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This paper proposes the use of the standing waves created by the interference between
transmitted and reflected acoustic signals to recognize the size and the shape of a target
object. This study shows that the profile of the distance spectrum generated by the
interference encodes not only the distance to the target, but also the distance to the
edges of the target surface. To recognize the extent of the surface, a high-resolution
distance spectrum is proposed, and a method to estimate the points on the edges by
incorporating observations from multiple measurement is introduced. Numerical
simulations validated the approach and showed that the method worked even in the
presence of noise. Experimental results are also shown to verify that the method works in
a real environment.
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1 INTRODUCTION

Robots are expected to be used in various environments, which requires them to have situational
awareness and the autonomy to make proper decisions accordingly. Thus, environment recognition
is one of the key functions for autonomous robots.

Visual sensors such as cameras and light detection and ranging devices have been intensively
investigated for this purpose. Especially for three-dimensional recognition with visual sensors,
cameras with a depth or range sensing function are developed; for example, a time-of-flight camera
was incorporated for mapping the environment May et al. (2009), a structured-light approach was
proposed for the range recognition Boyer and Kak (1987), and a light-section technique Wang and
Wong (2003) was introduced for accurate range measurement of targets nearby. Another candidate
is acoustic sensors e.g., ultrasonic range sensors for obstacle detection, and sound navigation and
ranging for underwater guidance. While the measurement resolution of acoustic sensors is not as
accurate as that of visual sensors, acoustic measurements can compensate visual methods because
acoustic observation is robust to visual interference, such as changing lighting conditions,
challenging medium quality due to small particles such as fog or dust, and occlusions. Specular
surfaces or transparent objects (e.g. glass objects) cause “blind spots” in visual measurements, and
acoustic methods can be employed to detect such objects.

Popular acoustic sensors use ultrasonic signals. Ultrasonic sensors are “active” in the sense that
they emit the signal and receive a reflected signal. The features of the reflected signal, such as time-of-
flight Santamaria and Arkin (1995); Kuc (2008), the spectrum Reijniers and Peremans (2007), and
the envelope Egaña et al. (2008), are analyzed to extract information about the object. Such
echolocation architecture can be also integrated into a robotic localization system (Steckel et al.
(2012); Lim and Leonard (2000).

The detectable range of high-frequency signals with a short wavelength is limited because of
attenuation during propagation; the common detection range of commercial ultrasonic sensors is up
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to several meters. In contrast, audible signals with a frequency of
20–20 kHz have longer wavelengths, and a longer penetration
distance than ultrasonic signals, which may improve the
detection range. An example of the use of such audible signals
is visually impaired people using “clicking” tones to recognize
their environments and objects Kolarik et al. (2014). Users
trained with clicking have a detection range of more than
30 m Pelegrin-Garcia et al. (2018), and they can recognize not
only the distance to targets but also their shapes Thaler et al.
(2018).

Uebo et al. (2009) proposed to the use of audible signals to
estimate the distance based on standing waves produced by
interference between the transmitted and reflected signals; the
power spectrum of the standing wave has a periodic structure in
the frequency domain, and its period encodes the distance
between the sensor and the object. Kishinami et al. (2020)
proposed a method for recognizing multiple objects by using a
distance estimation based on a standing wave incorporating the
phase information with reliable frequency selection Takao et al.
(2017).

Shape and orientation of the target object are useful features to
recognize. For example, a method was proposed for recognizing
the features of the target, such as flat or sharp corner from the
profile of the reflected ultrasonic pulses Smith, (2001). Another
approach is to estimate the shape of objects given a model of its
shape (Santamaria and Arkin (1995)). Recently, BatVision
(Christensen et al. (2020)) and CatChatter (Tracy and Kottege
(2021)) proposed incorporation of statistical learning techniques
to reconstruct a depth image from acoustic echoes to recognize
complicated shapes.

Because a wide-beam audible signal can cover a large area with
long penetration, this paper proposes extending the distance
recognition based on the standing wave to recognize the shape
and the orientation of the target of interest. Authors (Kumon
et al. (2021)) previously reported that the profile of a distant
spectrum (Uebo et al. (2009)) encodes not only the distance to the
target but also the distance to the edges of the target surface; peaks
in the distance spectrum profile correspond to reflections from
points on the edges. Because the distance to the edge may slightly
differ to that to the surface, it is important for the distance
spectrum to have sufficient resolution to distinguish them. To
recognize those distances, this paper proposes the use of a high-
resolution distance spectrum to detect such peaks clearly. With
this high-resolution distance spectrum, the surface recognition
framework in the previous work (Kumon et al. (2021)) can
improve the estimate. This paper also proposes the use of
multiple observations at different locations to reconstruct
the shape.

