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The formal description and verification of networks of cooperative and interacting agents is
made difficult by the interplay of several different behavioral patterns, models of
communication, scalability issues. In this paper, we will explore the functionalities and
the expressiveness of a general-purpose process algebraic framework for the specification
and model checking based analysis of collective and cooperative systems. The proposed
syntactic and semantic schemes are general enough to be adapted with small
modifications to heterogeneous application domains, like, e.g., crowdsourcing
systems, trustworthy networks, and distributed ledger technologies.
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1 INTRODUCTION

Cooperation activities and collective behaviors are widespread phenomena in several environments,
ranging from nature to human social relationships and artificial systems. Therefore, they have cross-
cutting implications in different specific fields of knowledge, including, just to cite a few, biology
(Crall et al., 2019; Glen et al., 2019; Romanov et al., 2022), sociology (Takano and Ichinose, 2018;Will
et al., 2020), and robotics (Dai et al., 2016; Rausch et al., 2020; Mehmood et al., 2021). Although
different levels of abstraction are involved, information sharing mechanisms form the base for the
evolution of biological, social, and engineering systems exhibiting the behaviors specified above. In
particular, the efficiency of these mechanisms determines not only the success of individuals but also
the fitness of systems of communities of such individuals. This is even more critical whenever:

1. The systems need to be adaptive with respect to dynamically changing environments;
2. A multiplicity of different types of agents collaborate (or compete) to engage in community

decision processes (or to achieve individual goals to survive and emerge);
3. Complex tasks are interleaved with frequent mutual interactions.

In this respect, one of the main aspects to pay attention to is given by the communication and
cooperation models, with a specific emphasis on the information exchange policies, the allocation of
tasks and of resources, the synchronization of activities converging to group goals. Moreover, it is
worth distinguishing the nature and use of the information that may be subject to exchange, which
can derive from the external environment, be processed by every agent in isolation, and/or represent
community-based shares.

All these considerations play a role when devising techniques to model, verify, and develop
collective and cooperative systems - see, e.g., De Nicola et al. (2020) and the references therein for a
comprehensive overview. In this paper, we concentrate on the issues related to the formal modeling
and verification of such systems. To this aim, we propose a general-purpose process algebraic
framework that can be instantiated to the various and heterogeneous application domains surveyed
above. The basic ingredients of this framework focus on the specification of the autonomous
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behavior of the agents, the handling of data collected from the
environment and shared with the neighbours, the mode of
interaction within communities of agents, the topology of the
interacting communities, the dynamically changing external
environment and system configuration. The flexibility of the
approach is the main contribution provided by the framework,
which makes it adequate to model and verify both natural and
socially collective systems (including social networks as well as
crowdsourcing systems), and artificial networks (including P2P
and GRID systems, multi-agent systems, and sensor networks).

The kernel of the specification language is based on process
algebra and relies only on a few, basic set of operators for the
description of the behavioral pattern of agents in isolation. The
syntax is left as simple as possible and abstracts away from the
overwhelming details of standard parallel composition operators,
thus making the process of composing even large networks of
agents easy and scalable.

The semantics of the language encodes the mode of
communication among agents, through rule schemes that
support flexibility and adaptiveness with respect to the specific
application domain of interest. Moreover, the framework
includes the capability of grouping agents into dynamic
communities, and to model local information stored by agents
as well as global information shared within a given community of
agents. Such an agent/community-oriented modeling framework
is equipped with a temporal logic for the specification of
properties of agents, communities, and networks. Thus, the
flexibility of the modeling paradigm is inherited also by the
property specification framework, enabling the definition of
various property patterns, ranging from safety to performance.

The rest of the paper is organized as follows. In the next
section, the basic syntax and semantics of the modeling
framework are presented, by emphasizing the way in which
customized semantics rules can be devised depending on the
application domain. Section 3 defines the temporal logic for
property specification. The applicability of this framework to
various application domains is illustrated in Section 4 via some
real-world references and examples. Finally, a discussion on
related and future work is the topic of Section 5.

2 MODELING AGENTS AND NETWORKS

A key aspect for simplifying asmuch as possible the description of
complex networks of agents is the clear separation between the
description of each agent in isolation and the definition of the
network of agents. This is even more crucial for formal paradigms
like process algebra, which are typically based on a set of algebraic
operators that join together the two levels of descriptions
surveyed above, i.e., the agent level and the network level.

The separation of concerns between the definition of the
system topology and of the behavioral pattern of the agents
forming such a topology is a typical approach of architectural
description languages–see, e.g., Aldini et al. (2010)—and is indeed
motivated by usability and scalability issues. Therefore, we base
the modeling framework on such a separation.

2.1 Modeling Behavioral Patterns and
Agents
As a first step, we start with the presentation of a basic
calculus–see, e.g., Fokkink, (2007)—for the description of the
isolated behavior of sequential processes.

Let Act be the set of actions, ranged over by a, b, . . . , including
also the special internal action τ. The set L of process terms of the
basic calculus for sequential processes is generated through the
following syntax:

P ::� 0 | a.P | P + P | B
where we have the constant 0 for the inactive process, the
classical algebraic operators for prefix and nondeterministic
choice, and a constant based mechanism for expressing
recursive processes, such that a set of constants defining
equations of the form B�defP is assumed. As standard, we
consider only guarded and closed process terms. The
semantics of process terms is expressed in terms of labeled
transition systems.

Definition 1. A labeled transition system (LTS) is a tuple (Q, q0,
L, R), where Q is a finite set of states (with q0 the initial one), L is a
finite set of labels, and R ⊆ Q × L × Q is a finitely-branching
transition relation.

As a shorthand, (q, a, q′) ∈ R is denoted by q→a q′. Then, the
behavior of process term P is defined by the smallest LTS
(L, P, Act, R), where the transitions in R are obtained through
the application of the operational semantics rules of Table 1. The
prefix rule is at the base of the sequential behavior of processes,
stating that a. P executes a and then behaves as P. The two choice
rules express the nondeterministic choice between P1 and P2. The
winning process proceeds with its execution, thus disabling once
and for all the other one. The recursion rule establishes that the
process term named B and defined as P, behaves as P itself;
naming enables the definition of recursive behaviors.

Example 1.
As a first running example, we consider a social network in

which various agents contribute to the spreading of (possibly
fake) news. A detailed version of this system is modeled and
analyzed in Aldini, (2022), by using a formal framework that
turns out to be an instance of that proposed in this work. Here, we
start considering a simple, process term:

F�defnbr. re − evaluate.F + forget. 0( )

which models the behavior of a fact checker in such a network.
Action nbr denotes the gathering of shared news from the
neighbourhood, action forget expresses that any shared news is
forgotten once and for all, and action re-evaluate denotes that the
process of news evaluation is repeated again.

