
Model-free reinforcement
learning for robust locomotion
using demonstrations from
trajectory optimization

Miroslav Bogdanovic1*, Majid Khadiv 1 and Ludovic Righetti 1,2

1Movement Generation and Control Group, Max Planck Institute for Intelligent Systems, Tübingen,
Germany, 2Machines in Motion Laboratory, Tandon School of Engineering, New York University, New
York, NY, United States

We present a general, two-stage reinforcement learning approach to create

robust policies that can be deployed on real robots without any additional

training using a single demonstration generated by trajectory optimization. The

demonstration is used in the first stage as a starting point to facilitate initial

exploration. In the second stage, the relevant task reward is optimized directly

and a policy robust to environment uncertainties is computed. We demonstrate

and examine in detail the performance and robustness of our approach on

highly dynamic hopping and bounding tasks on a quadruped robot.

KEYWORDS

legged locomotion, deep reinforcement learning, trajectory optimization, robust
control policies, contact uncertainty

1 Introduction

Deep reinforcement learning (DRL) has recently shown great promises to control

complex robotic tasks, e.g., object manipulation Kalashnikov et al. (2018), quadrupedal

Hwangbo et al. (2019) and bipedal Xie et al. (2020) locomotion. However, exploration

remains a serious challenge in RL, especially for legged locomotion control, mainly due to

the sparse rewards in problems with contact as well as the inherent under-actuation and

instability of legged robots. Furthermore, to successfully transfer learned control policies

to real robots, there is still no consensus among researchers about the choice of the action

space Peng and van de Panne, (2017) and what (and how) to randomize in the training

procedure to generate robust policies Xie et al. (2021b).

Trajectory optimization (TO) is a powerful tool for generating stable motions for

complex and highly constrained systems such as legged robot (Winkler et al., 2018;

Carpentier and Mansard, 2018; Ponton et al., 2021). However, re-planning trajectories

through a model predictive control (MPC) scheme is still a challenge, because the

computation time for solving a high-dimensional non-linear program in real-time

remains too high. Furthermore, apart from recent works explicitly taking into account

contact uncertainty to design robust control policies (Drnach and Zhao, 2021; Hammoud

et al., 2021), the inclusion of robustness objectives in trajectory optimization can quickly

OPEN ACCESS

EDITED BY

Alan Frank Thomas Winfield,
University of the West of England,
United Kingdom

REVIEWED BY

Léni Kenneth Le Goff,
Edinburgh Napier University,
United Kingdom
Mark Gluzman,
Cornell University, United States

*CORRESPONDENCE

Miroslav Bogdanovic,
mbogdanovic@tue.mpg.de

SPECIALTY SECTION

This article was submitted to Robot
Learning and Evolution,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 13 January 2022
ACCEPTED 20 July 2022
PUBLISHED 31 August 2022

CITATION

Bogdanovic M, Khadiv M and Righetti L
(2022), Model-free reinforcement
learning for robust locomotion using
demonstrations from
trajectory optimization.
Front. Robot. AI 9:854212.
doi: 10.3389/frobt.2022.854212

COPYRIGHT

© 2022 Bogdanovic, Khadiv and
Righetti . This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 31 August 2022
DOI 10.3389/frobt.2022.854212

https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.854212&domain=pdf&date_stamp=2022-08-31
mailto:mbogdanovic@tue.mpg.de
https://doi.org/10.3389/frobt.2022.854212
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.854212

end up in problems that cannot be solved in real time for high-

dimensional systems in multi-contact scenarios.

In this work, we propose a general approach allowing for the

generation of robust policies starting from a single

demonstration. The main idea is to use TO to generate

trajectories for different tasks that are then used for

exploration for DRL.

Reinforcement learning for locomotion: The use of

reinforcement learning for generating stable locomotion

patterns is a relatively old problem (Hornby et al., 2000; Kohl

and Stone, 2004). However, these works mostly use a hand-

crafted policy with very few policy parameters that are tuned on

the hardware. Later works use a notion of Poincare map to ensure

the cyclic stability of the gaits (Morimoto et al., 2005; Tedrake

et al., 2005). These approaches have enabled later a humanoid

robot to walk Morimoto and Atkeson, (2009), but their

underlying function approximator cannot handle large

number of policy parameters which limits their application.

Furthermore, the robot hardware at that time were not

capable of dynamic movements which made the researchers

focus mostly on the walking problem. Later, (Fankhauser

et al., 2013), used more scalable approaches (PÎ2 algorithm by

Theodorou et al. (2010)) for generating a hopping motion on a

single planar leg. Recently, deep reinforcement learning has

become the main approach for learning both locomotion and

manipulation policies.

Combining Model-based Control with DRL.One approach

to benefit from the efficiency of the model-based control methods

and the robustness of DRL policies is to use a hybrid method.

Works within this setting can be split into two categories; 1)

Desired trajectories are generated by DRL using a reduced order

model of the robot, e.g., centroidal momentum dynamics Xie

et al. (2021a), 2) A residual policy adapts the trajectories from TO

(Gangapurwala et al., 2020; Gangapurwala et al., 2021). Both

approaches pass the generated trajectories to a whole-body

controller to track the trajectories while satisfying constraints.

The first category resolves the problem of exploration in DRL by

using a reduced model which neglects the whole-body dynamics

which is limiting for most highly dynamic locomotion tasks. The

second category works well as long as the real robot behaviour

remains close to the pre-generated trajectories. In cases that there

exists a significant change in the environment or large external

disturbances, those trajectories are not useful and the RL policy

needs to learn to ignore them and find a whole new policy to

learn the new behaviour. In such cases, it seems this approach is

very limited.