The rest of this paper is organized as follows. Distance
measurements based on the standing wave in an acoustic
signal, as proposed by Uebo (Uebo et al. (2009)), are briefly
summarized in Section 2. The distance spectrum profile is
examined in Section 3, with reference to our previous work
(Kumon et al. (2021)), and a method to estimate the shape of the
target object is proposed. Then, we describe how the proposed
was validated by numerical simulations and experiments (Section
4). Conclusions are given in Section 5.

2 USING A STANDING WAVE FOR
DISTANCE MEASUREMENT

This section describes the method for estimating the distance to
an object using acoustic signals as proposed by Uebo (Uebo et al.
(2009)).

Figure 1 shows a schematic of the distance estimation method
based on a standing wave. The signal transmitted from a speaker
at time t to a point x is denoted as vTr (t, x). Further, we assume
that the signal is a linear chirp given by

vTr t, x( ) � Ae
j 2π∫t−‖x‖/c

0

f τ( )dτ+θ( )
, (1)

where f(τ) is the instantaneous frequency defined as

f τ( ) � fw

T
τ + f1, (2)

and A, c, and θ represent the amplitude, speed of sound and
phase, respectively; and T, f1, fN, and fw represent the duration,
lowest frequency, highest frequency, and bandwidth fw = fN − f1,
respectively.

The signal reflected from a stationary object that locates at the
distance L from the microphone is denoted as vRef(t, x), and its
assumed model is as follows:

vRef t, x( ) � Aγejϕe
j 2π∫t− 2L−‖x‖( )/c

0

f τ( )dτ+θ( )
, (3)

where γ and ϕ are reflection parameters that are constant over the
frequency range of interest. The mixed signal vC (t, 0) at the origin
(x = 0), where a microphone is located, can be computed as vC (t,
0) = vTr (t, 0) + vR (t, 0). The power of vC (t, 0) becomes

|vC t, 0( )|2 � |A|2 1 + γ2 + 2γ cos 2π
fW

T

2L
c
t − 2π

fW

2T
2L
c
( )2 + 2πf1

2L
c
− ϕ( ){ }.

(4)

The first and the second terms of the right-hand side show the
power of the transmitted and received signals, and they are
constant. The cosine term shows the effect of the interference

FIGURE 1 | Schematic of model for distance estimation based on
standing wave.
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and it is independent of the initial phase θ. Substituting (2) into
(4) gives, the power of vC in the frequency domain as

p f, 0( ) � |A|2 1 + γ2 + 2γ cos
4πL
c

f + C0( ){ }, (5)

where C0 is a constant term for the interference. As (5) is a biased
cosine function, the power spectrum of an unbiased p (f, 0) over
the frequency range (f1, fN) forms an impulsive peak at the
frequency of the cosine function. By rescaling this frequency
with a factor c

2, the power spectrum becomes the “distance
spectrum” because it has a peak at L that represents the
distance to the object.

3 OBJECT RECOGNITION USING
DISTANCE SPECTRUM PROFILE

3.1 Disk Model
The distance spectrum described in the previous section is based
on a single reflected signal, which models the target object as a
point. However, common objects in the real environment are
difficult to approximate as points, and reflected signals from
such objects can be affected by their spatial structure. To take
the spatial effect into account, a disk reflection model is
introduced (Figure 2) as previously reported (Kumon, M.
et al. (2021)).

Consider a disk with a radius R located at a distance L as the
target object, as shown in Figure 2. For simplicity, the
observation point is located on the line that perpendicularly
passes through the center of the disk. Note that the chirp
signal during a short period can be approximated as a sine
wave and that the phase of the transmitted signal does not
affect the distance spectrum. For simplicity, the transmitted
signal is modeled as a unit pure tone sinωt in the following
analysis. The reflected acoustic signal with an angular frequency

ω from a ring that has a radius r and width dr at the origin x = 0 is
denoted as vRef,r,ω(t, 0)dr. Under the assumption that the gain
coefficient and the phase shift by the reflection are constant over
the whole frequency range as in (Uebo, T. et al. (2009)), we
modeled the reflected signal by applying Lambert’s law (Kuttruff
(1995)) and inverse distance law as follows;

vRef ,r,ω t, 0( )dr � γ sin ω t −

L2 + r2

√
c

( ) + ϕ( ) × L
L2+r2√

Lambert′s law

× 1
L2+r2√

Inverse distance law

× 2πr
πR2 dr
Area ratio

.