As another running example, we will consider a trustworthy
network of communities, where agents exchange services and the
interactions among agents are enabled/disabled by trust/distrust
relations. A detailed version of this system is modeled and
analyzed in Aldini, (2018) through an alternative framework
that, similarly as above, is generalized by the current proposal.
Here, we start considering a simple, process term:
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T�defsnd_req. rec_acc.T + rec_ref.T( ) + leave_com. 0

describing the behavior of a trustor, which may ask for services
from the unique provider operating in the community to which the
trustor belongs. Action snd_req denotes a service request sent to
such a provider, which in fact represents the trustee subject of trust
evaluation by the trustor; the request can be either accepted (action
rec_acc) or refused (action rec_ref). Alternatively, the trustor may
decide to abandon the community (action leave_com).

In the following, an agent is any instance of a given process
term P, which is referred to as the behavioral type (or pattern) of
the agent. In other words, an agent represents an element
exhibiting the behavior associated with a process term.
Agents are associated with a unique identity, which in the
following we denote with a natural number for the sake of
simplicity. Moreover, each agent is equipped with a local data
repository, used to store local parameters as well as data
retrieved from sensors or received from the neighborhood.
Such a repository is represented as a set of local atomic
predicates. By assuming a standard first-order logic
interpretation, predicates are of the form v = d, with v ∈
VNames a local variable and d a value of the corresponding
domain.

Formally, an agent is described by a triple of elements 〈id, P,
V〉, where:

• id ∈ N is the identity of the agent;
• process term P ∈ L is its behavioral type;
• function V: VNames↦D is the mapping from local variables
to values in their corresponding domain D.1

Given the triple 〈id, P, V〉, as a shorthand we sometimes use
the classical dot notation id. P to denote the local behavior of
agent id, id. a to denote an action a enabled by the local behavior
P of agent id, and id. v to denote the value V(v) of the local
variable v in the local data repository of agent id.

Example 2. A fact checker named id of behavioral type F is
described by the triple 〈id, F, V〉. The local variables are: type,
which expresses the level of susceptibility of the agent to accept

shared news; accept, which is a Boolean modeling whether the news
is accepted and in turn shared by the agent; threshold, which
expresses the minimum number of neighbours that must share the
same news in order to consider the news for acceptance.

A trustor named id of behavioral type T is described by the triple
〈id, T, V〉. The local variables are: α and β, reporting the number
of accepted (respectively, refused) requests, and θ, which represents
the trust threshold employed by the trustor for the trust-based
evaluation of the trustee.

While it is easy to see that the agent local semantics is given by
the semantics of its behavioral type, it is less obvious to determine
the agent’s behavior in the context of the environment. Such a
context affects also the updates applied by the agent to its local
repository. Therefore, we need to define formally the interaction
semantics for a network of communicating agents.

2.2 Modeling Networks of Interacting
Agents
A network is a set of agents, which are grouped to form (possibly
dynamic) communities. Basically, direct interactions among
agents are possible only within the same community.
However, each agent, in general, may belong to several
different communities at the same time. Similarly as in the
case of single agents, each community is associated with a
global data repository, storing data that can be shared by all
the community participants. Such a repository is modeled as a set
of global atomic predicates of the form w = d, with w ∈WNames2

a global variable and d a value of the corresponding domain.
Formally, a network is a triple of elements 〈S,G,W〉, where:

• S is the finite set⋃n
i�1〈idi, Pi, Vi〉 of n agents in the network,

such that idj ≠ idk for every pair of indexes j, k;
• function G: CNames → 2N maps every community (with
CNames being the set of community names) to the set of
agents identities forming it, thus representing the network
topology;

• function W: CNames → (WNames ↦ D) maps every
community to the related mapping from global variables
to values in their corresponding domain.

TABLE 1 | Semantics rules of the basic calculus.

1This can be generalized to consider a separate domain for each variable. By the
way, in this paper we assume that D is a finite, numerical domain. 2For the sake of simplicity we a ssume that WNames and VNames are disjoint.
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The semantics of a network and, in particular, the way in
which the constituting agents cooperate and evolve, depend on
requirements of the specific scenario under consideration. Hence,
(almost all) the rules we are going to introduce are actually
schemes of rules including customizable elements. The first,
fundamental modeling choice is related to the mode of
execution, for which we distinguish two classical, alternative
cases: asynchronous mode, where every agent may execute an
autonomous action while all the others remain idle, and
synchronous mode, where all the agents involved
simultaneously execute one of their enabled actions.

The general semantic rule scheme for the asynchronous mode
is as follows:

(async) P→a P′ ∧ cond

〈 〈id, P, V〉{ } ∪ S,G,W〉→a 〈 〈id, P′, V′〉{ } ∪ S,G,W′〉

where the side condition cond stands for a Boolean formula
composed of logical predicates over any combination of
identities, communities, local variables, and global variables taken
from the current network triple 〈{〈id, P,V〉} ∪ S,G,W〉, and
stating whether the action a offered by the local behavior P of
agent id is enabled in the network environment. Hence, the side
condition is actually of the form cond(a, id,V,S,G,W, V′,W′).
The additional terms V′ andW′ depend on V andW, respectively,
and represent their updated versions by virtue of the execution of the
action a. More details about these terms and the definition of the side
condition will be provided through examples. Notice that, for the
sake of readability, in the rule scheme above and in the following
ones, the side condition cond is reported without making the list of
arguments explicit.

Example 3. We present three typical formats for the atomic
predicates that can be combined through logical connectives to
define the side condition cond in the rule scheme async:

1. id. v)k, with ) any arithmetic comparison operator and k a
scalar value belonging to the domain of the local variable v: such
a condition is purely local as it does not depend on the context in
which agent 〈id, P, V〉 operates;

2. ∃G ∈ CNames: id ∈ G(G) ∧ id.v)(W(G))(w), which
compares the local variable v of the agent to the global variable
w of a community G to which the agent belongs (id ∈ G(G));

3. id. v)f(X), where f is a scalar function (e.g., min, sum, count)
applied to a set X of local/global variables filtered in a certain way,
and returning a value belonging to the domain of variable v.

Analogous patterns can be envisioned by defining conditions
over id rather than over id. v.

