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One of the major obstacles to the widespread uptake of data-based Structural

Health Monitoring so far, has been the lack of damage-state data for the (mostly

high-value) structures of interest. To address this issue, a methodology for

sharing data and models between structures has been developed–Population-

Based Structural Health Monitoring (PBSHM). PBSHM works on the principle

that, if populations of structures are sufficiently similar, or share sections which

can be considered similar, then data and models can be shared between them

for use in diagnostic inference. The PBSHM methodology therefore relies on

two key components: firstly, identifying whether structures are sufficiently

similar for successful transfer of diagnostics; this is achieved by the use of

an abstract representation of structures. Secondly, machine learning

techniques are exploited to effectively transfer information between the

structures in a way that improves damage detection and classification across

the whole population. Although PBSHM has been conceived to deal with large

and general classes of structures,much of the detailed developments presented

so far have concerned bridges; the aim of this paper is to provide similarly

detailed discussions in the aerospace context. The overview here will examine

data transfer between aircraft components, as well as illustrating howonemight

construct an abstract representation of a full aircraft.
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1 Introduction

One of the major obstacles to the widespread uptake of Structural Health Monitoring

(SHM) thus far, has been a scarcity of available damage-state data for individual

structures. This lack of damage-state data arises largely because engineering structures

are designed not to fail; this is particularly true of safety-critical structures like aircraft.

Finding a means of “sharing” damage-state data between structures is one way of

alleviating the lack of available data for a particular individual structure. One
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approach is so-called Population-based Structural Health

Monitoring (PBSHM). The main objects of interest in PBSHM

are populations or sets of structures. In the completely general

case, a population might be composed of quite different

structures (e.g., bridges, aircraft and wind turbines); such a

population would be referred to as heterogeneous. At the other

extreme, a population might comprise a set of nominally-

identical structures (e.g., a wind-frame containing only one

model of turbine); such a population would be referred to as

homogeneous. Somewhere in between these two extremes are

populations of structures grouped according to purpose; e.g.,

bridges or aircraft or turbines. Such populations would be

heterogeneous, but would share commonalities of structure

that could be exploited for PBSHM. Foundations for a general

theory of PBSHM have begun with the papers: Bull et al. (2020);

Gosliga et al. (2020); Gardner et al. (2020a), and an overview of

the ‘story so far’ was presented in Worden et al. (2020).

Sharing data between structures can be achieved by transfer

learning; for example, by using classifiers trained on one structure

to identify damage in another [Gardner et al. (2022)], or by using

a collective normal condition to detect damage in a new structure

[Bull et al. (2021)]. However, when using transfer learning, one

must be careful to avoid negative transfer [Gardner et al.

(2020a)]. In a classification problem, negative transfer occurs

when data are transferred in such a way that classes become

mislabelled; this could have dire consequences if a classifier

mistakenly identified damage-state data as healthy-state data.

Therefore, care must be taken that negative transfer is avoided

when transferring data between structures. In general, negative

transfer is simply the situation where transfer learning makes

matters worse.

To avoid negative transfer, there must be confidence that

there is a degree of similarity between the two structures of

interest. One way to avoid negative transfer would be to only

transfer data between structures of the samemake andmodel, e.g.

wind turbines in a wind farm, where the major variations come

from environmental conditions and manufacturing variations

[Bull et al. (2020); Papatheou et al. (2015); Antoniadou et al.

(2015)]. Moving beyond such homogeneous populations

requires some method of assessing the similarity between

structures, such as described in Gosliga et al. (2020); this

requires some representation of the structure in question. This

representation, or Irreducible Element (IE) model in Gosliga et al.

(2020), contains information that is believed to be significant

when it comes to transfer learning; it also needs to contain

enough information for the problem at hand. Clearly, there need

to be rules or best practice to inform the building of IE models. In

the case where the populations are heterogeneous but comprise

structures of only one class, there may be context-specific rules

for IE models. One previous study has looked in some detail

about the IE modelling of bridges [Gosliga et al. (2022)]; one of

the major objectives of this current paper is to look at the case of

aerospace structures in similar detail.