(6)
By integrating vRef,r,ω(t, 0)dr of (6) over the disk, the reflected

signal vRef,ω(t) is computed as follows:

vRef ,ω t, 0( ) � ∫R

0
vRef ,r,ω t, 0( )dr

� 2γL

R2 C1 sin ωt − ϕ( ) + C2 cos ωt − ϕ( ){ }, (7)

where

C1 � ∫R

0

r

L2 + r2
cos

ω

c


L2 + r2
√( )dr

� Ci
ω

c


L2 + R2
√( ) − Ci

ω

c
L( ),

and

C2 � Si
ω

c


L2 + R2

√( ) − Si
ω

c
L( ).

The term Ci(·) and Si(·) are the cosine integral and the sine
integral, respectively (Weisstein, (2002)):

Ci x( ) � ∫x

0

1 − cos t
t

dt,

Si x( ) � ∫x

0

sin t
t

dt.

The power of the measured signal sinωt + vRef,ω(t, 0) at the
origin can be written as

p ω, 0( ) � 1 + 2γL
R2

C1 cosϕ + C2 sinϕ{ }[ ]2
+ 2γL

R2
−C1 sinϕ + C2 cosϕ{ }[ ]2

� 1 + α2 C1
2 + C2

2( ) + 2α C1 cos ϕ + C2 sin ϕ( ),
where α � 2γL

R2 .
The cosine integral Ci(x) and the sine integral Si(x) can be

approximated for sufficiently large x, |x|≫ 1 (Airey (1937)) as

Ci x( ) ≈ sin x
x

− cosx
x2

, Si x( ) ≈ π

2
− cos x

x
− sin x

x2
. (8)

Let a �

L2+R2

√
c and b � L

c (a> b). Using (8), the following
approximation holds (see the Appendix for details):

C1
2 + C2

2 ≈ 0

C1 cos ϕ + C2 sin ϕ ≈
sin aω − ϕ( )

aω
− sin bω − ϕ( )

bω
.

⎧⎪⎪⎨⎪⎪⎩ (9)

FIGURE 2 | Schematic of standing wave model with disk.
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Finally, the power p (ω, 0) can be approximated as

p ω, 0( ) ≈ 1 + 2α
sin aω − ϕ( )

aω
− sin bω − ϕ( )

bω
( ). (10)

The approximation (10) shows that the power spectrum p (ω,
0) can be approximated by a constant and two sinc functions with
coefficients a and b. Recalling that ω is given over a bounded
frequency range, the “power spectrum” of p (ω, 0) for ω forms the
distance spectrum that has two peaks at a and b that correspond
to the edge (a) and distance (b), respectively, of the disk.

To verify this approximation model for the distance spectrum,
a simple numerical acoustic simulation was conducted. In the
simulation, a chirp signal was emitted from L = 5.0 m away from a
disk of radius R = 1.5 m that had a reflection gain γ = 0.05 and a
phase shift ϕ = π rad. The distance spectrum shown in the left
figure of Figure 3 has two peaks at 5.0 and 5.22 m that correspond
to the distance to the disk and the distance from its center to its
edge, respectively ( 5.02 + 1.52

√
≈ 5.22). It is worth noting that

this approach also works for a rectangle; a numerical result with a
4.0m×2.0 m rectangle board at 5.0 m shows three peaks
corresponding to its distance and two edges (5.0 m,
5.02 + (2.02 )2
√

≈ 5.10m and

5.02 + (4.02 )2
√

≈ 5.39m).

3.2 High-Resolution Distance Spectrum
Because the distance spectrum can be computed using a Fourier
transform of the power spectrum p (f, 0), a fast Fourier transform
(FFT) (Cooley and Tukey, (1965)) is an effective method for this
computation. The FFT-based conventional distance spectrum has
a uniform resolution, and Uebo (Uebo et al. (2009)) showed that
the highest resolution for the distance spectrum is given by c

2fW
.