Later on we will show some exemplifying conditions
specifically adapted to the application domains of interest. As
stated above, the rule scheme async expresses also potential side
effects of the execution of the action a over the local variables of
the agent id and/or over the global variables of the network.
Formally, the terms V′ andW′ represent the updated versions of
the terms V andW, respectively. On one hand, they may be equal
toV andW, respectively, to express that no change occurs. On the
other hand, they may be defined in terms of updates occurring in

V and W. To this aim, in the following examples we will use the
standard notation s′ = s[x↦d] to express a mapping s′ equal to s
in every point but x, where s′(x) = d.

Summarizing, the rule format states that if the agent of the network
defined as 〈id, P, V〉 enables locally a move, and such a move is
permitted by the environmental conditions, then the agent is allowed
to evolve and change accordingly the variables under its control.

We point out that, as a special case, ad-hoc actions can be
envisioned to model movements to or from communities, which
is typical of dynamic scenarios–see, e.g., Aldini, (2022) for a
possible semantic characterization. Just notice that such a kind of
actions would affect the structure G of the tuple describing the
network configuration. As an example, the general semantic rule
scheme describing the action of leaving a group is as follows:

(leave) P →leave_com
P′ ∧ cond

〈 〈id, P, V〉{ } ∪ S,G,W〉→a 〈 〈id, P′, V′〉{ } ∪ S,G′,W′〉

where leave_com is the name of such an action, the side condition
cond specifies the enabling situation and the identification of the
community G ∈ CNames that the agent id is leaving, V′ and W′
express possible updates to the local/global repositories V andW
due to such a move, and G′ � G(G)\{id} represents the update of
the involved community. We can reason analogously for a
corresponding action join_com modeling the entry into a
community G, in which case we have G′ � G(G) ∪ {id}.

From the cooperation model standpoint, the rule scheme
async enables forms of knowledge-based communication.
Indeed, if the local repository modification (and/or the side
condition cond) depends on some content deriving from the
environment, then a data-driven communication from the
environment to such an agent is actually modeled.
Analogously, writing to the global repository, to which any
other agent may have access, represents a form of community-
based multicast communication. Sometimes, these forms of
(asynchronous) communication are not enough as two (or
more) agents have to synchronize over a certain event. To
model such a kind of interaction, the following general
semantic rule scheme is needed:

(sync) P→a P′ Q→b Q′ ∃G ∈ CNames.id1 , id2 ∈ G G( ) ∧ cond

〈 〈id1 , P, V1〉, 〈id2 , Q, V2〉{ } ∪ S,G,W〉→a × b〈 〈id1 , P′, V1′〉, 〈id2 , Q′, V2′〉{ } ∪ S,G,W′〉

where the action a × b expresses the simultaneous execution of the
actions a and b, so that the two involved agents evolve synchronously.
The form of the side conditions is as discussed above, with the
additional constraint that the two agents involved in the
(synchronous) communication must be members of the same
community, which is formally expressed by the predicate
∃G ∈ CNames.id1, id2 ∈ G(G). As a special case, it is possible to
define an ad-hoc semantic rule scheme modeling a multicast
synchronous communication from an agent of a community to
the other agents of the same community–see, e.g., Aldini, (2018)
for a possible characterization.

We now discuss the case of a purely synchronous mode of
execution, which requires a slightly different approach relying on a
two-steps semantics. In the first step, the local actions of the agents
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that are enabled by the environment according to the given side
conditions are determined. In the second step, one action per agent is
sampled nondeterministically and the system performs a move by
simultaneously executing all the sampled actions. By assuming that
the network of agents S includes the agent 〈id, P, V〉, the general
semantic rule scheme implementing the first step is as follows:

(global) P→a P′ ∧ cond

〈id, P, V〉〈S,G,W〉→
a 〈id, P′, V′〉〈 S\ 〈id,P,V〉{ }( )∪ 〈id,P′,V′〉{ },G,W′〉

Notice that in the conclusion of the rule scheme, the triple of
elements describing the agent is decorated with the subscripted
context expressing the environment with respect to which the
side condition must be evaluated. More precisely, the rule scheme
global expresses whether the network 〈S,G,W〉 enables the
execution of the action a offered in isolation by the agent
represented by 〈id, P, V〉. This is done through the
verification of the side condition cond, parameterized by the
elements of the triple 〈S,G,W〉 representing the environment of
〈id, P, V〉. The rule scheme expresses also what would be the
effect of such an execution upon the agent and upon the network.
Thus, the same considerations related to the asynchronous case
apply as well, the unique difference being that the global
semantics defines what actions can be potentially performed
by the agents in the network. Since every agent is expected to
enable at least one action to not block the synchronous evolution
of the network, we assume also the following rule:

(idle) 〈id, P, V〉〈S,G,W〉 →
〈id, P, V〉〈S,G,W〉→

τ 〈id, P, V〉〈S,G,W〉

the effect of which is to allow the agent to stay idle without
blocking the network.

Then, in the second step, the network semantics must express
the simultaneous execution of one action per agent. By assuming
S � ⋃n

i�1〈idi, Pi, Vi〉, the semantic rule for the second step is as
follows:

(network) ∧n
i�1〈idi, Pi, Vi〉〈S,G,W〉 →

ai 〈idi, Pi′, Vi′〉〈Si ,G,W i〉

〈⋃n
i�1〈idi, Pi, Vi〉,G,W〉→τ 〈⋃n

i�1〈idi, Pi′, Vi′〉,G,∏W i〉

In practice, in the premise of the rule each agent (indexed by i)
offers a transition labeled with ai that derives from the application
of the rule scheme global or idle. Then, the conclusion establishes
that all these moves are performed synchronously, as modeled by
the τ action. 3 The proposed scheme is intentionally general. More

sophisticated variants of the network semantic rule are however
possible. For instance, only specific agents (e.g., of selected
communities) could be engaged in the synchronization and
perform a move. Alternatively, each ai in the premise may be
replaced by a unique action a, expressing that the involved agents
must synchronize on the specific action. Such a condition may be
too strong, as some agents may be not available to execute the
action a, thus blocking all the others. However, similarly as
discussed above, it is sufficient to use an ad-hoc version of the
idle semantic rule that adds the action information as a negative
premise on a and decorates the τ action with a subscripted a.
Then, the network semantic rule may enable the synchronization
of the involved agents that offer either a or τa. These variants
emphasize the flexibility and the expressiveness of the approach,
which make it adequate to deal with even very specific
requirements of various application domains.

