social behavior of the robot is crucial in achieving a
naturalistic and engaging cHRI. We incorporated several
techniques to improve the sociability of the robot.

Firstly, the robot introduces itself at the start of the interaction,
says hello to the child (addressing them by their name), and
continues to describe the dance activity. This is done in a very
friendly manner, with the robot showing excitement and
eagerness to play with the child and is implemented through a
combination of speech and supportive gestures.

The interaction subsequently follows a sequence of
communications between the child and the robot, which can
include directions given to the child for each turn and what they
can expect, as well as any necessary prompts, reinforcements, and
indications of changes in robot roles.

Additionally, certain interaction events may also trigger an
inquiry presented by the robot to the child regarding their
willingness to continue participation in the interaction. This
can happen in two scenarios: 1) If the child shows a lack of
interest in the activity during a turn and removes themselves from
the interaction, the robot is not able to collect any facial
expression or pose data, which serves as an indicator of
disengagement, and 2) When the turn comes to an end. In
both cases, the robot presents an inquiry to the child, asking
to confirm their willingness or lack thereof to continue the
interaction. Eventually, if the child wishes to conclude the
interaction, a goodbye routine is triggered, in which the robot
expresses excitement and appreciates the child for participating,
before saying goodbye.

It must be noted here that although the interaction design
remains largely autonomous, it depends minimally on human
input for the child’s name and their response to the inquiry after
each turn.

2.6 Multi-Role Robot Behaviors
To ensure bidirectional learning and interactivity, we
implemented two different robot roles to enable our robot to
both initiate dances in the leader role and follow the child’s
dances in the follower role.

2.6.1 Robot as a Follower
The first role of our robot is that of a follower. In this role, the
child initiates the dances, and the robot imitates their movements
in real-time. This imitation includes upper body movements and
body rotations. In this scenario, the child’s body movements
trigger the musical notes, such that both the angles and the
velocities of the detected skeletal joints dictate the musical pattern
that is generated. The changes in joint angles and velocities are
continuously tracked and used to produce music that is
responsive to the child’s movements. Each turn in this role
lasts at least 50 s or more in case prompting is required.

Why Follower Role? The follower role is important in that it
provides the child an opportunity to take charge of the
interaction, by controlling both the music orchestration as well
as the movements of the robot. This also offers an opportunity for
the child to explore their own poses, movement patterns and
speed, as well as their impact on the interaction dynamics. Hence,
this role is designed to emphasize the skills of self-initiation and
movement exploration in the child.

Music Orchestration This is implemented using the JFugue 4.0
library in Java (Koelle, 2016). The pose analyzer captures and
tracks the changing full-body poses of the child, which, in the
follower mode, are sent to the music orchestrator (Ryan et al.,
2018) in real-time. Several conditions are preset and stored in the
music orchestrator that defines a mapping between joint angle
and velocity ranges and the musical notes, which are played when
the values received from the pose analyzer fall within the said
ranges.

Our conditions included the angular and velocity data points
for both left and right shoulders, elbows, hands, knees, and feet.
The angular conditions were defined by splitting the entire range
of motion (as detected by Kinect) for each joint into two ranges
for the legs and six ranges for the arms, while the velocity
conditions included two ranges to indicate slow and fast
movements for both arms and legs.

The GUI used to facilitate the design of these conditions is
shown in Figure 3. The column on the left shows the names of
each conditional, the middle column describes the conditions set
within each conditional, and the action shows the details of the
musical output when the conditions become true. Within the
action, the musical instrument, as well as the length and melody
of the musical note, are defined, as highlighted in the figure. Any
conditional can easily be enabled or disabled as required: for
example, if, for any reason, a child insists on being seated during
the interaction, we can disable all the left and right leg
conditionals from the GUI so that all musical output is
determined only by the upper body movements.

We mapped each of the four limbs to a different musical
instrument so that a variety of sounds are generated. A total of
128 different instruments and sound effects are available in the
JFugue sound bank, including several different types of guitars,
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pianos, and pipe and string instruments, in addition to some
ethnic instruments and other miscellaneous sound effects. The
four instruments used for our mapping were the piano, electric
bass, electric clean guitar, and the slap bass. The use of the JFugue
streaming player allows the dynamic generation of musical
patterns at runtime, bypassing the need to construct the entire
pattern before it can be played.