Learning from demonstrations. An interesting approach to

address this issue is to utilize demonstrations for the given task

(Schaal, 1997; Ijspeert et al., 2002; Peters and Schaal, 2008). By

providing to the reinforcement learning algorithm basic motions

required for completing the task, we remove the need for the

algorithm to find it on its own using random exploration. Here,

one can combine trajectory optimization with deep

reinforcement learning, by utilizing motions generated by

trajectory optimization as demonstrations used to further

generate robust policies using deep reinforcement learning.

Demonstrations can be utilized by reinforcement learning

approaches in several different ways. In order to train a

reinforcement learning policy to reproduce the demonstration

behavior, the majority of approaches have some notion of time in

the input of the policy. Some approaches explicitly give time-

indexed states from the demonstration trajectory directly as

input (Peng et al., 2020; Li et al., 2021). Alternatively, some

works train the policy to reproduce the demonstration behavior

using only a phase variable in the policy input (Xie et al., 2020;

Siekmann et al., 2021). Removing any notion of time from the

input makes it difficult to train robust policies for real systems

(Xie et al., 2020).

Robustness and time-dependence. There is however a

crucial issue in learning control policies in such a way, in

particular in the presence of environmental uncertainties. As

an example, imagine we want to produce a hopping policy that

can account for large uncertainties in the ground height. When

contact is made at a different time than in the demonstration, the

phase given as input to the policy will be different than the actual

phase in the task. Instead of just going directly into a baseline

hopping motion after making contact with the ground, the policy

would need to force itself to get back into phase with the

demonstration to have any luck to complete the task. Even

removing any notion of time from the input does not on its

own solve this issue. The policy would still need to get back in

phase with the demonstration trajectory, but without the

time-based inputs lack the information needed to be able

to do so. Hence, fully removing time dependence from the

demonstration trajectories in the final feedback policy is key

in our approach to provide robustness with respect to contact

timing uncertainties.

There are additional benefits in eliminating time dependence

when training robust control policies. It allows us to more

broadly randomize initial configurations of the system,

something key in deploying learned policies on real robots. It

also separates behavior given in the demonstration from the task

goals, allowing us to improve beyond the demonstration for all

the important aspects of the task at hand.

Our approach. In this work we propose a general approach

that combines TO and DRL in order to produce robust policies

that can be deployed on real robots. We benefit from trajectories

produced by TO to bootstrap DRL algorithms and avoid

exploration issues. We then use DRL to, based on these

demonstrations, produce policies robust to environmental

uncertainties. In this way we get the best of both worlds.

Starting from TO trajectories affords solving complex tasks

DRL would otherwise struggle with. The two-stage DRL

approach we propose then allows us to avoid the above issues

that arise when learning based on demonstrations and learn

entirely time-independent robust policies.

Frontiers in Robotics and AI frontiersin.org02

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

1.1 Related work

Several recent works have used reinforcement learning

to compute policies for locomotion tasks in simulation

before deploying them successfully on a real quadruped

(Hwangbo et al., 2019; Lee et al., 2020; Peng et al., 2020)

or biped robot (Xie et al., 2020; Li et al., 2021; Siekmann

et al., 2021).

In (Xie et al., 2020), similarly to our work, the authors start by

learning a policy to track a reference motion and then further

improve it to enable its transfer to the real system. Crucially,

unlike our approach, some notion of time remains present in the

policy input in all stages of training, either as a reference motion

or a phase variable. The reward for tracking the original

trajectory also remains present in further stages of training,

preventing the policy to freely adapt away from it in order to

optimize task performance. Finally, while the resulting policies

show some robustness to external perturbations, there are no

environment uncertainties present and no need to adapt the

timing of the behavior to account for it.

In (Li et al., 2021), the authors aim to improve upon some

aspects of (Xie et al., 2020). Instead of learning the policy output

in the residual space, i.e. learning only the correction with respect

to the demonstration trajectory, they learn the full control signal.

While this makes it easier for the policy to adapt its actions away

from the demonstration, the time-dependence is still present in

the policy input and the issue of adaptation of timing of the

demonstration remains.

In (Peng et al., 2020) the control policy is computed in a

single stage of training, by learning to track the given

demonstration behavior. For successful transfer to real

robot they rely on domain adaptation, finding the latent

encoding over the set of dynamics parameters that performs

the best. There is however no randomization of the

environment during training and all test are performed

on flat ground. Similarly to the previous works, the

notion of time remains present in the policies here as

well, explicitly as a goal given to the policy containing

robot states from the reference motion in several of the

following time steps.

Unlike these approaches, the most successful recent learning

based approach for locomotion in a challenging uncertain

environment does not utilize demonstrations at all. The

authors of (Lee et al., 2020) learn a robust locomotion policy

for a quadruped robot that performs well on uneven and

uncertain surfaces. The lack of any notion of pre-determined

timing affords more room to the policy to adapt to

environmental uncertainties (in this case even explicitly by

outputting the frequency of the motion). While learning from

scratch is possible in this case, it is true for one specific task

(trotting without any flight phase) and with the structure

imposed by the proposed controller. With the structure we

mean that the policy only outputs stepping frequency for each

foot and this is mapped to the joint space using inverse

kinematics. For highly dynamic tasks with flight phases and

impacts, with no specific structure imposed for joint behavior

utilizing demonstrations is still necessary. Therefore, the issue we

address in this work, i.e. finding ways to build fully adaptive

policies starting from demonstration behaviors, remains a

challenge.