In any case, independently from the chosen mode of execution,
the semantics of a system 〈S,G,W〉 will be given by the smallest
LTS with initial state 〈S,G,W〉 and transitions deriving from the
application of the SOS rules at hand. We observe that the proposed
rule schemes express a general format that may potentially guide the
definition of a library of several, alternative rules. Such rules can be
customized to deal with a comprehensive set of behavioral models
and application domains. Obviously, a tradeoff exists between such
an expressive power and the efficiency issues that may arise when
checking complex side conditions in order to build the
underlying LTS.

Example 4.
Assume a social network 〈S,G,W〉 of agents adopting the

synchronous mode of execution and including the agent 〈id, F, V〉
of the previous example. One specific instance of the global rule
scheme, which is related to the execution of action a = nbr, may
establish that cautious agents (identified by type 2) accept the news
whenever the number of neighbours accepting the news is greater
than the agent’s threshold. This rule can be formalized easily, first
of all by setting the following side conditions:

id.type � 2( ) ∧ id.threshold < | id′ | id′ ≠ id ∧ id′.accept � true ∧∃G.id′, id ∈ G G( ){ }|( )

Notice that the neighbours of the agent id are those agents,
different from id, belonging to communities of which id is a
member. Then, as a side effect, we would also need to update V
with the mapping accept = true, i.e., V′ = V[accept↦true].

As another use case, assume that 〈S,G,W〉 is a trustworthy
network including the trustor 〈id, T, V〉 of the previous example.
In such a scenario, let us assume the asynchronous mode of
execution. In particular, assume by hypothesis that the action
snd_req of the trustor must synchronize with a corresponding
action rcv_req of the trustee in the same community of the trustor.
Therefore, we need one specific instance of the sync rule scheme
with a = snd_req and b = rcv_req. Then, if the interaction must be
enabled only if the trustor trusts the trustee, we would need a side
condition as follows:

id1.θ ≤f id1.α, id1.β( )

where f is the specific trust function, like, e.g., the probability
expectation of the Beta distribution, α

α+β(Jøsang and Ismail, 2002).

3We point out that∏W i is a shorthand expressing the combination of updatesW i

applied to the global data repositoryW by virtue of the moves performed locally by
the n agents. It is worth noticing that concurrent accesses to the same global
variable may occur whenever no mutual exclusion mechanisms are used explicitly
by the agents. It is known that this leads to nondeterministic behaviors. This is
reflected correctly by the network semantic rule, which, in such a case, would enable
multiple outgoing transitions, depending on the nondeterminism influencing the
way in which W can be updated. However, if the system at hand implements
mutual exclusion mechanisms, these would be modeled at the level of the agents’
behavior and of the semantics of the global rule scheme, so that no nondeterminism
about the update of W would emerge by applying the rule network.

Frontiers in Robotics and AI | www.frontiersin.org June 2022 | Volume 9 | Article 8666495

Aldini On the Modeling and Verification of Collective and Cooperative Systems

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Another instance of such a rule scheme is related to the
synchronization involving action rec_acc, the consequence of
which would be the update α = α + 1 in the local repository of
the trustor. We can argue analogously in the case of action rec_ref
and the related update involving β. Finally, one instance of the rule
scheme async would be associated to the execution of action
leave_com. If the agent is expected to leave the community
whenever the trustee is not trusted anymore, then a side
condition of such a rule would be the predicate idθ > f(id.α, id.
β). Moreover, two side effects would be given by the corresponding
update of the community G(G) to which the agent belongs and,
possibly, the updates α = β = 0.

3 MODEL CHECKING TEMPORAL
PROPERTIES

The verification of the properties of networks of agents is
conducted through model checking (Clarke et al., 1999).
Therefore, we need to define a sufficiently expressive and
intuitive logic to reason about the various levels of
information that our framework can express. To this aim, in
this section we present a temporal logic for the specification of
properties of networks, which is an instance of action/state-based
logics à la CTL (De Nicola and Vaandrager, 1990; ter Beek et al.,
2008). The logic is rather standard and its main novelties are
concerned with the treatment of the atomic formulas, in a way
that recalls and favors the agent/community perspective of the
modeling language.

The set of formulas N of the network logic we propose is
generated through the following syntax:

Φ ::� true | id.a | z)r | Φ ∧ Φ | ¬ Φ | Aπ | Eπ
π ::� Φ UΦ | ΦU≤kΦ

where:

• r ∈ R, k ∈ N, and) is any arithmetic comparison operator;
• id. a is the action-based atomic formula, and is satisfied by
any state enabling the execution of action a ∈ Act by
agent id;

• z)r is the state-based atomic formula, and is satisfied by
any state in which the evaluation of variable z satisfies the
condition )r;

• Aπ and Eπ express the classical universally and existentially
quantified path formulas;

• the two flavours of the until operator represent the unique
type of path formulas; basically a path satisfies Φ1 U Φ2 if it
begins with a finite sequence of states satisfyingΦ1 followed
by a state satisfying Φ2 (the k-bounded version adds a
requirement on the length of such a finite sequence).

As mentioned above, the main peculiarities of the logic are
given by the atomic formulas, while the composite formulas are
standard. The atomic formulas are action-based (id.a), denoting
the execution of an action a by the agent id, and state-based
(z)r), denoting that the state variable z satisfies a certain
condition parameterized by r.

As far as the semantics of the action-based formula id. a is
concerned, we have to distinguish between the two modes of
execution. In the asynchronous setting, id. a holds in 〈S,G,W〉,
denoted by 〈S,G,W〉 ⊧N id.a, if either agent 〈id, P, V〉 ∈ S can
execute action a in 〈S,G,W〉 by virtue of a semantic rule of
scheme async, or agent 〈id, P, V〉 ∈ S contributes, by offering
action a, to the execution of a synchronized action a × b in
〈S,G,W〉 by virtue of a semantic rule of scheme sync. In the
synchronous setting, id. a holds in 〈S,G,W〉 if agent
〈id, P, V〉 ∈ S contributes, by executing action a locally, to the
execution of the global, synchronous action τ enabled in
〈S,G,W〉 by virtue of the semantic rule network.

As far as the semantics of the state-based formula z)r is
concerned, we point out that, in our framework, any state of the
LTS modeling a network is labeled with different types of
information: the identities of the agents forming the system
communities, their local repositories, and the global
repositories. Hence, in order to allow for the definition of any
kind of state-based requirement, we admit z to represent
combinations of different types of values filtered in a certain
way. To this aim, we distinguish the following three cases.