IE models can also be useful when CAD models or technical

drawings are not available, since they can provide a coarse and

non-parameterised representation of a given structure, they can

provide additional information to inform and improve transfer

learning. IE models can inform transfer learning by showing that

the structures are correlated in some physical sense as opposed to

only sharing correlations in the data. For example, IE models can

also provide confidence that the causal mechanisms behind

damage are the same. IE models can also potentially be

shared without revealing commercially-sensitive information.

The aim of the current paper is to introduce the concepts of

PBSHM, specifically in the aerospace context. This breaks down

into two main problems; in the first case, it has been observed

above that some means is necessary for comparing the similarity

of two structures, namely IE models and their attributed graphs.

This paper will discuss some of the details of building IE models

specifically for aerospace structures and components and

illustrate the process via a full aircraft case study. In the

second place, the paper will demonstrate how this comparison

of structural similarity can be used to inform knowledge transfer

between aerospace structures—specifically here for two aircraft

wings. This knowledge transfer involves the key machine

learning tool in PBSHM–transfer learning. The paper also

discusses how the IE model generated for the full aircraft

structure differs from the models used to describe the two

wings, and why these differences exist.

To achieve these aims, the layout of the paper is as follows:

Section 2 briefly introduces two key concepts within PBSHM.

The first of these two key concepts is a method called Irreducible

Element (IE) modelling, which is used to produce an abstract

representation of a structure which is relevant to the particular

SHM problem. The second of these key PBSHM concepts is that

of attributed graphs, which allow IE models to be compared via

graph-matching. Section 3 features a case study which highlights

a third key concept within PBSHM–transfer learning–by

describing how knowledge can be transferred between two

aircraft substructures, namely a wing from a Folland Gnat

aircraft to a wing from a Piper Tomahawk. Section 4 then

describes the process for generating an IE model for a full

physical structure, in this case an RAF Hawk T. Mk1. Section

5 discusses the differences between the IE models generated for

the Gnat and Piper wings, and the Hawk.

2 Population-based structural health
monitoring

The core steps for achieving PBSHM within heterogenous

populations of structures are: generating the IE model along with

the attributed graph of the structure, comparing the graphs for

two different structures, and then performing some form of

transfer learning [Gardner et al. (2020a)]. This section will

describe these three aspects of PBSHM.
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2.1 Irreducible element models

As mentioned previously, IE models provide a description of

a structure that allows one to determine whether it is similar to

another structure. This description needs to be detailed enough

for the problem at hand, while not containing so much

information that similarities are either obscured, or

comparison becomes inefficient. The IE model also needs to

contain information that is important to avoid negative transfer

for a given problem; such information might be specific to the

class of structures concerned. A detailed description of the

general theory of IE models can be found in Gosliga et al.

(2020); as an example of how rules for IE-model generation

arise for specific classes of structures, the reader can consult

Gosliga et al. (2022), which is focussed on bridges. It should be

noted that since both these papers have been published, the

theory and terminology and have been updated and

standardised; for the most up-to-date version, the reader is

referred to Brennan et al. (2021). Part of this paper Section 4

and Section 5 will be concerned with IE models for aerospace

structures.

First of all, when generating an IE model, the structure must

be subdivided into elements that correspond to the resolution of

the SHM problem being considered. For example, if the SHM

problem at hand was largely concerned with features governed by

the overall flight dynamics of an aircraft, it would not be worth

breaking the structure down into individual rivets and bolts; a

better approach may be to treat the aerodynamic surfaces as

single elements, while keeping control surfaces and the fuselage

separate. (Although, as will be seen in Section 4, to accurately

describe the geometry of aerospace components, further

subdivisions may be necessary).