1.2 Contributions

The main contributions of this paper are as follows:

• We propose a framework to exploit the benefits of both TO

and DRL to generate control policies that are robust to

environmental uncertainties. A key aspect of our

framework is to lose time-dependence from the initial

trajectories and to build a policy that can adapt to large

uncertainties in the environment.

• We evaluate the method on two highly dynamic tasks on a

quadruped and show that our framework can deal with

random uneven terrains as well as external disturbances.

To the best of our knowledge, these results are the first

demonstrating the successful use of DRL to robustly realize

such behaviors.

2 Proposed algorithm

Algorithm overview. Our proposed algorithm has three

main parts as shown in Figure 1. First we use TO to generate

efficiently, based on a nominal model of the robot, initial

trajectories for new tasks. The first stage of DRL training then

proceeds to build a control policy around this trajectory, caching

the solution to a light neural network. In the second stage of DRL

training we replace the trajectory tracking optimization with one

that directly optimizes task performance and introduce

uncertainties in the training environment. This allows us to

further adapt the policy from the first stage, making it robust

and independent from the initial demonstration. As a final result,

we get a policy that can be directly deployed on the real system

without any additional training.

2.1 Trajectory optimization

Generating initial demonstration. We use trajectory

optimization to generate a nominal motion for the desired

task based on a nominal model of the robot and the

environment. In this work, we use the trajectory optimization

algorithm proposed in (Ponton et al., 2021) to compute such

demonstrations. It is important to emphasize that any other

trajectory optimization algorithm could also be used, as long as it

Frontiers in Robotics and AI frontiersin.org03

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

provides a set of full-body trajectories. However, the more

realistic the generated motion is, the easier it is for the first

stage of DRL to find a policy that tracks it. In addition, we do not

utilize control actions provided by the demonstration trajectory.

Only the state trajectories are required. This allows us to use any

control parametrization for the policy being learned, potentially

different than the one used to generate the demonstration. For

instance, it is well known that having the policy output the next

desired state for a fixed PD controller (rather than torque) is

beneficial in terms of transfer to the real world (Hwangbo et al.,

2019; Bogdanovic et al., 2020; Siekmann et al., 2021). However,

finding these actions in a trajectory optimization setting is not

necessarily trivial.

2.2 DRL stage 1: Learning a policy to track
a given trajectory

Control policy. We use a neural network to parametrize the

control policy. A relatively small network proved sufficient for

the tasks we considered, with two layers of 64 units each.We keep

the observation space of the policy simple, with the positions and

velocities for each joint (qjoint, _qjoint) and only robot base variables

relevant for the current task. For the hopping task, this consists of

the base position and velocity along the Z-axis (zbase, _zbase). For

the bounding task we also add the angular position and velocity

around Y-axis (θbasey , _θ
base

y). The policy outputs parameters for a

PD controller in joint space. It gives desired joint positions at

each step, while utilizing fixed P and D gains for control.

Throughout all the stages of training, we use an additional

cost term incentivizing the policy to output values for desired

joint positions that are actually tracked as well as possible.

Specifically, we penalize the difference between the value given

for the desired position by the policy at step t and the actual

position achieved at the next step t + 1:

rtt � −ktt qjointdes t() − qjoint t + 1()���� ����2 (1)

We note that while this reward term incentivizes a policy to

produce a trajectory that is well tracked, it does not prevent it to

give values off the trajectory to create forces during contact when

necessary. This has been a crucial aspect of our previous work

(Bogdanovic et al., 2020) to enable direct policy transfer to real

robots without domain randomization of robot parameters.

Training procedure. We use Proximal Policy Optimization

(PPO) (Schulman et al., 2017) to optimize the policies in both

stages of our framework, but we do not have many requirements

in the choice of the algorithm. PPO is an on-policy

reinforcement learning method, working similarly to a trust-

region method, but relying on a clipped objective function in

order to simplify the algorithm and ensure better sample

complexity. As we use the provided demonstration to

resolve exploration issues, we do not need a, potentially off-

policy, reinforcement learning algorithm with strong

characteristics in this regard. We instead choose an on-

policy algorithm with good convergence properties.

In this stage, the optimized reward consists of two parts: a

part for tracking the time-based demonstration and the above-

defined regularization term that is a part of the controller

parametrization:

rs1 � rti + rtt
rti � kti1 exp −kti2‖xbasedemo − xbase‖() + kti3 exp −kti4‖ _xbasedemo − _xbase‖()

+ kti5 exp −kti6‖qbasedemo ⊖ qbase‖()
+ kti7 exp −kti8‖ωbase

demo − ωbase‖()
+ kti9 exp −kti10‖qjointdemo − qjoint‖()
+ kti11 exp −kti12‖ _qjointdemo − _qjoint‖()

rttas defined in (1), (2)

where xbase is the position of the robot base, qbase the base

quaternion, ωbase the base angular velocity and qjoint the joint

positions. kti1, . . . , kti12 represent individual weight and scale

FIGURE 1
Schematic of our proposed framework. We start from a single demonstration trajectory generated by TO. In the first DRL stage we learn a policy
that tracks that demonstration trajectory and successfully produces nominal behavior in simulation. To enable transfer to the real robot, the second
DRL stage starts with the resulting policy from the first stage and tries to robustify the policy by randomizing contact and to optimize for performance
by replacing demonstration tracking reward with task reward. We directly apply the output policy from the second stage to the robot without
any domain randomization of robot parameters.

Frontiers in Robotics and AI frontiersin.org04

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

constants for each term. We mark difference between two

quaternions with ⊖.
Following Peng et al. (2018), we make two further design

choices that prove to be vital in making the training robustly work:

• We initialize each episode at a randomly chosen point on

the demonstration trajectory.