The first case refers to the state-based formulas over global
variables. In this case, let z≔f{w | ϕg}, such that f is a scalar
function, w ∈ WNames, and ϕg is a logic formula filtering
communities. The intuition is that the values of the global
variable w taken from those communities that satisfy ϕg are
combined through f to obtain the result z. The logic formula
ϕg obeys the following syntax:

ϕg ::� true | c)k | w)r | ¬ ϕg | ϕg ∧ ϕg

where k ∈ N, w ∈WNames, and r ∈ R. A formula ϕg is a Boolean
predicate used to select communities based on conditions over
their identity (c)k, where c stands for community)4, conditions
over the value of their global variables (w)r), and logical
combinations of such atomic conditions. Semantically, the
evaluation of z≔f{w | ϕg} in a network state 〈S,G,W〉 is given by:

f | W G( )( ) w( ) |G ∈ CNames ∧ W, G( ) ⊧gϕg|{ } (1)
where fworks on values of a multiset and the satisfiability relation
⊧g for the atomic formulas generated by ϕg is defined as follows
(the case of the composite formulas is standard):

W, G( ) ⊧ true holds always
W, G( ) ⊧ c)k iff G)k
W, G( ) ⊧ w)r iff W G( )( ) w( ))r

If the evaluation of z≔f{w | ϕg} satisfies the condition)r, then we
have that z)r holds in 〈S,G,W〉, denoted by 〈S,G,W〉 ⊧N z)r.
Summarizing, f combines the values of the global variable w
extracted from those communities that satisfy the community
predicate ϕg; then the resulting value is compared to r.

4For the sake of simplicity, here we are assuming that CNames ⊆ N and the
condition c)k applies to the natural i representing the community identity,
i.e., i)k. If using another domain for community names (e.g., strings) then the
elements of the term )k would change accordingly.
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The second case refers to the state-based formulas over local
variables. In this case, let z≔f{v | ϕl}, such that f is a scalar
function, v ∈ VNames, and ϕl is a logic formula filtering agents.
The intuition is that the values of the local variable v taken from
those agents that satisfy ϕl are combined through f to obtain the
result z. The logic formula ϕl obeys the following syntax:

ϕl ::� true | ide)k | ide ∈ G | v)r | v)z | ¬ ϕl | ϕl ∧ ϕl

where k ∈ N, G ∈ CNames, v ∈ VNames, r ∈ R, and z≔f{w | ϕg} is
any combination of global variables as previously defined. A
formula ϕl is a Boolean predicate used to select agents based on
their identity (ide)k)5, community membership (ide ∈ G),
evaluation of their local variables compared to constant values
(v)r) or combinations of global variables (v)z), and logical
combinations of such atomic conditions. Semantically, the
evaluation of z≔f{v | ϕl} in a network state 〈S,G,W〉 is given by:

f |V v( ) | 〈id, P, V〉 ∈ S ∧ 〈id, P, V〉〈S,G,W〉⊧lϕl|{ } (2)
The satisfiability relation ⊧l for the atomic formulas generated

by ϕl is defined as follows (the case of the composite formulas is
standard):

〈id, P, V〉〈S,G,W〉 ⊧ true holds always
〈id, P, V〉〈S,G,W〉 ⊧ ide)k iff id)k
〈id, P, V〉〈S,G,W〉 ⊧ ide ∈ G iff id ∈ G G( )
〈id, P, V〉〈S,G,W〉 ⊧ v)r iff V v( ))r
〈id, P, V〉〈S,G,W〉 ⊧ v)z iff V v( )) 1( )

Notice that, for the semantics of v)z, with z≔f{w | ϕg}, the
evaluation of v in 〈S,G,W〉 is compared to the evaluation of z in
the same state, which is computed as stated by Eq. 1. Then, as in
the first case, if the evaluation of z≔f{v | ϕl} in 〈S,G,W〉 satisfies
the condition )r, we have that z)r holds in 〈S,G,W〉.
Summarizing, f combines the values of the local variable v
extracted from those agents that satisfy the local predicate ϕl;
then the resulting value is compared to r.

The third case is similar to the previous one and refers to the
state-based formulas over identities. In this case, let z≔f{ide | ϕl}.
The intuition is that the values of the identities of those agents
that satisfy ϕl are combined through f to obtain the result z.

Similarly as in the case of Eq. 2, the evaluation of f{ide | ϕl} in a
network state 〈S,G,W〉 is given as follows:

f id | 〈id, P, V〉 ∈ S ∧ 〈id, P, V〉〈S,G,W〉⊧lϕl{ } (3)
Notice that f applies to identities, which, by their uniqueness,

do not form multisets.
Now the semantics for the atomic formulas of N is clarified.

Hence, we are ready to define the satisfiability relation, denoted by ⊧N ,
for the non-atomic operators of the network logic. For this purpose,
given a LTS (Q, q0, L,R) we need to define the notion of a path. A path
σ is a (possibly infinite) sequence of transitions of the form:

σ ≔ q0 →
a0
q1 . . . qj−1 →

aj−1
qj . . .

where qj−1 →
aj−1

qj ∈ R for each j > 0. Every state qj in the path is
denoted by σ(j). Moreover, we denote with Path(q) the set of
paths starting in state q ∈ Q. The notion of path is needed to
formalize the quantified path operators. In particular, the
semantics of formula Φ U Φ′ states that a path satisfies the
formula if it reaches a state that satisfies Φ′, while satisfying Φ in
each intermediate state; note that the path could be empty if its
initial state satisfies Φ′. As far as the k-bounded version of U is
concerned, an additional condition must be applied, which
expresses that the length of the prefix of the path terminating
in the state satisfyingΦ′must be ≤ k. The formal semantics of the
composite operators of our network logic is presented in Table 2.
Example 5. Let us consider the social network 〈S,G,W〉 of the
previous example. The following state-based atomic formula Φ:

count ide | ide ∈ 1( ) ∧ accept � true( ) ∧ type � 2( ){ }> 3

is true if and only if the number of agents of type 2 belonging to the
community 1 of the social network and that are accepting (and
sharing) the news, is greater than 3. Then, through formula E true
U Φ we can evaluate whether a state is reachable that satisfies Φ.

On the other hand, let us consider the case of the trustworthy
network example. Given n the identity of the trustor of interest, the
following composite formula Φ:

n.leave_com ∧ min α | ide � n( ){ }≥ k( )
checks whether the agent n is available to leave the community
(since the action n. leave_com is enabled) even if the value of its
local variable α is ≥ k. Again, through formula E true UΦwe check
whether such a state is reachable.