Each of these elements then requires attributes. Attributes

describe the properties and classification for aspects of the

elements believed to have relevance to transfer learning

[Gardner et al. (2020a)]. These attributes are: both the

material properties, and the type of material (e.g., metals,

polymers, composite); and the type of geometry of the

element (e.g., plate, beam, shell), along with its dimensions.

A further set of attributes that can be applied to a given

element are contextual labels, which describe something about

the function of the element, for example if the element represents

a wing or a fuselage. By describing the function of an element, the

contextual label may also provide some additional information

about the loads that the said element may experience. For

example, a beam and a column may possess the same

geometry, and yet the loading they experience is different.

Contextual labels can also provide a useful method for

differentiating between different types of structure; for

example, consider the case where an IE model contains an

element with the contextual label “wing,” it would be fair to

say that this is likely to be the IE model for an aircraft, and

conversely, unlikely to represent a bridge. While it may not be

optimal to consider populations so heterogeneous that they

contain completely different classes of structures, the general

theory of PBSHM should be able to accomodate the situation.

The other reason why completely general populations may be of

interest is because quite different structures may yet contain

similar substructures.

A description of the layout, or topology, of any structure is

important for ensuring that two structures are similar enough

that data transfer is possible. The overall topology of the structure

is captured in the relationships between elements. In aircraft, the

topology of the structure is analogous to configuration of the

aircraft (location and number of engines, tailplane arrangement,

etc.), and differences in the configuration have a clear effect on

the overall flight dynamics of a given aircraft, as well as

implications for damage localisation. It is also important to

note that structural similarity is not sufficient for positive

transfer, one also should take care that features measured on

the structures can be compared meaningfully. At the risk of

stating the obvious, it would be unlikely that transient acoustic

emission waves measured on one structure could be effectively

transferred onto frequency response functions measured on

another.

Constitutive materials affect the dynamics of the structure,

and also the failure modes that exist. There are clear differences

in the failures of composite components (delamination) that do

not exist in aluminium components–and vice versa. These

differences in the type of failures that can occur for a specific

type of material mean that there will be damage labels that cannot

be transferred. However, there will be some cases where these

differences matter less, such as when examining the overall

dynamics. However, when examining the overall dynamics of

the structure, the actual properties of the material will play more

of a role, and so these need to be included as well.

The geometry again will have some effect on the overall

dynamic behaviour, given the differences in how beams and

plates behave, for example. There are also localisation issues if

certain components are similar shapes but some have holes or

areas that do not correspond between them. The size of

components within a structure also influences the dynamics of

the structure and so this will affect whether knowledge transfer is

possible.

It can be seen that, for each of these categories, and more

generally, there will be SHM problems for which certain

differences are more important, and others are less.

Section 4 here goes into the details of generating an IE model

for a particular aircraft (Hawk T. Mk1); a sample of the elements

for the fuselage section of the Hawk can be found in Table 1. In

this table, the name of each element is included, along with a

description of its material type and its geometrical type. In this

table, arrows represent the sub-categories used to describe either

the geometric or material type of an element, for example, the

antenna is made of an aluminium alloy, which is a type of metal.

The geometrical sub-categories are a little less intuitive as they are
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specific to the IE model schema [Brennan et al. (2021)] that has

been designed.

2.1.1 Schema
The schema defines the data structure for the IE models,

as well as determining which values are allowed in which

fields. For example, in Table 1, the schema has a list of

geometry types that are allowable. The schema also

requires that the data be structured according to the sub-

categories defined within the schema. In this case, it would

never allow the user to simply enter “Cylinder,” the user must

provide extra details to tell whether it is a solid or shell, as well

as how the shape is to be defined.

The schema is crucial in ensuring that IE models provided

to the database are all constructed to the same standards and

use the same set of rules for specific classes of structure. It is

important that IE models are standardised to ensure that any

differences picked up during the similarity comparison step

are a result of differences in the structure itself and not

differences in how the user has described the model. As

work progresses, it is hoped that the similarity comparison

stage can be made more robust, but currently it is far easier to

enforce rules and conventions for generating IE models.