Therefore, the aforementioned methods enable the child’s
body to act as a musical instrument by making changes in
body pose responsible for the musical output within this
robot role.

2.6.2 Robot as a Leader
The second role of our robot is that of a leader in which the robot
initiates the dancing. The dances are performed to popular
children’s songs that are anticipated to be familiar to most
children. These are upbeat, high-energy songs that are played
in the background at each turn within the leader role. The songs
are sampled randomly in every leader role turn from a library of
15 songs without replacement. The children are expected to dance
along with the robot but are free to mimic the robot’s movements
or to create their own. The robot dances are choreographed
through the trained S2S network that produces the dance
sequences for the selected song at runtime, which are then
realized on the robot through the pose mapper. Each turn in
this role lasts at least 50 s or more in case prompting is required.

Why Leader Role? The leader role is designed to provide the
child an opportunity for physical activity and imitation. The
high-energy music aims to encourage movement, which may
include dance moves that the child may already know from
previous exposure to the songs. It also serves to practice

imitation skills, where a child may mirror the poses being
shown by the robot.

Sequence-To-Sequence Learning for Dance Synthesis As
mentioned previously, the lack of effectiveness of existing
robot-mediated dance interactions for autism can be partly
attributed to the limited dancing abilities of the robot. We
wanted to enable our robot dancer to perform to a variety of
different songs, without committing to the labor of manual
choreography design. This led us to formulate this as a
sequence-to-sequence prediction problem that uses a Long
Short Term Memory (LSTM) encoder-decoder network to
learn the mapping between the audio features of the music
and the motion features of the corresponding dances. The
trained network is then used to make runtime predictions of
the dance sequence output for a given song, where the dance
output is conditioned on the music features.

We used 15 YouTube videos of children’s dances to create
our own database of music-to-motion feature sets. We
extracted the audio features for each of the 15 songs in the
database. These consisted of the Mel-frequency cepstral
coefficients (MFCCs), which represent the short-term power
spectrum of a sound. Additionally, we used a variant of
OpenPose that generates 3D human pose estimates for real-
time processing to extract movement features from the videos.
The dances included in these videos are choreographed, not
freestyled, meaning that we were able to extract multiple
instances of the same dance sequence from a single video.
Figure 4 shows the visualizations of sample inputs to the
network, i.e., the MFCCs and the motion data. We used
simple, single LSTM-layered encoder-decoder models used
for the training and inference processes, where we

FIGURE 3 | The graphical user interface we used to define the pose-to-music mappings in the music orchestrator (Alankus et al., 2005). A breakdown of the action
command that generates the music output is also shown, highlighting the instrument, note, note length, and melody settings.
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formulated the music-to-dance synthesis as an MFCCs-to-
joint-coordinates mapping problem.

For training, we used a learning rate of 0.0005 with a decay rate
of 0.001, included the RMSprop (Root Mean Square Propagation)
optimizer for performance improvements, and used mean
squared error (MSE) as the loss function. An 80:20 training to
validation split was used in the training process for 100 epochs,
with a batch size of 8. The training process resulted in an MSE
value of 0.0018.

The primary purpose of this approach was to achieve
automated choreography synthesis for the dancing robot.
Though the resulting dance sequences can be improved in
terms of the meaningfulness of expression and
synchronization to the music beat, a simple approach such as
the one presented here was sufficient for our purpose. Other
research efforts have utilized more sophisticated audio processing
and deep learning techniques to improve the quality of the dance
output (Zhuang et al., 2020; Ye et al., 2020; Tang et al., 2018), but
these have mainly been applied to characters and avatars that do
not necessarily present the same challenges as embodied robots.