4 USE CASES AND QUANTITATIVE
EXTENSIONS

The objective of the proposed framework is to generalize various
approaches to the same problem, which differ from each other for
the requirements of the application domain. Hence, it would be
useful to have a general-purpose approach, with high-level rules
and policies, that can be refined and adapted to each specific case.

For example, an instance of the presented general-purpose
modeling approach was proposed in previous work (Aldini, 2016,
Aldini, 2018), in the specific domain of trustworthy networks, in

TABLE 2 | Satisfiability relation of the network logic.

q ⊧NΦ ∧ Φ9 iff q ⊧NΦ and q ⊧NΦ9

q ⊧N ¬ Φ iff q0NΦ
q ⊧N Aπ iff ∀σ ∈ Path(q): σ ⊧N π

q ⊧N Eπ iff ∃σ ∈ Path(q): σ ⊧N π

σ ⊧NΦUΦ′ iff ∃ i ≥ 0
σ(i) ⊧NΦ′ ∧ (for all 0≤ j < i: σ(j) ⊧NΦ)

σ ⊧NΦU≤k Φ′ iff ∃ 0 ≤ i ≤ k

σ(i) ⊧NΦ′ ∧ (for all 0≤ j < i: σ(j) ⊧NΦ)

5We recall that, similarly as argued for the case of communities identities, we have
that agents identities are expressed as naturals. While an obvious condition
identifying a specific agent is of the form ide = n, with n ∈ N, we could also
envision the use of inequality operators if, e.g., the identities are ordered according
to some criteria.
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which trust and reputation models are used to govern the
interactions among trustors and trustees. Notice that the
examples reported in the previous section illustrate a
simplification of a trustor agent and associated behavioral
rules. As in such examples, the mode of execution is
asynchronous and the most interesting rules are those related
to the semantic rule scheme sync, as it is used to describe trust-
based interactions between agents. More precisely, the side
conditions of the semantic rules of such a scheme describe
both the trust-based communication policies (e.g., a certain
interaction from trustor A to trustee B is enabled if and only
if the trust of A towards B is higher/lower than the trust threshold
applied by A) and the policies behind the computation of trust
values (e.g., the trust from A to B is computed by combining
several variables, including the dispositional trust of A, the
previous experience with B, and the reputation of B). The
local repositories include any local trust-based information
needed to govern the policies above (e.g., the dispositional
trust of A towards unknown trustees, the trust threshold
applied by A, and the scores used to adjust trust after each
satisfactory/unsatisfactory interaction). The community-based
global repositories are used to collect the opinions shared by
the agents within each community to form the reputation scores
feeding the trust model.

Then, through model checking, properties expressed in our
network logic are used to analyze, e.g., how the trust towards a
trustee as perceived by a community is determined depending on
the services delivered by such an agent. Variants of such
properties allow also to investigate the impact of attacks
performed, e.g., by injecting false recommendations. The
analysis of real-world case studies, like the Trust-Incentive
Service Management by Zhang et al. (2007), the Reputation-
based Framework for Sensor Networks by Ganeriwal et al. (2008),
and the Robust Reputation System by Buchegger and Boudec,
(2004), was conducted automatically through the model checker
NuSMV (Cimatti et al., 2002), thanks to a mapping from our

specification language to the model of finite state machines used
by the software tool.

The proposed modeling approach is general enough to allow
for standard extensions to, e.g., probabilistic and stochastic
models. For instance, in Aldini, (2022), it is extended with
probabilities in order to model and analyze the spread of fake
news in social networks. The network is divided into
communities of agents, which in turn may exhibit different
attitudes to share unchecked news or to conduct some fact
checking. The examples reported in the previous section
illustrate the non-probabilistic behavior of a type of agent
susceptible to stimuli from the environment. The local
repositories include the variables characterizing the agent’s
attitute to believe, check, and share news.

The reference model underlying the approach of Aldini,
(2022) is that of fully probabilistic LTSs (PTSs, for short)
obeying the generative model of probabilities (Van Glabbeek
et al., 1995). Analogously, our basic calculus is enriched with
probabilistic information, similarly as done, e.g., in Baeten et al.
(1992). For instance, in a. P action a is executed with probability
1, while the choice operator P + Q is replaced by the probabilistic
choice operator P + pQ, with p ∈ 0, 1, stating that an action of P
(respectively, Q) is chosen with probability p (respectively, 1 − p).
The mode of execution is synchronous: the global and network
semantic rule schemes are extended accordingly to deal properly
with such quantitative information in respect of the underlying
model of probabilities.6.

The verification of PTSs relies on model checking of
probabilistic temporal logic formulas (Kwiatkowska et al.,
2011; Chen et al., 2013), which are described in a version of
our logic that replaces the quantified path operators with the
PCTL probabilistic (reachability) operator P)p(π) (Hansson
and Jonsson, 1994; Bianco and de Alfaro, 1995). The
automated analysis was possible through a mapping to the
PRISM model checker (Kwiatkowska et al., 2011). The goal of
the analysis was to estimate the propagation of fake news over the
whole network, depending on the topology of the system and the
presence of reliable fact checkers.

In the following, we complete such an overview of potential
applications, by considering an example based on another
instance of our framework.

4.1 Use Case: Blockchain Efficiency
In order to show the flexibility of our approach, here we discuss a
case study requiring to deal with stochastically timed events. In
such a way, our basic process calculus becomes a stochastic
process calculus, in which actions are enriched with rates of
exponentially distributed random variables that represent the
action duration. Thus, such models give rise to stochastic
processes in the form of (action-labeled) Continuous Time
Markov chains (Clark et al., 2007). Technically, the operators
of our basic calculus are still the same, with the trick of adopting

FIGURE 1 | Example of P2P network with 6 communities; some
representative peers are depicted, including 2 miners.

6Models combining nondeterminism and probabilities, like in Markov Decision
Processes, can be adopted as well in our approach, by adapting accordingly the
semantics.
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the additional syntax and semantics of the stochastic process
algebra PEPA (Hillston, 1996; Tribastone et al., 2009). In
particular, actions are pairs of the form (a, λ), where a ∈ Act
and λ ∈ R+ is a positive rate representing the parameter of an
exponential probability distribution governing the duration of the
timed action. In this setting, the choice operator captures a notion
of competition solved via the race policy: the action to execute is
the one that samples the least duration. We refer to the citations
above for all the details about the semantics of stochastic
processes. In our use case, we assume the fully asynchronous
mode of execution, so that in the following we have to specify the
instances of the rule async tailored to the given use case.