• We terminate episodes early if the robot enters states that

are not likely to be recoverable (based for example on tilt

angle of the robot base) or just not conducive for learning

(for example knees of the robot making contact with the

ground).

Output. In the first DRL stage, we aim to produce a policy that

provides some nominal behavior on the task in simulation.

However, in our experiments, these policies failed to transfer to

the real robot. They remain static, cause shaky behavior on the

robot, or result in motions with severe impacts. We give some

examples in the accompanying video. As can be seen there, the

behavior is not even close to the gaits in simulation which makes

any quantitative analysis unfeasible. To solve these problems, we

need an additional stage of training that generates policies that can

transfer to the real robot.

2.3 DRL stage 2: Generating robust time-
independent policy

To create policies that are successfully transferable to the

real robot, we continue training starting from the policies

outputted from the first stage. As a note, we preserve the

entire policy, including the parameters controlling the

variance of the action distribution that the policy outputs.

While the lower variance from the resulting policies from

stage 1 might lower exploration capabilities in stage 2, the

initial policy already performs nominal behavior on the task,

so there is no need for significant exploration away from it.

Additionally, we found that any attempts to artificially

increase the variance prior to stage 2 result in quick loss

of the behavior from stage 1 that we are attempting to carry

over. On the other hand, we found no issues with potentially

low resulting variance from stage 1 preventing further

adaptation of the policy in stage 2.

We further introduce the following changes in the training

procedure:

Initialization.We replace initialization on the demonstrated

trajectories with initialization in a wider range of states. This

allows us to better cover the range of states the policy might

observe when deployed on the real system, allowing it to learn

how to recover and continue the motion in those cases.

Environment uncertainties. We introduce uncertainties in

the environment in order to produce more robust motions when

deployed on the real system. In this work, we are mainly

concerned with randomization of the contact surface heights

and friction.

Time-independent task reward. We replace the time-based

demonstration tracking reward with a time-independent, direct

task reward.We have already noted the issues that can arise while

trying to account for environment uncertainties while tracking a

time-based demonstration trajectory. The policy is locked into

trying to follow the specific time schedule regardless of the

environment, whereas adapting it would produce much better

recovery behavior. Switching to a time-independent reward,

directly defining the task helps us deal with this.

Switching to this task reward has additional benefits. It allows

us to directly optimize desirable aspects of the task, whereas the

demonstration only needs to give us some nominal behavior on

the task. The policy is free to change the behavior in a way that is

needed to perform the task in the best possible way, without

being penalized for not doing it in the same way as in the

demonstration. We can also, as we will see later, produce

varied behavior starting from a single demonstration by

adapting this task reward.

Regularization rewards. Finally, we add additional reward

terms in this stage to further regularize the behavior of the

learned policies. We aim to incentivize desirable aspects of

policies in the tasks, like torque smoothness and smooth

contact transitions (refer to Section 2.3 for details).

3 Evaluation

3.1 Tasks setup

We evaluate our approach on two different dynamic tasks on

a quadruped robot: hopping and bounding. In the hopping task,

the robot has to perform continuous hops on four legs, reaching a

specific height and softly landing on the ground. Bounding

consists of the robot performing oscillatory behavior around

the pitch angle, with two full flight phases during a single period

and each time making contact on exactly two legs (front or

back). In both cases we start from a basic demonstration

trajectory that provides state trajectories for the current task.

Starting from that we apply our two-step training procedure in

simulation to produce robust policies that we then test on a real

robot.

We perform experiments on the open-source torque-

controlled quadruped robot, Solo8 (Grimminger et al., 2020)

(see Figure 2), which is capable of very dynamic behaviors. For

simulating the system we use PyBullet (Coumans and Bai, 2016).

We use exactly the same training procedure in both cases,

with the only differences arising from the need to allow for base

rotation around one axis in the bounding task. This is a particular

benefit of the approach we present here–for a new task we only

need a single new demonstration trajectory and a single simple

reward term defining the task.

Frontiers in Robotics and AI frontiersin.org05

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

DRL stage 1: Early termination. The only aspect in the first

stage of training specific to the chosen tasks is how we perform

early termination. We perform early stopping here based on the

current tilt of the robot base (we increase the range appropriately

for the bounding task), as well as when any part of the robot that

is not the foot touches the ground.

DRL stage 2: Initialization states. As noted in the method

description, in the second stage of DRL training, we introduce a

wider range of initialization states. In the two tasks investigated

here, this consists of randomizing the initial height of the base of

the robot, tilt of the base around x- and y-axis and randomness in

the initial joint configuration. We preserve the early termination

criteria from stage 1, only extending the range of allowed base tilt

angles with the way it is increased in the initialization.

DRL stage 2: Environment uncertainties.We also introduce

uncertainties in the training environment. We randomize the

ground position up and down in the range of [−5 cm, 5 cm]

(approximately 20% of the robot leg length). We also randomize

the ground surface friction coefficient in the range [0.5, 1.0].

While we restrict ourselves only to this limited set of initial state

and environment randomizations, as we will see in the later

evaluations, this produces policies that are quite robust as they

can also handle uneven ground or external perturbations.

DRL stage 2: Reward structure (hopping). By using a

demonstration trajectory to deal with exploration issues, we

can define the individual task rewards to be very simple,

without the need for any reward shaping.