2.7 Social Perception: Modeling and
Interpreting Behavioral Cues
Our user engagement model was designed to reflect both affective
engagement and task-related engagement. This was done to
encompass the affective responses that are exhibited through
behavioral cues such as facial expressions and eye gaze attention,
which can sometimes manifest subconsciously, as well as physical
responses to direct dance requests or prompts from the robot.
This multimodal representation was chosen to capture a
comprehensive measure of child engagement in the
interaction. The modalities were also carefully chosen to be
suitable for remote data collection entirely through a live
video stream in virtual settings.

Affective engagement has two components: emotional
engagement and attentional engagement. Emotional
engagement is measured by the emotions expressed through
facial expressions, and attentional engagement is measured by
the eye gaze attention given to the robot during the interaction.
Therefore, positive emotional expressions with the gaze focused

on the robot would yield higher affective engagement than
neutral or negative facial expressions with the face turned
away from the robot. The emotional engagement was
categorized into 3 states: negative, neutral, and positive. The
attentional engagement was also categorized into 3 states:
unengaged, semi-engaged, and fully engaged. Since Affdex
assigns a confidence value to each output feature, we used
these values to create an empirical mapping from its output
values to our states. For the emotion state mapping, joy was
mapped to the positive state, all other emotions were mapped to
the negative state, and valence was used to determine when these
confidence values were in a range that was low enough to qualify
as a neutral state. A surprise was considered to be a negative
emotion based on the findings from (Noordewier and
Breugelmans, 2013). For attentional engagement, empirical
threshold values were used to define the mapping between the
attention coefficient and the attentional states that we defined for
our model. Details of these mappings are shown in Table 1.

In the context of the dance interaction presented here,
task-related user engagement is measured by the physical
activity level of a child when leading or following the robot in
a dance. This was quantified through the Euclidean norm of
the angular velocities of all the tracked skeletal joins available
from the pose data. This physical activity level was then
classified into two states: high or low, and an empirical
threshold was set to distinguish between the two states.
However, given that autistic children are often reported
not to be as physically active as their TD counterparts, we
did not consider it feasible to expect a child to sustain a high
level of physical activity throughout the duration of a turn.
Therefore, we introduced the concept of activity peaks. A high
physical response maintained over a duration of 4 s was
considered a peak. If the average activity level measured
during an observation period was above the set threshold,
the activity level was considered to be high. On the other
hand, if it did not meet the threshold, we measured the
number of peaks. If four peaks were found in the 50-s
observation period or one peak in the 10-s post-prompt
observation period, the detected activity level was
considered to be high. Otherwise, it was mapped to the
low activity state. Details can be found in Table 1.

FIGURE 4 | Visualizations of sample MFCC and pose inputs given to the LSTM encoder-decoder network that outputs dance sequences for the robot in the
leader mode.
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To quantify the engagement states, we first mapped our
component states to numerical values:

• Emotion states: {positive, neutral, negative} → {1, 0.5, 0}
• Attention states: {fully-engaged, semi-engaged, unengaged}
→ {1, 0.5, 0}

• Task engagement states: {high, low} → {1, 0}

Overall engagement, eng, is then measured as:

eng � engaff + engtask (1)
where engaff is the affective engagement and engtask is the task
engagement. In addition, engaff is computed as:

engaff � engemo + engatt (2)
where engemo is the emotional engagement and engatt is the
attentional engagement. By these definitions, 0 ≤ engaff ≤ 2
and 0 ≤ eng ≤ 3.

2.8 Platform for Virtual Data Collection and
Its Limitations
Due to the outbreak of the Coronavirus pandemic at the time this
research was being conducted, we were forced to conduct our user
study in a remote setting, allowing children to participate in this
work from the safety and comforts of their own homes. The study
was performed over video meetings conducted through video
conferencing applications, which meant that all the required
behavioral data needed to be acquired solely from the video
stream. This implied that we could no longer use the Kinect
sensor to collect pose data and had to switch to using the
OpenPose variant to generate the 3D pose estimates in real-
time. Since the quality and accuracy of the pose data from
OpenPose are lower than that from Kinect, our sensing

techniques were compromised to some extent, but this was
considered a necessary measure under the circumstances.