The objective of the case study is to model a network of peers
(P2P network) exchanging information about the blocks of a
blockchain, which are generated by special agents called miners -
see, e.g., Gamage et al. (2020) for a comprehensive overview of
this distributed ledger technology. The blockchain model under
consideration is permissionless and based on the proof-of-work
mechanism (as in the case, e.g., of Bitcoin). Basically, any peer can
mine a new block by solving a cryptographic puzzle called proof-
of-work. To this aim, it is essential for the miner to learn
information about the most recent block added to the
blockchain and the data with which a new block is compiled,
which depend on the specific application domain (e.g., virtual
currency transactions in the case of Bitcoin). Here, we abstract
away from the application domain and we concentrate on the
blockchain management.

Peers acting as miners have the following behavioral pattern:

Miner �def obs_block, prop_rate( ).Miner + mine,mining_rate( ).Miner′
Miner′ �def obs_block, resume_rate( ).Miner + add_block, prop_rate( ).Miner

A mining node can notice that a new block was mined and
propagated through the miner’s community (action obs_block)
and, at the same time, tries to solve the proof-of-work that would
allow him to mine the next block (actionmine) to be added to the
blockchain and propagated to the network (action add_block).
The other ordinary peers advertise and relay to their reference
communities any new block added to the blockchain. Hence, they
simply act as forwarder nodes:

Peer �def obs_block, prop_rate( ).Peer + prop_block, prop_rate( ).Peer

A peer can notice that a new block was mined (action
obs_block) and can propagate newly received blocks (action
prop_block).

As far as the local repositories are concerned, every node shall
maintain a local copy of the blockchain; for the sake of simplicity we
limit each node to store the last block of the blockchain, which is
abstractedly represented by a local counter block_id initially set to 0
for every node of the network. As far as the community-based global
repositories are concerned, we use a global variable last_block_id
storing the most recent block propagated in the community. With
such additional information in view–used to define the local
mapping V of each node and the global mappings W for the
communities–we now define the several instances of the semantic
rule scheme async. For each instance, we specify the action of
interest, the enabling conditions, and the side effects:

1. case a = obs_block:
• ∃G ∈ CNames: id ∈ G
(G) ∧ id.block_id< (W(G))(last_block_id)

• V′ � V[block_id ↦ (W(G))(last_block_id)]

FIGURE 2 | Relation between blockchain length and fork likelihood: analysis for 4 different scenarios.
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• W′ � W
2. case a = prop_block:

• ∃G ∈ CNames: id ∈
G(G) ∧ id.block_id> (W(G))(last_block_id)

• V′ = V
• W′(G) � W(G)[last_block_id ↦ V(block_id)]

3. case a = add_block:
• ∃G ∈ CNames: id ∈ G(G) ∧ (id.block_id + 1)> (W(G))(last
_block_id)

• V′ = V[block_id↦V(block_id) + 1]
• W′(G) � W(G)[last_block_id ↦ V(block_id) + 1]

The first case, which refers to the observation of a new block by
a node in one of its communities, requires the node to update its
local copy of the blockchain. The second case, which refers to the
propagation of a new block by a node to one of its communities,
requires the node to update the global repository of that
community. The third case, which refers to the upload of a
new block to the blockchain, requires the miner to update its
local copy and to propagate the block. Notice that, by the presence
of several potential communities (see the existential quantifier
over G ∈ CNames), such cases may enable several different
outgoing transitions, one per involved community. Any other
action, like action mine in our example, does not require side
conditions and/or effects, i.e., the async rule scheme is applied
with cond ≔ true and no variation of the local/global
repositories.

Essentially, the specification requires just to define the
behavioral pattern of the node types (Miner and Peer) and the
pre/post-conditions associated with the execution of the relevant
actions. Analogously, we now show through a simple example
how it is easy to model properties of interest.

Block propagation delays may potentially impair the
correctness of the blockchain sharing process, because a
miner could mine and propagate a block before learning of
a newly mined block that has been added to the blockchain.
Such a misalignment problem is known as blockchain fork. To
solve the issue, the network abandons the blocks that are not in
the longest chain. Hence, performance and correctness are
tightly connected, as the speed at which peers learn of new
blocks is related to the likelihood of forks in the blockchain.
Recently, in Chandrasekaran et al. (2022) an empirical study of
the information propagation delays between nodes in
blockchain P2P networks was proposed that emphasizes
how the likelihood of forks drastically diminished since
2013. In particular, block propagation delays are estimated
in the top four blockchain-based applications, including
Bitcoin.

Here, we propose a formal and automated verification of
the analysis mentioned above, based on the use of the PRISM
model checker7. For analysis purposes, we decided to
instantiate the rates of the timed actions according to the
Bitcoin related estimates of Chandrasekaran et al. (2022): the

expected time to mine is about 10 min, while the mean
(respectively, median) end-to-end propagation delay is
about 4 s (respectively, about 0.4 s). Moreover, we modeled
various configurations, represented by the topology shown in
Figure 1, in which the P2P network radius - represented by
the number of involved communities, depicted as clouds - is
equal to 6. When a block is advertised in a community, all the
members of the community react by experiencing the
same delay, so that the overall end-to-end delay of the
network depends on the network radius. Two miners are
present in the network, while the other peers are either
members of a single community or belonging to the
intersection of many of them.

For the purpose of model checking, we consider a
probabilistic reachability property of the form P)p(π),
where π is an until formula expressing the reachability of a
state in which a peer mines a new block and uses it to extend an
obsolete version of the blockchain, thus causing a fork.
Formally, if we concentrate on the miner with id = 1, such
a condition is a mixture of action and state based formulas
defined as follows:

1.add_block( ) ∧ count ide | ide � 1 ∧ block_id<max last_block_id | true{ }{ } � 1( ).

The first conjunct holds when the first miner is enabled to
update the blockchain. The second conjunct holds when such
an update is obsolete as a more recent block is circulating in the
network. We can reason analogously for the other miner, and
then join the result of the two properties.

In Figure 2, we show the results of such an analysis by
considering the four combinations deriving from two different
configuration choices. The first dimension is given by the
topology specification: in scenarios A and B we have exactly
the representative nodes depicted in Figure 1, while in
scenarios C and D only the miners and the peers in the
intersecting areas between the communities are modeled.
Then, in the first two scenarios we measure the fork
likelihood in a period of time equal to 100 min, while in the
other two scenarios we refer to a 1 day interval. The second
dimension is given by the propagation delay between each pair
of peers, which is chosen to correspond to the mean end-to-
end delay measured in Chandrasekaran et al. (2022) for
scenarios A and C, and to the median end-to-end delay
measured in Chandrasekaran et al. (2022) for scenarios B
and D. Moreover, each figure presents the results obtained
in three different cases: in case (1) both miners experience the
same mining delay (10 min), in case (2) the second miner is
slower (15 min), while in the third case the second miner is
faster (5 min).