As shown in Figure 3, the peaks corresponding to the edges of
the target object are closely located around the most significant
peak. This study developed a method to use a discrete Fourier
transform (DFT) (Smith, (2002)) with dense query points around
the first peak to compute the distance spectrum. Figure 4 shows
examples of distance spectra, and the proposed result indicates
distinct peaks while the conventional one contains false peaks.
Note that the query points can be selected arbitrarily with the
DFT, and that the obtained distance spectrum can have higher
resolution than that obtained using a FFT. However, since the
DFT approach requires more computation, in the present study

the conventional FFT-based distance spectrum was cascaded to
find a region of interest indicated by a major peak, and to then
select the finer query points around the major peak so as to
simultaneously obtain high resolution, and improve the
computational efficiency.

3.3 Object Recognition Using Multiple
Observations
A single observation gives a distance spectrum that provides the
distance to the object and its edge(s). This subsection explains
how multiple observations can be used to determine the shape
and orientation of the object’s surface. Note that the proposed
method is designed for the offline processing after all
observations.

3.3.1 Surface Detection
Recall that the first peak in the distance spectrum contains
information about the shortest distance to the target surface.

FIGURE 3 | Example of a distance spectrum (left: 1.5 m radius disk at
5.0 m, right: 4.0 m×2.0 m rectangle at 5.0 m).

FIGURE 4 | High-resolution distance spectrum.

FIGURE 5 | Spheres whose radii are estimated by distance spectra and
the target planar object. (A) Tangent plane (B) Intersecting spheres.
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Hence, the surface of the target object is on the common tangent
plane of spheres whose radii are given by the most significant
peaks in the distance spectra (Figure 5A).

This common tangent plane is computed as follows. The
center of the sphere i and its radius are denoted as Oi and ri,
respectively, and the unit normal vector for the plane is denoted
as n. The distance between the plane and the origin is denoted by
d. Then, the sphere and the plane can be modeled as

‖Oi − x‖ � ri, (11)
nTx + d � 0. (12)

Because the contact point xi satisfies both (11) and (12), ± ri +
nTOi + d = 0 holds. For N observations, the equation can be
combined in the following form:

OT
1 1

OT
2 1

/
OT

N 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ n
d
[ ] + ± r1

± r2
..
.

± rN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, ‖n‖ � 1. (13)

The relation (13) may not have a unique solution if the
observed radius ri is affected by measurement noise. To
overcome this, the random sample consensus (RANSAC)
(Fischler and Bollers, (1981)) approach was incorporated, in
which randomly sampled subsets of N observations are used
to form a sub-problem of (13), and the best-fit solution of the sub-
problems is selected as the solution of (13). The sign of ri is also
determined in this process. The fitness to evaluate the solution for
RANSAC is computed based on the residual of (13).

3.3.2 Edge Recognition
The second and subsequent peaks in the distance spectrum give
the radii of spheres whose centers exist at the observation
locations. These spheres intersect the common tangent plane
obtained above as in Figure 5B. According to the disk model
proposed in Section 3.1, these spheres contact the edge of the
surface (Figure 6).

In this model, the shape of the surface is estimated by finding the
contact points of spheres intersecting with the estimated tangent
plane. This is an ill-posed problem because the contact points cannot
be determined uniquely, but it may be acceptable to assume that
multiple circles share the tangent line if that line corresponds to the
actual edge of the target. Based on this idea, the developed method
uses the frequency of the tangent lines contacting the circles as the
likelihood of the surface’s edges. An algorithm inspired by Hough
transform (Hough, (1962)) was used to solve this problem, as
described below. The center of the circle i on the tangent plane is
denoted as tOi with a radius of tri. The unit normal vector for the
tangent line on the tangent plane is represented by tn(ξ) where ξ ∈ [0,
2π)rad indicates the angle between the line and the reference axis.
The distance between the line and the origin is denoted as td that
hold, and then the contact point is td � tOTt

i n + tri.
We introduce a function to evaluate the likelihood of ξ and d as

l ξ, d( ) �∑M
i�1

exp −β d − td ξ; tOi,
tri( )( )2( ), (14)

where M is the number of detected circles and β is a positive
constant. Peaks of l (ξ, d) that are greater than a given threshold lth
are selected, and the corresponding parameters {(ξ, d)|l (ξ, d) ≥ lth,
∇l (ξ, d) = 0} are considered as the lines that form the shape of the
target object on the tangent plane.

To determine the valid segments of the tangent lines, the
contact points are computed. Let ξj and dj be the estimated
parameters for the line j. Then, the contact point between
circle i and line j, denoted by tpi,j, is
tpi,j � tOTt

i n⊥(ξj)tn⊥(ξj) + djtn(ξj), where tn⊥ is a vector
perpendicular to tn on the tangent plane. Such contact points
are considered as points on the edges of the target that allow us to
recognize its shape.