However, rules and conventions for generating IE models

will always remain important for ensuring consistency in

how the framework is applied, which improves confidence

in the results provided.

As the schema only allows the user to enter information that

is certain to be consistent with the data that already exists within

the database, it must be extended when new types are

encountered. For example, if one designed the schema around

aeroplanes only, the material type Cement would not be

included. Therefore, types such as “Other” are included,

which indicate that for a new type of structure, additional

types may be required. The work described in Brennan et al.

(2022) is an example of where, via the process of trying to

describe an aircraft structure, new types are discovered, which

will then be incorporated into the schema.

2.1.2 Relationships
Once the elements of an IE model have been defined, it is

then necessary to define the relationships between them. These

relationships can either be physical, referred to here as joints,

or abstract, of which there are several varieties. Further

descriptions of the types of relationships can be found in

Brennan et al. (2021).

TABLE 1 Regular Elements for the Fuselage and Vertical Stabiliser of the generalised Hawk T. Mk1. As mentioned in the text, arrows point from less
specific to more specific descriptors. For example, aluminium alloy is more specific thanmetal. The term “translate and scale” refers to a type of
element which does not change the shape of its cross section along a length dimension, but the shape may grow or shrink (scale). A circular cone
would of this type, and a circular cylinder would be specific type of cone.

Element Name Contextual Type Material Type Geometry Type

Fuselage

antenna Other Metal → Aluminium Alloy Solid → Translate and Scale → Cylinder

fuselage-a Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-b Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-c Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-d Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-e Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-f Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-g Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-h Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-i Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-j Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-k Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

fuselage-l Fuselage Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

Vertical Stabiliser

vertical-stabiliser-a Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

vertical-stabiliser-b Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

vertical-stabiliser-c Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

vertical-stabiliser-d Other Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

rudder Other Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder
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The joints within a structure are intuitive, representing the

physical relationship between two elements. For example, two

elements may be welded together. The properties of this joint can

be described; it exists in reality. Welds are an example of a static

joint. The other type of joint that exists is a dynamic joint, where

there is at least one degree of freedom in which the two elements

may move relative to one another. This could be a ball-and-

socket joint, or a hinge joint, or some form of slider.

The other types of relationships are more abstract. One type

of abstract relationship is a perfect relationship, in which a larger

part is split into smaller elements, but these elements do not

correspond to separate structural components. The divisions are

instead based on the SHM problem; for example, dividing the

Gnat and Piper wings into sections to aid with damage

localisation, as described in Section 3 and Gardner et al.

(2022). Another example of this is shown in Figure 6, where

the wing is subdivided into smaller elements in order to more

accurately capture the geometry.

The other type of abstract relationship is the boundary

relationship, which simply denotes where the elements that

make up a structure attach to the ground elements (described

in Section 2.1.3). These boundary relationshipsmark the end of the

description of the structure, as anything beyond these boundary

relationships must be a ground element, and as such contains no

further structural information. As a simple example, if one is only

concerned with the wing of an aircraft, the connection to the

fuselage could be considered as a connection to ground. In

contrast, if the entire structure is of interest, the ground

elements would be connected to the bases of the landing gear

and would represent literal ground.

TABLE 2 Relationships for the Fuselage and Vertical Stabiliser of the generalised Hawk T. Mk1.