For the hopping task we use the following reward

rs2hp � rhp + rps + rct + rts + rtt (3)

We use the rhp reward term to define the task

rhp � khpz
base, if zbasemin < zbase < zbasemax,

0, otherwise.
{ (4)

The reward at each timestep is proportional to the current height

of the robot base (zbase), with constant weight khp. It is clipped to

zero below a certain threshold (zbasemin), one that the robot can

reach without leaving the ground. We additionally clip the value

of this reward to be zero above a certain height threshold (zbasemax)
to incentivize lower hops.We will additionally vary this threshold

to produce policies with different hopping heights starting from

the same demonstration trajectory.

We also introduce several reward terms to incentivize

different desirable aspects in the resulting behavior. They

reward the base to be close to its horizontal default posture

(rps) and smooth contact transitions (rct) and torque

smoothness (rts).

We reward the policy for being static in all the base

dimensions (positions (xbase, ybase) and Euler angles (θbasex ,

θbasey , θbasez)) except the one the motion is performed on

(z-axis in this case). With kps1, . . . , kps10 being weight and

scale constants.

rps � kps1 exp −kps2|xbase|2() + kps3 exp −kps4|ybase|2()
+ kps5 exp −kps6|θbasex |2() + kps7 exp −kps8|θbasey |2()
+ kps9 exp −kps10|θbasez |2() (5)

FIGURE 2
Examples of the robustness tests carried out on the quadruped robot Solo8 (A) Hopping on a surface comprised of a soft mattress and small
blocks (B) Hopping with push recovery (C) Bounding on a surface comprised of a soft mattress and small blocks (D) Bounding with push recovery.

Frontiers in Robotics and AI frontiersin.org06

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

This term is crucial as it drives the policy to stay at the default

posture as much as possible. Without it the policy could perform

the task well in the simulation while always being close to falling

over-which would likely happen when it was transferred to the

real system.

The second key reward term asks for smooth contact

transition (rct)

rct � −kct ∑4
i�1

Ffoot
i , if ∑4

i�1
Ffoot
i >Ffoot

limit,

0, otherwise.

⎧⎪⎪⎨⎪⎪⎩ (6)

We do so by simply penalizing any contact force values (Ffoot
i)

above a certain threshold (Ffoot
limit), to penalize impact, with kct

being a constant weight. Without this term we would have the

feet hitting the surface hard on each landing-this is precisely what

we observe in policies fromDRL stage 1 where this reward term is

not present. This is not the kind of behavior desired on the real

system and these impacts can cause actual damage to the robot.

These types of policies also transfer less well between simulation

and real world. They can learn to perform the task well in

simulation by generating hard impacts, but doing so exploits

the weaknesses of the contact model in simulation, resulting in a

poor performance when transferred to the real system. Smooth

contact transitions enable a better transition between simulation

and the real system. Thus, policies which incentivize those better

transfer to the real system.

The third reward term (rts) prevents the policy to ask for a

very quick change in the desired torque which is not realizable on

the real robot with a limited control bandwidth

rts � −kts1 exp kts2 τ t() − τ t − 1()‖ ‖() (7)

with τ being the joint torque and kts1 and kts2 weight and scale

constants respectively.

The final reward term rtt is the same one we use in the first

stage of training (as defined in (Eq. 1).

DRL stage 2: Reward structure (bounding). For the

bounding task, we only make changes to the parts of the

reward defining the task:

rs2bn � rbn + rcc + rps + rct + rts + rtt (8)

We define the task reward here in two parts, rbn and rcc. rbn
rewards the policy for being close to the path the demonstration

takes in the [zbase, θbasey] space:
rbn � −kbn min

i
‖ zi, θiy[] − zbase, θbasey[]‖ (9)

where [zi, θiy] are points from the demonstration trajectory,

[zbase, θbasey] is the current state of the base, with kbn being a

constant weight.We do this with no concept of time in this case, by

just taking the distance to the closest point. This gives the policy

freedom to perform the motion slower or faster, with different

amplitude. We will later see that this results in a variety in

bounding behaviors from repeated trainings, independent of the

timing in the original demonstration.

The second part of the task reward, rcc, is related to the contact

state

rcc �
kcc, only front two legs in contact,
kcc, only back two legs in contact,
kcc, no legs in contact,
0, otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

with kcc being a constant reward. It incentivizes the policy to, when

making contact with the ground, only do so with front or back legs at

the same time. Without anything to incentivize the policy to do this,

we have observed DRL stage 1 policies reproducing the bounding

motionwhile keeping all feet in contact with the ground. This reward

part ensures appropriate contact states with flight phases in between.

FIGURE 3
Hopping experiments started from different initial heights. The top figure shows that after dropping the robot from a set of different heights
ranging between 0.3 and 1 m, the robot goes back to the nominal behavior of hopping at height of 0.5 m in one or at most two cycles. The bottom
figure shows that, dropping from different initial heights, the robot is able to adapt its landing such that the impact forces remain very low and almost
invisible in the estimated force.

Frontiers in Robotics and AI frontiersin.org07

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

We keep the other reward terms, ones used to incentivize

desired aspects of the behavior, the same as in the hopping task

(rtt as defined in (Eq. 1), rct, rts as defined in (Eq. 7). The one

change we make is to the reward incentivizing the robot base

staying close to the default posture, rps

rps � kps1 exp −kps2|xbase|2() + kps3 exp −kps4|ybase|2()
+kps5 exp −kps6|θbasex |2() + kps9 exp −kps10|θbasez |2()

(11)
We do not reward staying at default posture in the θbasey

direction in this case, as that is the angle the robot is moving

around while bounding.

Details of the policy structure and values of all the reward

function parameters can be found in Appendix Table A1.