4 VALIDATION

4.1 Numerical Simulation
Acoustic numerical simulations were conducted to verify the
developed method for recognizing the shape of a target. The
considered target object was a board measuring 1.2 m × 0.9 m, as
shown in Figure 7. A chirp signal in the 20 kHz frequency band
was emitted from a transmitter, and the signal was sampled at
48 kHz. The emitter and the receiver were located at the same
position, which was 2.0 m away from the board. Seven
observations at the points shown in the figure were simulated.
The surface located on the plane could be represented as (0, 1, 0)
x − 2 = 0 in the coordinate frame of the figure. For efficient
computation of the DFT to obtain a high-resolution distance
spectrum, the non-equispaced FFT technique (Dutt and Rokhlin
(1993)) was incorporated.

The obtained distance spectra are shown in Figure 8. The
figure shows that the primary peaks that correspond to the
distance to the board were extracted. Some of the peaks of the
edges were also detected.

The method proposed in Section 3.1 was applied to
estimate the plane containing the board from the first peaks

FIGURE 6 | Example of spheres intersecting with tangent plane.
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in the distance spectra, and the estimated plane was (0.001,
0.9999, 0.000)x − 2.002 = 0. Then, the observations were fused
using the method in Section 3.3 based on the estimated plane.
The likelihood of tangent lines intersecting circles (Figure 9A)
obtained by 14 is shown in Figure 9B. Then, the tangent lines
with large likelihood values were estimated as the dotted lines
shown in Figure 9A, and contact points were computed
(crosses in Figure 9C). The figure shows that the method

closely estimated the points of the edges. The distances
between the 19 detected points and the nearest edges were
computed as the estimation error. The mean absolute error was
0.0194 m with a standard deviation of 0.0297 m. This was
better than the result (mean absolute error of 0.0417 m with
a standard deviation of 0.0301 m, and shown in Figure 9D)
obtained in our previous work (Kumon, M. et al. (2021)),
which used the conventional FFT-based distance spectra.

FIGURE 7 | Target board and observation points for validation.

FIGURE 8 | Distance spectrum obtained in simulation.
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To evaluate the robustness of the method, it was tested under
noisy measurement conditions. The signals were disturbed by
uniform random noise whose magnitude was scaled to create a
signal-to-noise ratio (SNR) of 60dB. The proposed method could
accurately estimate the plane that contained the target as (0.001,
0.9999, 0.000)x − 2.002 = 0, but the estimated points for the target
shape increased to 38, and some of the estimates were false positives,
as shown in Figure 10A. The mean absolute error for these points
was 0.1482m with a standard deviation of 0.1441m. By tuning the
threshold to select the peaks from the distance spectra, the false
detection rate could be reduced as shown in Figure 10B. The top and
the bottom segments were estimated with a mean absolute error of
0.0290m and a standard deviation of 0.037 m, but the method failed
to detect the left and the right edges.

4.2 Experiment
Next, we conducted experiments to show the validity of the
proposed method. The target object was a board that had the
same dimensions as in the numerical simulations depicted in
Figure 11. A loudspeaker emitted a chirp signal, and the
acoustic signal was recorded by a mobile audio recorder
(Zoom, H4n Pro) that was located next to the speaker at a
fixed distance of 0.15 m (Figure 11B). Although we placed the
sensor device at multiple locations for the measurements
instead of using an array of microphones, the principle still
works for this case because the observation positions were
precisely controlled. A synchronous averaging of 100
measurements was performed taking the background noise
at the experiment site into account.

FIGURE 9 | Target estimation results from simulation. (A) Circles on the estimated target surface (B) Likelihood of tangent lines (C) Estimated shape; 3D view(left)
and the points projected on the tangent plane(right). Red crosses indicate the points of observations (D) Estimated shape with the conventional distance spectrum
(Kumon, M. et. (2021)).
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FIGURE 10 | Estimated points of the target in the presence of noise (SNR = 60dB). (A) Estimated shape (B) With a strict threshold.

FIGURE 11 | Photos of experimental setup and device. (A) Setup (B) Sensor device.