Relationship Name Element Set Type

Fuselage

antenna-fuselage-a {antenna, fuselage-a} Joint → Static

fuselage-a-b {fuselage-a, fuselage-b} Perfect

fuselage-b-c {fuselage-b, fuselage-c} Perfect

fuselage-c-d {fuselage-c, fuselage-d} Perfect

fuselage-d-e {fuselage-d, fuselage-e} Perfect

fuselage-e-f {fuselage-e, fuselage-f} Perfect

fuselage-f-g {fuselage-f, fuselage-g} Perfect

fuselage-g-h {fuselage-g, fuselage-h} Perfect

fuselage-h-i {fuselage-h, fuselage-i} Perfect

fuselage-i-j {fuselage-i, fuselage-j} Perfect

fuselage-j-k {fuselage-j, fuselage-j} Perfect

fuselage-k-l {fuselage-k, fuselage-l} Perfect

Fuselage to Vertical Stabiliser

fuselage-h-vertical-stabiliser-a {fuselage-h, vertical-stabiliser-a} Joint → Static

fuselage-i-vertical-stabiliser-b {fuselage-i, vertical-stabiliser-b} Joint → Static

fuselage-j-vertical-stabiliser-b {fuselage-j, vertical-stabiliser-b} Joint → Static

fuselage-j-vertical-stabiliser-d {fuselage-j, vertical-stabiliser-d} Joint → Static

fuselage-k-vertical-stabiliser-d {fuselage-k, vertical-stabiliser-d} Joint → Static

fuselage-l-vertical-stabiliser-d {fuselage-k, vertical-stabiliser-d} Joint → Static

Vertical Stabiliser

vertical-stabiliser-a-b {vertical-stabiliser-a, vertical-stabiliser-b} Perfect

vertical-stabiliser-b-c {vertical-stabiliser-b, vertical-stabiliser-c} Perfect

vertical-stabiliser-b-d {vertical-stabiliser-b, vertical-stabiliser-d} Joint → Static

vertical-stabiliser-b-rudder {vertical-stabiliser-b, rudder} Joint → Dynamic

TABLE 3 Ground Elements for the Landing Gear of the generalised
Hawk T. Mk1.

Element Name Type

Landing gear

right-ground Ground

left-ground Ground

center-ground Ground
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Examples of the types of relationships that can be found

within a structure are shown in Table 2, which denotes the

relationships within the fuselage section of the aircraft in

question. This table shows both static and dynamic joints, as

well as the perfect joints between elements in the wing.

2.1.3 Ground elements
Ground elements (as shown inTable 3), represent bodies towhich

the structure that is beingmodelled is attached, but are themselves not

being modelled. In the case of the aircraft described here, this is

literally the ground. In some other cases thismay be a strongwall, or if

say, one wished to only model the wing of an aeroplane, then the

fuselage it was attached to could be treated as ground.

2.2 Attributed graphs

Once the structure has been subdivided into elements, and

the attributes (geometrical, material, contextual etc.), for each

element have been decided upon, this information can be

extracted in the form of an attributed graph. IE models are

currently created in spreadsheets and other human-friendly

formats, while the attributed graph extracts the topological

information, making it easier to process using graph-matching

algorithms or other graph comparison techniques.

The information contained within the IE model and the

attributed graph is identical and the two objects are in direct

correspondence; however, the attributed graph explicitly

expresses the topology in the form of a neighbourhood list for

each element, whereas in the IE model, the topology is stored in

the element sets of the relationships. Using the element sets of

each relationship to define the topology is identical to defining a

graph by its vertex set and edge set. Nonetheless, the distinction

between the IE model and the attributed graph remains useful for

descriptive purposes, as people associate the IE model with some

form of physical model that can be visualised, and associate the

attributed graph with some more abstract form of the same data.

Treating the information contained within the IE model as a

graph, allows a whole suite of graph-matching tools to be used to

determine the similarity between two structures. one group of

such tools contains exact graph-matching algorithms which

search for the common substructures between two structures

[Bron and Kerbosch (1973); Koch (2001); Cao et al. (2008); van

Berlo et al. (2013); Raymond et al. (2002)]. For an in-depth

review of maximum common subgraph (MCS)-based

approaches with a focus on biology and chemistry, the reader

is referred to Duesbury et al. (2017). Others are based on deep

learning using neural networks [Li et al. (2019); Hamaguchi et al.