3.2 Hopping task results

Figure 3 shows results when the real robot is dropped from

different heights to start the motion. We show the base height

and estimated contact force for one of the legs as a function of

time. As we do not have force sensors in the feet, we estimate the

contact forces based on the torques the robot applies, using

Ffoot
i � (SiJTi)−1 Si τ, where Si and Ji are the joint selection

FIGURE 4
Three different execution of a jumping policy in the real world on a randomuneven terrain with 5 cm height uncertainty. As we can see, different
feet land on different height in each jump, but the policy manages to keep the jumping height within a certain bound.

Frontiers in Robotics and AI frontiersin.org08

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

matrix of the leg i and Jacobian of the foot i, respectively. Note that

this estimation ignores the energy dissipated through damping of

the robot structure and drive system. However, it provides an

approximatemeasure of contact forces sufficient for the analyses of

this paper. We further align the plots based on the later part of the

motion–the stable cycle the robot gets into.

First, we can note that regardless of the drop height the robot

goes into the same stable hopping cycle. What is more, it does so

very quickly, as we can see all the individual rollouts matching

after only two hops. We can also note here the benefits of time

independence of the policy. It is what allows us to be able to start

the motion from this large range of initial heights. It is also what

enables this fast stabilization, as we can see that the two initial

hops are on a different cycle–one needed to stabilize the motion

properly.

This test also highlights the general quality of contact interaction

achieved with this approach.We can see that the impact forces, even

on the highest drop (1 m height), barely go over the force values for

the stable hopping cycle (50 cm height). This is purely learned

behavior, as a result of impact penalties introduced in stage 2 of DRL

training. It is not present in the demonstration and when we test

DRL stage 1 policies on the real system high impact forces are

generated and the policies are very fragile. Smooth contact

transitions can also be observed in the accompanying video.

Further, the behavior is robust to uneven terrain and external

pushes although this was never explicitly trained for. The robot is able

to recover from significant tilt of the base arising from either external

pushes or landing on an uneven surface (Figures 2A,B).More extensive

examples of recovery behavior can be seen in the accompanying video.

To present quantitatively the performance of the policy on a

random uneven terrain, we scattered different objects with heights

ranging from 1 to 5 cm and executed a jumping policy on this

surface. As it can be seen in Figure 4, while the robot feet land on the

ground in different heights, the policymanages to keep the robot base

stable and perform jumps close to the desired height which is 50 cm.

Finally, we demonstrate the variety of robust behaviors that can be

optimized from the same demonstration by doing repeated trainings

with different values of the zbasemax threshold in the hopping task reward.

With this simple change in the task reward, starting from one

demonstration, we can produce hopping behaviors at different

heights. Examples of this can be seen in the accompanying video.

3.3 Bounding task results

In Figure 5 we show results for a test where we drop the robot

from different angles to start the motion. We perform the same

test for two different final DRL stage 2 policies for this task. We

can see that the policies can handle a wide range of initial base

angles–around 35° in both directions. What is more, as was the

case with the hopping task, we can see that here as well all the

initializations end up in the same stable motion cycle.

The bounding motion exhibits similar robustness to uneven

terrain and external perturbations as the hopping motion

(Figures 2C,D). Same as with the hopping task, the policies

rely on their knowledge of how to handle a varied set of base

states to recover from anything that arises from these conditions

even through it was not explicitly trained for.

In this task, we would also like to demonstrate the variety of

behaviors we can generate from one single demonstration.

Unlike in the hopping task, where we made simple changes in

the task reward to achieve different jumping heights, we instead

give more freedom to the task reward and examine the variety of

produced behaviors. As noted in the task reward definition, the

policy has the freedom to produce slower or faster bounds with

smaller or larger amplitudes. As seen in the accompanying video

we arrive at a variety of bounding behaviors in this way, starting

from the same initial demonstration trajectory.

4 Discussion

Simplicity and generality of the approach. One of the main

benefits of the approach is its generality and simplicity. The only

FIGURE 5
Two different bounding behaviors on the robot with different initial conditions. Starting with a wide range of initial angles for the base in
y-direction (roughly between −35 and 35 deg), the robot quickly converges back to the desired behavior.

Frontiers in Robotics and AI frontiersin.org09

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

elements needed for each new task, as can be seen from the two

tasks studied here, are a single demonstration trajectory and a

direct straightforward task reward.

The demonstration does not need to provide ideal performance

on the task, as we optimize task performance in the later stage of

training. It simply needs to provide a sequence of states, and not

necessarily actions, that enable a decent performance. Providing

only states is also simpler in cases where it is not trivial to calculate

the exact forces to realize a particular motion.

As for the task reward, reward shaping is not needed, as the

demonstration resolves any exploration issues that could occur as a

result of sparse reward signal.We can directly reward aspects of the

task of interest. We keep reward terms other than the task reward

as general as possible, encoding characteristics of general good

robot behavior.We expect those to remain constant across a varied

range of tasks.

Learning from scratch. In this paper, we proposed a

framework to learn a policy for dynamic legged locomotion that

is transferable to the real world. One might argue that for some

locomotion tasks, it is possible to generate the policy without the

need for the demonstration, e.g. Lee et al. (2020). However, for the

two tasks examined in this paper, with given task rewards, we failed

to find successful policies when training from scratch, with policies

being unable to learn any notion of the task, even in simplest

conditions. It is particularly difficult to learn from scratch in highly

dynamic tasks with flight phase which has been the main focus of

this paper. In such case, the robot crashes into the ground repeatedly,

ending the episode, without providing any information for the

learning algorithm on how to fix it. Additionally, the majority of

recent successful approaches for doing RL in locomotion tasks use

demonstrations in someway, e.g., Xie et al. (2020); Peng et al. (2020).