In addition to this was the poor picture quality resulting from
network-related issues, which is a bigger problem in that our only
data source can potentially be compromised or frequently
disrupted over the course of the interaction. There were
additional challenges of working with minimal control in
remote settings: the rooms from where the children often
participated in these sessions were often not well-lit, did not
offer enough space to capture full-body pose data, and had many
distractions in their backgrounds that contributed to the difficulty
of capturing accurate 3D pose estimations. The data presented in
the user study were, thus, collected through our virtual
experiment framework. Instead of using the real robot for this
setup, we chose to utilize a simulation of Nao, which was shown
to the participating children through screen-sharing during the
virtual interaction sessions.

2.8.1 Experimental Procedure and Setup
We disclosed the interaction procedure and research purpose to
the parents of the participants prior to conducting the study. We
also obtained consent from the parents for their children’s
participation in our user study. The children participated in
two sessions, where they interacted virtually with the robot
through video meetings. The parents and the children were
both informed that they could terminate a session at any time
without consequence. As a result, the sessions were of variable
lengths, dependent upon the child’s interest and willingness to
continue. The first session formed the pretest condition and the
second formed the post-test condition.

The children participated in the study from their homes. The
parents typically set up a computer with a webcam in a dedicated
room, but the experimental settings remained largely
uncontrolled. The children were asked to remain standing in
front of the computer, at a distance that allowed a full-body view

TABLE 1 | A summary of the mappings between the detected behavioral features and the state values we defined for our model.

Data Source Feature Observation Metric State Mapping

Affdex Joy, Disgust, Contempt, Fear,
Anger, Surprise, Sadness, Valence

Emotional
engagement states

Max average coefficient
over response period

Max average coefficients belongs to + emotion → positive
Max average coefficients belongs to—emotion → negative
If + and—max average emotion coefficients are equal →
positive
If (max average coefficient in low range (<0.2) AND -15 <
valence < +15) → neutral

Affdex Attention Attentional
engagement states

Average coefficient over
response period

<30 → unengaged
30–80 → semi-engaged
>80 → fully-engaged

Kinect OR
OpenPose

Angular joint velocities Task engagement
states

������∑
i
(v2i )

√
where i is the joint

number

Average metric over response period >2 → high
Average metric over response period ≤ 2
• if the number of peaks sustained over 4 s during 50-s

observation duration≥ 4 → high
• if the number of peaks sustained over 4 s during 50-s

observation duration <4 → low
• if the number of peaks sustained over 4 s during 10-s

post-prompt observation duration ≥ 1 → high
• if the number of peaks sustained over 4 s during 10-s

post-prompt observation duration <1 → low where a
peak is detected when the average metric over a 4-s
interval >2
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to be captured by the camera, but once again, this condition was
not strictly controlled. Despite these limitations, we were able to
derive some interesting findings from the experiments conducted
through our virtual setup.

2.8.2 Measures
Given the small size of this study, we employed descriptive
statistics to evaluate the pretest and post-test conditions in this
study. These include an assessment of the:

1) General interaction metrics: To identify any changes in the
children’s behaviors as a result of the robot role, we compute the
total number of turns, number of turns in the leader role,
number of turns in the follower role, total number of prompts
used, number of prompts used in the leader mode, number of
prompts used in the follower mode, and number of successful
turns (i.e. number of turns eliciting a high level of physical
activity). Thesemetrics also help to draw a comparison between
the engagement generated by the two types of robot roles.

2) Impact of mixed robot roles: We define engagement gain
as the difference in child engagement levels between the
pretest and posttest conditions, which assesses any changes
in the engagement from the single-role to the mixed-role
mode. Measuring engagement can be complex given the
highly individualized nature of the expression of interest. In
an effort to obtain a metric that is standardized across the
participants, we use the normalized differences in the
pretest and post-test conditions to obtain this metric. We
define normalized change, c, as:

c �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

engpost − engpre

engmax − engpre
; if engpost > engpre

drop; if engpost � engpre � engmax or 0

0; if 0< engpost � engpre < engmax

engpost − engpre

engpost
; if engpost < engpre

(3)

where engpre is the average engagement level in the pretest
condition and engpost is the average engagement level in the
post-test condition, and engmax is the maximum value eng,
which equals 3 based on Eqs 1 and 2. Additionally, we also
compute the changes in the raw values of the individual
components of the overall engagement metric, which are
emotion, attention, and physical activity levels.