In general, case (1) emphasizes that the fork probability is
negligible, especially in cases (b) and (d). These results confirm
the performance shown in Chandrasekaran et al. (2022). In detail,
cases (2) and (3) reveal that the monitoring of the proof-of-work
expected time is critical to maintain the fork likelihood at the
desired level. Summarizing, already this simple case study
illustrates that our framework is flexible and easy-to-use both
from the modeling and the verification standpoints, also in the
quantitative setting.

7The PRISM source file resulting from our specification is available at: https://
github.com/aldinia/prism-bc-specs.
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5 RELATED WORK AND CONCLUSIONS

The aim of the proposed approach is to provide a modeling and
analysis framework that can be instantiated to specific application
domains. The common feature of such domains is that they are
characterized by collections of autonomous, dynamic, and interactive
agents exhibiting a wide spectrum of cooperation patterns, as well as
both reactive and proactive behaviors. The reported examples
emphasize that the considered systems may express social relations
of human agents in virtual environments, human–computer
interactions, and also machine to machine communication. These
include online services for smart and sustainable environments, and
computer supported cooperative networks.

The verification of coordination and control strategies for
cooperative multi-agent systems is of paramount importance
even in the setting of inter-robot communications. To this
aim, several formal approaches to the design of coordination
for robotics emerged in the literature. For instance, the design
method proposed in Dai et al. (2016) employs concurrent finite
automata and is based on a top-down approach recalling the
separation of concerns adopted in our framework at a higher
abstraction level. In Gu et al. (2020), the specific problem of
synthesising and verifying collision-free paths for autonomous
multi-agent systems is dealt with formally through stochastic
timed automata and statistical model checking. The verification is
conducted automatically through the software tool UPPAAL. In
Abd Alrahman and Piterman, (2021), reconfigurable multi-agent
systems are modeled via finite automata andmodel checked using
a variant of the Linear Temporal Logic (LTL). The authors
emphasize that formal paradigms for modeling dynamic
multi-agent systems cannot rely (only) on point-to-point
communication. Instead, group-based communication is more
appropriate, which is exactly one of the principles behind our
framework. By following the same basic ideas, formal modeling
paradigms and probabilistic model checking techniques are
adopted for the analysis of autonomous agents by Sekizawa
et al. (2015) and by Al-Nuaimi et al. (2018). Both approaches
use the software tool PRISM for the automated analysis, similarly
as done in the quantitative extensions of our framework. In
general, all the formal approaches mentioned above rely
directly on paradigms that are also at the base of our
framework, on top of which we defined a high-level process
algebraic specification language. The need for high-level
languages in this setting is emphasized, e.g., by De Nicola
et al. (2018); Abd Alrahman and Piterman (2021). For
instance, we mention the languages ISPL (Lomuscio et al.,
2009) and SCEL (De Nicola et al., 2015). The semantics of the
former is based on concurrent labeled transition systems, which
specifically adopt a form of synchronous communication.
Interestingly, model checking is based on an epistemic logic
encompassing a knowledge operator. On the other hand, the
latter naturally supports knowledge-based communication for
dynamic systems, in a way that recalls the method used in our
framework to support uni/multi-cast communication via local/
global repositories. The full semantics of SCEL is not trivial to
export to a runtime environment; tool support is given, e.g., by
the model checker SPIN and the MAUDE framework.

In the literature, it is worth mentioning that formal, process-
algebraic approaches (Loreti and Hillston, 2016), semi-formal,
architectural description approaches (Ozkaya and Kloukinas,
2013), and combinations of both (Basu et al., 2011; Hennicker
et al., 2014; Bures et al., 2016) have been proposed to model and
analyze dynamic reconfigurable architectures (De Nicola et al.,
2020) and (self-)adaptive systems (Gabor et al., 2020). In
particular, the language CARMA (Loreti and Hillston, 2016) is
specifically defined to model collective adaptive systems and
shares several features with our framework, such as the
separation of concerns advocated in Section 2, support for
local/global views, and a formal semantics in operational style.
The process calculus of CARMA is stochastic and has aMarkovian
semantics, on which numerical analysis based on simulation can
be conducted. Moreover, CARMA is equipped with an
architectural-style specification language on top of the calculus.
By virtue of its modeling capabilities, CARMA is an ideal
candidate for representing an instance of the modeling
framework proposed in this paper. The BIP framework of Basu
et al. (2011) proposes synchronous priority-based communication
and a rigorous semantics based on finite-state automata and Petri
nets. Compositional verification methods are based on static
analysis of local/global invariants. For instance, deadlock-
freedom is checked for a robot controller. Interestingly, BIP
can be part of a software design flow culminating in deployable
code generation. The HELENA approach of Hennicker et al.
(2014) formalises the modeling of ensembles (i.e., groups of
dynamic collaborating entities) through a class of automata. A
mapping towards Promela allows for model checking verification
through the SPIN model checker (Klarl, 2015). The modeling of
ensembles is also the goal of the DEECo approach of Bures et al.
(2016), the operational semantics of which is defined in terms of
labeled transition systems. Tool support is provided to enable the
verification of reachability properties.

In many of the cases discussed above, classical temporal
logics, like LTL and PCTL, support, via model checking, the
formal verification of dynamic, multi-agent systems.
Sometimes, ad-hoc extensions are used to model specific
properties of cyber-physical systems, such as spatial-based
conditions (Ciancia et al., 2018; Platzer et al., 2019). The
property specification language proposed in our work
encompasses the features of CTL-like logics, with a specific
emphasis on the separation of concerns and local/global views
that characterize the modeling style of our framework.

The key factor of the proposed approach that represents the
novelty of this paper is given by the flexibility of a high-level
framework combining an action-based formalism with data-
driven communication mechanisms based on which different,
customized semantics can be provided and supported by several
automated tools. So, with respect to the state-of-the-art, by itself
the proposed approach does not add new theoretical insights and
results. Together with the ease of use in modeling both behavioral
patterns and property specifications, the flexibility mentioned
above makes our framework adequate to model collective
adaptive systems and to support those programming
frameworks (Beal et al., 2015; Berndtsson and Mellin, 2018;
Casadei et al., 2018) used to develop them.
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