This suggests that learning from scratch is often not viable and using

demonstrations is one of the predominant solutions being utilized.

Reinforcement learning perspective. From the reinforcement

learning perspective our approach presents a simple and effectiveway

to deal with exploration issues in robotic tasks. We also remove the

trajectory tracking reward in the second stage of our training, so, as

seen in our experiments, we are able to change the policy away from

the exact behavior defined in the demonstration.

Trajectory optimization perspective. From the trajectory

optimization perspective, our approach proposes a systematic

way to consider different types of uncertainty and find a robust

control policy for robotic tasks, especially those with contact.

Furthermore, our approach caches the solution of a model-based

approach for future use and eliminates the need for re-generating

repetitive motions. We believe this is a practical way to combine the

strength of trajectory optimization and reinforcement learning for

continuous control problems; 1) Trajectory optimization is used to

generate a desired behavior efficiently to achieve the task at hand 2)

different types of realistic uncertainties are easily added to the

simulation, e.g. contact timing uncertainty, and DRL is used to

produce a robust feedback policy.

5 Conclusion

In this work, we presented a general approach for going from

trajectories optimized using TO to robust learned policies on a

real robot. We showed how we can start from a single trajectory

and arrive at a robust policy that can be directly deployed on a

real robot, without any need for additional training. Through

extensive tests on a real quadruped robot, we demonstrated

significant robustness in the behaviors produced by our

approach. Importantly, we do so in setups, uneven ground

and external pushes, for which the robot was not explicitly

trained for. All this gives hope that such approaches could be

used across varied robotic tasks to simply generate robust policies

to be used on real hardware, bridging the gap between trajectory

optimization and reinforcement learning in such tasks.

In future work, we would like to take more advantage of

model-based approaches to make our framework more

efficient. We intend to study how replacing the first stage of

our algorithm with a form of Behavior Cloning (Pomerleau,

(1988)) to imitate a whole-body MPC policy can improve

efficiency.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

MB, MK, and LR designed research; MB performed

numerical simulations; MK prepared the demonstrations; MB

and MK performed hardware experiments; MB, MK, and LR

analyzed the results and wrote the paper.

Funding

This work was supported by the New York University,

the European Union’s Horizon 2020 research and

innovation program (grant agreement 780684) and the National

Science Foundation (grants 1825993, 1932187 and 1925079).

Acknowledgments

We would like to thank the contributors of the Open

Dynamic Robot Initiative (ODRI) for the development of the

hardware, electronics and the low-level software for controlling

the robot Solo.

Frontiers in Robotics and AI frontiersin.org10

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frobt.2022.

854212/full#supplementary-material

References

Bogdanovic, M., Khadiv, M., and Righetti, L. (2020). Learning variable impedance
control for contact sensitive tasks. IEEE Robot. Autom. Lett. 5, 6129–6136. doi:10.
1109/lra.2020.3011379

Carpentier, J., andMansard, N. (2018). Multicontact locomotion of legged robots.
IEEE Trans. Robot. 34, 1441–1460. doi:10.1109/tro.2018.2862902

[Dataset] Coumans, E., and Bai, Y. (2016–2020). Pybullet, a pythonmodule for physics
simulation for games, robotics and machine learning. Available at: http://pybullet.org.

Drnach, L., and Zhao, Y. (2021). Robust trajectory optimization over uncertain
terrain with stochastic complementarity. IEEE Robot. Autom. Lett. 6, 1168–1175.
doi:10.1109/lra.2021.3056064

Fankhauser, P., Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., and Siegwart,
R. (2013). “Reinforcement learning of single legged locomotion,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE), 188–193.

Gangapurwala, S., Geisert, M., Orsolino, R., Fallon, M., and Havoutis, I. (2021).
“Real-time trajectory adaptation for quadrupedal locomotion using deep
reinforcement learning,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA) (IEEE), 5973.

Gangapurwala, S., Geisert, M., Orsolino, R., Fallon, M., and Havoutis, I. (2020).
Rloc: Terrain-aware legged locomotion using reinforcement learning and optimal
control. arXiv preprint arXiv:2012.03094.

Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., Wüthrich, M., Naveau, M., et al.
(2020). An open torque-controlled modular robot architecture for legged locomotion
research. IEEE Robot. Autom. Lett. 5, 3650–3657. doi:10.1109/lra.2020.2976639

Hammoud, B., Khadiv, M., and Righetti, L. (2021). Impedance optimization for
uncertain contact interactions through risk sensitive optimal control. IEEE Robot.
Autom. Lett. 6, 4766–4773. doi:10.1109/lra.2021.3068951

Hornby, G. S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., and Fujita,
M. (2000). “Evolving robust gaits with aibo,” in Proceedings 2000 iCRA.
millennium conference. iEEE international conference on robotics and
automation. symposia proceedings (cat. no. 00CH37065) (IEEE), 3040–3045.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., et al.
(2019). Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4,
eaau5872. doi:10.1126/scirobotics.aau5872

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Learning attractor landscapes
for learning motor primitives. (Vancouver, Canada: Tech. rep.)

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., et al. (2018).
Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. arXiv preprint arXiv:1806.10293.

Kohl, N., and Stone, P. (2004). “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 (IEEE), 2619–2624.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2020). Learning
quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986. doi:10.
1126/scirobotics.abc5986

Li, Z., Cheng, X., Peng, X. B., Abbeel, P., Levine, S., Berseth, G., et al. (2021).
Reinforcement learning for robust parameterized locomotion control of bipedal
robots. arXiv preprint arXiv:2103.14295.