2.8.3 Participants
The targeted inclusion criteria for this study included children of
ages 5–8 years, who have been diagnosed with autism and have

verbal skills, with English being the primary language spoken at
home. We were, however, able to recruit only 3 participants that
did not meet all the aforementioned conditions. The
demographic information is summarized in Table 2. All three
participants were Asian, non-verbal and did not primarily speak
English at home. Two of the 3 participants also exceeded the
target age range for this study, with the mean age of the 3
participants being 9.3 years. Though the clinical details of the
diagnoses of all 3 participants remained undisclosed, we were able
to estimate the severity of their symptoms through a symptom
checklist (CHC Resource Library, 2021) filled out by the parents.
These showed that all three participants experienced a majority of
the typical autism symptoms, including limited social skills, lack
of social interactions, repetitive behaviors, avoiding eye contact,
and lacking empathy, etc. The parents of Participants one and 3
described them as having little to no interest in music or dancing,
whereas Participant two was reported to be fond of musical
activities. Given the size of the study, we relied on qualitative
analysis to conduct a preliminary evaluation of our system to
inform a larger-scale future study.

3 RESULTS

We evaluated the single-role sessions versus the mixed-role
sessions for all 3 participants to validate the effectiveness of
the mixed-role design in engaging children and encouraging
physical activity. This section presents the results of this
evaluation.

3.1 General Metrics
The descriptive metrics from all the sessions are summarized in
Table 3. The order of the two single-role designs was
counterbalanced. The participants took part in a total of seven
turns in the follower-role-only design, 13 turns in the leader-role-
only design, and 23 turns in the mixed-role design. It should be
noted that most of the turns in the mixed-role design are
attributed to Participant 2, which is discussed later. Out of
these turns, there were seven successful turns in the follower-
role-only design, 12 in leader-role-only design, and 23 in the
mixed-role design, where success in a turn is achieved when a
child’s physical activity is measured as high. This shows that most
turns were able to elicit a high physical response from the children
irrespective of the interaction design.

Additionally, 0 prompts were given in the follower role only
design, five in the leader-role-only design, and 0 in the mixed-role
design, suggesting that the robot behavior in the follower-role and
mixed-role designs were perhaps more engaging for the children,
thus requiring no prompting. However, it would be misleading to
accept this interpretation since it was very clear to all human
observers of the child-robot interactions that the leader role
design was more effective than the follower role. The reasons
are discussed comprehensively in the Discussion section.

As can be seen from Table 3, the most frequently observed
task engagement state, i.e., the physical activity level, was high
across all 3 interaction designs. However, the most frequently
observed emotion and attention states contain mixed results but

TABLE 2 | Demographic information for the participants of the user study.

Participant id Gender Age Race

1 M 10 Asian
2 F 7 Asian
3 M 11 Asian
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cannot determine on their own if one interaction design is more
or less effective than the others.

3.2 Impact of Mixed Robot Roles
Paired T-test: To compare the engagement metrics from the
single-role sessions versus the multiple role sessions, we ran
paired t-tests (∝ = 0.05) on the average overall engagement,
average emotion, average attention, and average task engagement
measures obtained from the 3 participants. Hence, there were two
paired t-tests for each of the four measures, one to compare the
performance metrics of the leader role session vs mixed-role
session, and the other for the follower role vs mixed-role session.

This was done to evaluate if the mixed role design had a
statistically significant impact on the engagement of a child
compared to either of the single-role designs. However, we
found no statistically significant difference for any of the
evaluated measures (p-value > 0.05). This is not surprising
given the small sample size used in this study. However, we
did observe promising trends from our framework, as
discussed below.