FIGURE 1
Schematic (A) of the Gnat aircraft wing (not to scale) and associated irreducible element model (left) with its corresponding attributed graph
(right). Schematic (B) of the Piper Tomahawk aircraft wing (not to scale) and associated irreducible element model (left) with its corresponding
attributed graph (right).

TABLE 4 Maximum common subgraphs between the Gnat and Piper
Tomahawk attributed graphs using the modified BK algorithm.

Piper M 1 2 3 4 5

Gnat (a) F 4 5 9 8 7

(b) F 1 6 9 8 7

(c) F 2 6 9 8 7

(d) F 3 6 9 8 7
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(2017); Beck et al. (2018); Sutskever et al. (2014); Duvenaud et al.

(2015); Liao et al. (2019)]; a more thorough review on graph

matching using neural networks can be found in Bacciu et al.

(2020).

3 Gnat and Piper Tomahawk aircraft
wing case study

The abstract respresentations of structures described in

the previous section form part of a wider methdology for

performing PBSHM [Bull et al. (2020); Gosliga et al. (2020);

Gardner et al. (2020a); Tsialiamanis et al. (2021)]. As

mentioned in the introduction, the key components of this

methodology are: 1) determining how structurally similar

structures in a population are, using AGs and graph matching

algorithms [Gosliga et al. (2020), and distance metrics

(Wickramarachchi et al. (2021)], and 2) pooling knowledge

from the datasets that correspond to these structures [Bull

et al. (2020); Gardner et al. (2020a); Tsialiamanis et al. (2021);

Gardner et al. (2020b); Bull et al. (2021)]—typically

performed using transfer learning [Gardner et al. (2020a)].

This section presents a case study demonstrating how

abstract representations of structures are used in

transferring knowledge between members of a population.

The population are two aircraft wings, one from a Gnat

trainer aircraft [Worden et al. (2003); Manson et al.

(2003a,b)], and the other a Piper Tomahawk aircraft

[Barthorpe et al. (2017)], forming a heterogenous

population. The SHM scenario is to perform damage

localisation on the Piper Tomahawk wing using labelled

damage observations on the Gnat wing (i.e. the Piper

Tomahawk dataset is unlabelled). Damage in this case

study is simulated by the removal of inspection panels, as

it was not possible to damage the wings [Worden et al. (2003);

Manson et al. (2003a,b); Barthorpe et al. (2017)]. The Gnat

aircraft wing has nine inspection panels and the Piper

Tomahawk has five inspection panels. The PBSHM

challenge is to transfer damage localisation knowledge

from the Gnat to the Piper Tomahawk, which allows a

classifier trained on the Gnat dataset to be used in

localising damage on the Piper Tomahawk. The PBSHM

methodology must therefore select which combination of

localisation labels from the Gnat, out of a possible

15120 combinations, gives the best performance, when

paired with corresponding localisation labels from the

Piper. This number of combinations comes from the fact

that the problem is “9-choose-5” where the permutation

order also matters (5 out of 9 labels on the Gnat can be

paired with the 5 from the Piper), meaning 126 × 120 =

15,120.

The Gnat and Piper Tomahawk datasets both consist of

transmissibility features–the magnitude of the transmissibility

between 1,024 and −2048 Hz in 1 Hz frequency bins–with a set of

two uniaxial accelerometers forming a transmissibility path that

targets a particular inspection panel of interest [for more details

seeWorden et al. (2003); Manson et al. (2003a,b); Barthorpe et al.

(2017)].

3.1 Identifying structural similarities

As proposed in this paper, structural similarities can be

objectively quantified by the use of graphical representations

of structures and the use of metrics in the graphical domain. The

process involves developing an IE model, converting that into an

attributed graph and performing graph matching with

representations of other structures. The resolution or

granularity of an IE model depends on the PBSHM task. For

instance, in this case study the IE model for each wing is required

to capture the topology with respect to the inspection panel

locations. The IE models, and their corresponding AGs, for the

TABLE 5 F1 (comparison) scores for the four maximum common
subgraphs.