FIGURE 12 | Distance spectrum obtained in experiment.
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The obtained distance spectra are shown in Figure 12, and the
estimated plane was (−0.0399, 0.9973, 0.0619)x − 1.989 = 0; that
is, the cosine similarity of the normal vector was 0.9973 and the d

error was 0.011 m. As shown in Figure 13, 23 estimated edge
points were detected and the mean deviation from the nearest
edge and its standard deviation were 0.1410 and 0.0849 m,
respectively. The surface plane was estimated accurately, and
the shape of the board was roughly obtained, although the
estimated points were scattered around the target. The limited
performance for the shape estimation might be because of noise
in the environment, installation errors of the device, and acoustic
distortion by the microphone and speaker.

Next, a larger board of 1.81 m × 0.92 m (Figure 14) was also
used as another example to evaluate the proposed method. As
shown in Figure 14, the bottom edge of the board was close to the
ground which made the recognition challenging because the
boundary of the target was difficult to detect. The observation
pattern was designed to deviate from the center of the board to
test in a more practical situation than in Figure 11.

The same observation process as in the previous experiment
was conducted to record acoustic observations, and the proposed
method was used to estimate the target. The estimated plane
containing the target board was (0.0521, 0.9948, 0.0871)x − 2.060
= 0; the cosine similarity of the normal vector was 0.9948 and the
d error was 0.06 m; the performance to detect the target plane was
at the same level as the previous experiment. Then, the method
extracted 89 points as the points of the target as shown in

FIGURE 13 | Estimated points on the target from the experiment. (A) 3D-view (B) Front-view.

FIGURE 14 | Experimental setup of a large board (left: a photo of the
target, right: a diagram of the board dimension and the observation points).

FIGURE 15 | Estimated points on the large board target. (A) 3D-view (B) Front-view.
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Figure 15; 48 of those points corresponded to the top and the
bottom edges while the rest 41 points located at the left of the
board were false detections.

Because the method could detect the bottom segment that was
distant from the center of the observation pattern, it can be
concluded that the method has the potential to recognize the
target with the observation pattern that partially covers the target.
Of course, the large search space to detect distant boundaries may
cause false detection as in the result, and further studies are
necessary to determine the optimal choice of parameters.

5 CONCLUSION

This study shows that the profile of the distance spectrum
encodes surface range information from the target, and a
high-resolution distance spectrum can recognize the distance
to the surface and that to the edges accurately. Cues from the
high-resolution distance spectra can be used to estimate the shape
of the target object surface. Numerical simulation validated the
proposed approach, and the robustness of the method under
noisy conditions was also verified. The method was also tested by
experiments, which showed that the approach is feasible,
although there remains room for performance improvement.

Future work is to account for outliers that occur under noisy
measurement conditions, or for observations when the receivers
are not pointing to the targets. Techniques to monitor the quality
of the observations may be effective for such inappropriate
readings. And the method needs to be tested with more
targets in various environments. Another challenge is to
extend the method for a more complicated environment, such

as an indoor room that has significant reflections from several
walls because it may become difficult to distinguish appropriate
peaks of distance spectra. As multiple observations are used to
estimate the target, a microphone array can be used to reduce the
installation error among the microphones, to focus the reflections
from the target of interest, and to reduce the noise.
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APPENDIX

The approximated cosine and sine integrals are denoted as Ci(x)
and Si(x), that is,

Ci x( ) � sin x
x

− cos x
x2

, Si x( ) � π

2
− cosx

x
− sinx

x2
. (15)

Then, the following holds.

Ci
2
x( ) + Si

2
x( ) � π2

4
+ 1

x2 +
1

x4 − π
cosx
x

+ sinx

x2( ),
Ci x( )Ci y( ) + Si x( )Si y( ) � π2

4
− π

2
cosy
y

+ siny

y2 + cosx
x

+ sinx

x2( ).
Furthermore,

C1
2 + C2

2 ≈
1

aω( )2 +
1

bω( )2 +
1

aω( )4 +
1

bω( )4 −
2

abω2


1 + a2 + b2

abω( )2 +
1

ab( )2ω4

√
× sin b − a( )ω + ϕ0( ),

where

tanϕ0 �
1 + 1

abω2

1
ω

1
a − 1

b( ) � abω2 + 1
b − a( )ω,

and

C1 cos ϕ + C2 sin ϕ ≈
sin aω − ϕ( )

aω
− sin bω − ϕ( )

bω
− cos aω − ϕ( )

aω( )2

+ cos bω − ϕ( )
bω( )2 .

For large ω, 1
ω2 ≪ 1 and the above formulas give (9).
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