Figure 5 shows the changes in the raw average values of the 3
measures between the single and mixed-role designs. Considering
Figure 5A, which depicts the changes between the leader role
only and the mixed-role designs, it can be seen that the average

TABLE 3 | Summary metrics for the three participants from our user study that assesses the impact of interacting with the robot in single roles versus mixed roles on child
engagement (L: Leader, F: Follower, M: Mixed).

Id Session
Sequence

Session
type

Total #
of turns

Total #
of Successful

turns

Total #
of prompts

Most
frequent
emotion
State

Most
frequent
attention
state

Task
engagement

State

1 1 F 1 1 0 Negative Semi-engaged High
2 L 4 3 3 Positive Fully-engaged High
3 M 2 2 0 Positive Fully-engaged High

2 1 L 8 8 1 Positive/
Negative

Fully-engaged High

2 F 3 3 0 Positive Fully-engaged High
3 M 19 19 0 Positive Fully-engaged High

3 1 L 1 1 1 Neutral Unengaged High
2 F 3 3 0 Positive Fully-engaged High
3 M 2 2 0 Negative Fully -engaged/

Semi-engaged
High

FIGURE 5 | Changes in the raw values of the engagement components under the single-role and mixed-role designs, where (A) shows the changes between the
leader role only vs mixed-role conditions, and (B) shows the changes between the follower role only vs mixed-role conditions. P1, P2 and P3 are the three participants
from our user study (L, Leader, (F) Follower, M, Mixed).
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emotional and attentional engagement for Participant two
increased in the mixed-role interaction, while those for the
other two participants showed a decreasing trend. For task
engagement, participants two and 3 maintained a high state
for both interaction designs, while Participant one showed an
increase in task engagement for the mixed-role interaction.

From Figure 5B, participants one and two are seen to
maintain their emotional states between the follower-role and
mixed-role designs, whereas Participant 3 showed a decline in
emotional engagement in the mixed-role interaction. For
attentional engagement, Participant two showed an increase,
Participant 3 showed a slight decrease while Participant one
showed a larger decline for the mixed-role design. For task
engagement, all three participants maintained a high physical
activity level across both interaction designs.

Overall, we have observed the trends of 1) increased
emotional, attentional, and task engagements in the follower-
role mode (in which the child is the leader), 2) maintained or
slightly increased emotional engagement for follower-role and
mixed-role designs, and 3) increased or maintained task
engagement for all interaction designs.

The raw engagement values and normalized change values
for the 3 participants are listed in Table 4. These include the
changes between both the pretest conditions (leader role only
and follower role only) and the posttest condition (mixed
roles). Based on Eq. 3, the change values indicate a gain for
both conditions for Participant two and losses for Participants
one and 3. A paired t-test was performed for the normalized
change data for the 3 participants under the L vs M and the F vs
M conditions but found no statistically significant change in
the c values (p-value > 0.05). Although the data, especially due
to the small size, does not report any statistical results, we did
notice the trends of effective increase and positive outcomes
with the mixed-role in Participant 2, with whome the effect
lasted for the duration of the sessions. For the other
participants, we did notice their differences in their
preferences toward music or dance, which we believe may
have played the role in the decreased engagement. The
spectrum of differences and diverse responses are common
so our small group size is definitely not enough to draw any
conclusions. However, with our study being conducted online
with many technical and societal difficulties during the
COVID-19 pandemic, we believe our efforts and findings in
a personalized interaction framework with adaptive prompting
could bring insights to other clinical intervention studies.

4 DISCUSSION

The 3 participants interacted with our dancing robot in 3
different sessions where the robot operated 1) only in the
leader role, 2) only in the follower role, or 3) in mixed roles.
One and two are the pretest conditions and 3 is the post-test
condition in this study. While the size of the study prevented us
from deriving any definitive conclusions about our hypothesis,
i.e., the superior engagement capability of our mixed-role design
over the single-role designs, we made some very interesting
observations to inform the future of this work.