Morimoto, J., and Atkeson, C. G. (2009). Nonparametric representation of an
approximated poincaré map for learning biped locomotion. Auton. Robots 27,
131–144. doi:10.1007/s10514-009-9133-z

Morimoto, J., Nakanishi, J., Endo, G., Cheng, G., Atkeson, C. G., and Zeglin, G. (2005).
“Poincare-map-based reinforcement learning for biped walking,” in Proceedings of the
2005 IEEE International Conference on Robotics and Automation (IEEE), 2381.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills.
ACM Trans. Graph. 37, 1–14. doi:10.1145/3197517.3201311

Peng, X. B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., and Levine, S. (2020). Learning
agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784.

Peng, X. B., and van de Panne, M. (2017). “Learning locomotion skills using
deeprl: Does the choice of action space matter?” in Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (ACM), 12.

Peters, J., and Schaal, S. (2008). Reinforcement learning of motor skills with policy
gradients. Neural Netw. 21, 682–697. doi:10.1016/j.neunet.2008.02.003

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural
network. Adv. neural Inf. Process. Syst. 1, 305–313. doi:10.5555/89851.89891

Ponton, B., Khadiv, M., Meduri, A., and Righetti, L. (2021). Efficient multicontact
pattern generation with sequential convex approximations of the centroidal
dynamics. IEEE Trans. Robot. 1, 1661–1679. doi:10.1109/TRO.2020.3048125

Schaal, S. (1997). Learning fromdemonstration.Adv. neural Inf. Process. Syst., 1040–1046.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.
(2017).Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Siekmann, J., Green, K.,Warila, J., Fern, A., and Hurst, J. (2021). “Blind bipedal stair
traversal via sim-to-real reinforcement learning,” in Robotics: Science and Systems.

Tedrake, R., Zhang, T. W., and Seung, H. S. (2005). “Learning to walk in
20 minutes,” in Proceedings of the Fourteenth Yale Workshop on Adaptive and
Learning Systems (Beijing), 1939–1412.

Theodorou, E., Buchli, J., and Schaal, S. (2010). A generalized path integral
control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181.
doi:10.5555/1756006.1953033

Winkler, A. W., Bellicoso, C. D., Hutter, M., and Buchli, J. (2018). Gait and
trajectory optimization for legged systems through phase-based end-effector
parameterization. IEEE Robot. Autom. Lett. 3, 1560–1567. doi:10.1109/lra.2018.
2798285

Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J., and Panne, M. (2020). “Learning
locomotion skills for cassie: Iterative design and sim-to-real, in Conference on
Robot Learning (PMLR), 317.

Xie, Z., Da, X., Babich, B., Garg, A., and van de Panne, M. (2021a). Glide:
Generalizable quadrupedal locomotion in diverse environments with a centroidal
model. arXiv preprint arXiv:2104.09771.

Xie, Z., Da, X., van de Panne, M., Babich, B., and Garg, A. (2021b). “Dynamics
randomization revisited: A case study for quadrupedal locomotion,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi'an, China, (IEEE),
4955–4961.

Frontiers in Robotics and AI frontiersin.org11

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212/full#supplementary-material
https://doi.org/10.1109/lra.2020.3011379
https://doi.org/10.1109/lra.2020.3011379
https://doi.org/10.1109/tro.2018.2862902
http://pybullet.org
https://doi.org/10.1109/lra.2021.3056064
https://doi.org/10.1109/lra.2020.2976639
https://doi.org/10.1109/lra.2021.3068951
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1007/s10514-009-9133-z
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.5555/89851.89891
https://doi.org/10.1109/TRO.2020.3048125
https://doi.org/10.5555/1756006.1953033
https://doi.org/10.1109/lra.2018.2798285
https://doi.org/10.1109/lra.2018.2798285
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

Appendix

TABLE A1 Parameter values used in the training of the policies.

Policy network (fully-connected) parameter Reward parameters (cont.)

Number of layers 2 khp 0.5

Units per layer 64 kps1 1.0

Nonlinearity tanh kps2 0.05

Output dimension 8 kps3 1.0

Output nonlinearity tanh kps4 0.05

Reward parameters kps5 1.0

ktt 2.25 kps6 0.05

kti1 (hopping) 0.3 kps7 1.0

kti1 (bounding) 0.4 kps8 0.05

kti2 5.0 kps9 1.0

kti3 (hopping) 0.1 kps10 0.05

kti3 (bounding) 0.0 kct 0.2

kti4 0.2 Ffoot
limit

50.0

kti5 (hopping) 0.1 kts 0.02

kti5 (bounding) 0.4 kbn 8.0

kti6 5.0 kcc 0.5

kti7 (hopping) 0.1 Termination angles

kti7 (bounding) 0.0 θlimit
x

0.2

kti8 0.2 θlimit
y (hopping) 0.2

kti9 (hopping) 0.3 θlimit
y (bounding) 0.6

kti9 (bounding) 0.2

kti10 0.5

kti11 (hopping) 0.1

kti11 (bounding) 0.2

kti12 0.05

Frontiers in Robotics and AI frontiersin.org12

Bogdanovic et al. 10.3389/frobt.2022.854212

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.854212

	Model-free reinforcement learning for robust locomotion using demonstrations from trajectory optimization
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Proposed algorithm
	2.1 Trajectory optimization
	2.2 DRL stage 1: Learning a policy to track a given trajectory
	2.3 DRL stage 2: Generating robust time-independent policy

	3 Evaluation
	3.1 Tasks setup
	3.2 Hopping task results
	3.3 Bounding task results

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Appendix