Firstly, the nature of the two robot roles is very different:
contrary to the follower role behaviors, robot dances in the leader
role is determined by the output of a pretrained S2S network with
no dependency on the real-time behavioral data tracked during
the child-robot interaction. Robot dances in the follower role are a
real-time imitation of the child poses captured during our video-
based virtual data collection process. Therefore, any noise or
disruption in the video directly impacts the follower role output,
i.e., the robot movements. This was obvious in this study, not only
because the video quality was often compromised during the
interactions, but also because the video-based, real-time 3D pose
extraction naturally underperforms compared to a sensor such as
Kinect. It also had implications for the real-time measurement of
the children’s behavioral responses (emotion, attention, and
physical activity), the very source of which is the video stream.

This was clearly reflected in the children’s overarching
response to the two types of robot dances as well. The leader
role dances were driven by the music that was already familiar
and fun for the children. The follower role dances were driven by
the movements and music orchestration that were both
dependent on the real-time capture of behavioral data. While
the leader role was a clear favorite for all 3 children, we do not
necessarily expect this to be the case in an in-person study in the
future. We anticipate that imitations and music generation in the
follower role will be far more accurate, fluid, and responsive when
the data source is less noisy, making it easier for the children to
perceive that they control the robot and the music in this mode,
which, in fact, is the very motivation for the follower role design.

The observed trends in increased emotional, attentional, and
task engagements in the follower-role mode, as explained in the
Results section, aligns with the above analysis. It also resonates
our intention and rationale to design more adaptive and
interactive robotic framework to provide increased and natural
engagements during interventions, where we believe that the goal

TABLE 4 | Overall engagement values and normalized engagement changes for the three participants, with the robot in a single role versus mixed roles (L: Leader, F:
Follower, M: Mixed). A gain in engagement occurs only for Participant 2.

Participant Overall engagement, eng Normalized change, c

engpre (L) engpre (F) engpost (M) engpre (L) vs engpost (M) engpre (F) vs engpost (M)

1 2.250 2.375 1.500 −0.500 −0.583
2 1.500 2.834 3.000 1.000 1.000
3 3.000 2.711 1.750 −0.7143 −0.549
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is to nurture more motivation and active minds to the child
through cHRI.

As a result of these factors, the metrics and trends shown in
Table 3, Figure 5 cannot be seen as conclusive but serve well to
inform the design of future research. Additionally, it must also be
noted that any trends based on quantitative metrics for this
exploratory study are expected to vary considerably as the
dataset expands.

It is also important to consider a breakdown of the robot role
transitioning within the mixed-role interactions. Though the
details of its implementation are excluded from this paper, it
is important to mention that the transitions were determined by a
reinforcement learning-based strategy. RL algorithms are known
to be data-hungry and require many data points to reach
convergence in the training process. As a result, in the
3 mixed-role interactions that are included in this study, the
follower role dominated the robot behavior. The interactions for
participants one and 3 did not last long enough for them to
experience a truly mixed-role design (2 turns each in follower role
only), but this was not the case for Participant 2, whose session
continued for 19 turns (13 turns in follower role, six turns in
leader role), providing the algorithm sufficient data to start
exploring the action space.

It would also be useful to evaluate the results in the context of
the behavioral tendencies of the 3 participants. Participant 2, as
gathered from the parental reports, was clearly the most engaged
of the 3 children. She had a hearing impairment which prevented
her from fully understanding the robot’s instructions, but since
she was very fond of music and dancing. Moreover, since her

mother played an active role during her sessions to keep her
focused, she was the participant that showed the most enthusiasm
for her sessions and participated for the longest durations, as
reflected in Table 3. While the other two participants both
seemed more comfortable in the second session with the robot
(as well as the human experimenters whose presence may have
added to any possible social anxiety), their sessions remained
significantly shorter than those of Participant 1.

The above findings also shed light on the results presented in
Table 4, where only Participant two shows a gain in engagement
while the other two participants show losses. These can be
attributed to both the higher initial interest level of Participant
two in music and dancing, as well as their prolonged interaction
with the robot enabling the personalization strategy to take effect.

Our current work does have limitations, including the small
subject group size due to the restrictions during the COVID-19
pandemic, limited physical behavioral representations made by
the robotic platform, especially due to the virtual characteristics
of the platform, and the duration of the sessions not being long
enough to collect large data to sufficiently train our reinforcement
algorithm. However, with the current limitations, we believe our
results do present a contribution to the field, especially of timely
value to advance clinical and interventional studies to cope with
pandemics and telehealth.

A note must also be made of the importance of the parent’s
involvement in the virtual interactions. Participant 2’s mother
was very actively involved in her interactions with the robot and
found creative ways to use the setting to encourage her daughter
to practice verbal/language skills as well. She would ensure that at

FIGURE 6 | Scenes depicting some important interaction events from our user study to evaluate the single-role versus mixed-role designs. (A) Participant shows
fascination with the robot celebrations, and (B)Parent uses the end of a turn to encourage verbal + signing skills in the participant (Written informed consent was obtained
from the individual(s) AND/OR minor(s)’ legal guardian.).
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the end of every turn, the interaction would not proceed until the
participant vocalized her responses. These responses included
vocabulary such as “more,” “yes,” “no,” “more music,” “more
dancing,” “stop” and “keep going”. Examples of such incidents
are shown in Figure 6A. The interaction design was, therefore,
used to motivate speech in the participant as well, and can
possibly be leveraged in the future to elicit other desirable
behaviors.

Another interesting observation was the children’s responses
to the robot reinforcement behaviors, particularly level 3 and level
4 reinforcers that utilized celebratory dancing and/or applause in
the background. These were very highly effective in that their
interpretation was very clear and did not require any language
skills. The participants were observed to respond to these
celebrations with smiles, laughs, and even imitative behaviors
to mimic the robot gestures. Some scenes depicting these
incidents are captured in Figure 6B.

5 CONCLUSION

We implemented a robot-assisted dance interaction system as a
means to promote physical activity in autistic children through
the use of music- and dance-based interactions. We also
incorporated the largely unexplored paradigm of learning-by-
teaching by incorporatingmultiple robot roles that allow the child
to both learn from and teach to the robot. Our work is among the
first to implement a largely autonomous, real-time full-body
dance interaction with a bipedal humanoid robot that also
explores the impact of the robot roles on child engagement.
We conducted an exploratory study to evaluate the effectiveness
of our design and found no statistically significant difference in
the children’s engagement in single-role and multiple-role
interactions. While the children were observed to respond
positively to both robot behaviors, they preferred the music-
driven leader role over the movement-driven follower role, a
result that can partly be attributed to the virtual nature of
the study.

Our study made some interesting findings regarding the role of
the parent during the child-robot interaction. While a parent’s
presence can help children feel more comfortable, their creative
involvement can help children practice skills that are not directly
targeted by our interaction design, such as language skills. Since
parents understand the unique needs of their children more than
others, they can use our platform in creative ways to target the
elicitation of specific desirable behaviors. Our work also supports
the use of therapy constructs such as reinforcements, which serve to
reinforce positive behaviors, are entertaining for the children, and
can be useful in eliciting imitation skills in children. An in-person
user study in the future will help fully exploit the benefits of an
embodied interaction with a robot rather than a virtual character.

To conclude, the purpose of this study was to design a
reinforcement framework to provide more adaptive and
autonomous social interaction framework and report the pilot
study with observed trends of our novel approach. We have
observed the trends of increased emotional, attentional, and task

engagements with our proposed follower-role interaction design,
in which the child is the leader with the robot taking the follower
role, and all participants showed increased task engagements in
our cHRI sessions while each child showed different positive
responses to each interaction design. We believe our approach of
automated and personalized role switching with adaptive
prompting can contribute to further developments in
personalized medicine and clinical interventions with assistive
robotic systems. Future studies will include comparison studies
with typically developing children, with more advanced
reinforcement learning algorithms and deep learning
frameworks, and clinical evaluations in long term with our
clinical collaborators. Long-term interaction and longitudinal
analysis (Clabaugh et al., 2018; Clabaugh et al., 2019; van
Otterdijk et al., 2020) are very important topics in HRI,
especially for the robots to function more effectively “in-the-
wild” (Park et al., 2020), and our future efforts plan to address
these factors more dedication and collaboration.
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