Subgraph set (a) (b) (c) (d)

F1 Gnat 1.0 1.0 1.0 1.0

Piper Tomahawk 1.0 0.4 0.2 0.6

FIGURE 2
A visualisation of the BDA latent space for candidate set (a),
where • denotes the Gnat and ○ denotes the Piper Tomahawk
datasets.
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FIGURE 3
(A) Photo of the side view of the Hawk T. Mk1 at the Laboratory for Verification and Validation. (B) Irreducible Element model breakdown of the
center section of the Hawk T. Mk1.

FIGURE 4
(A) Photo of the top down view of the Hawk T. Mk1 at the Laboratory for Verification and Validation. (B) Irreducible Elementmodel breakdown of
the wing and horizontal stabiliser sections of the Hawk T. Mk1.

Frontiers in Robotics and AI frontiersin.org08

Brennan et al. 10.3389/frobt.2022.840058

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.840058


Gnat and Piper Tomahawk wings are depicted in Figure 1. The

relationships between each IE are modelled as ‘perfect’

connections, as further resolution about rivet and stiffener

locations are not required for obtaining the key differences

between the inspection panel locations. The IE models are

mapped onto AGs where the node numbering has been kept

consistent with the inspection panel numbering.

The AGs in Figure 1 can be compared using a graph-

matching algorithm. Here, the modified Bron-Kerbosch (BK)

algorithm is utilised as in Gosliga et al. (2020), identifying four

maximum common subgraphs (MCSs) shown in Table 4. The

set of MCSs is a significant 99.97% reduction on the

15120 potential combinations of Gnat localisation labels that

could be mapped onto the Piper Tomahawk. Further

engineering insight would also suggest that MCS 1) is the

most likely to produce successful transfer, as the set of nodes

in the Gnat and Piper Tomahawk AGs are both ‘cantilever-like’

on the trailing edge of the wings.

3.2 Transferring knowledge

Transfer learning is an important part of PBSHM, allowing

labelled information from source datasets to diagnose unlabelled

target datasets [Gardner et al. (2020b); Gardner et al., (2021)];

Bull et al. (2021)]. This process allows PBSHM to overcome

issues that hinder conventional data-driven approaches to SHM,

such as a lack of available health-state data. The papers Gardner

et al. (2020b, 2021), utilise domain adaptation [Pan and Yang

(2010); Weiss et al. (2017); Zhuang et al. (2021)], a branch of

transfer learning, that seeks to harmonise the (labelled) source

and (unlabelled) target datasets in a latent space, such that a

FIGURE 5
(A) Photo of the front view of the Hawk T. Mk1 at the Laboratory for Verification and Validation. (B) Irreducible Element model breakdown of the
landing gear of the Hawk T. Mk1.
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classifier trained on the source dataset in the latent space

generalises to the target dataset.

Domain adaptation is performed on the fourMCSs in Table 4

using balanced distribution adaptation (BDA) [Wang et al.

(2017)]. The algorithm minimises an approximation of the

distance between the source (Ds � {Xs, �ys}) and target

(Dt � {Xt, �̂yt}, where �̂yt are psuedo-labels) joint distributions,

D Ds,Dt( ) ≈ 1 − λ( )D P Xs( ), P Xt( )( )

+ λD
P �ys( )P Xs | �ys( )

P Xs( ) ,
P �̂yt( )P Xt | �̂yt( )

P Xt( )
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (1)

achieved via a weighted maximum mean discrepancy (MMD)

cost function [i.e., D is the maximum mean discrepancy

distance Wang et al. (2017)], where λ ∈ [0, 1] is the weight

that “balances” the contribution of the marginal or

conditional distributions. In this paper λ = 1, meaning that

BDA assumes that the marginals are aligned and that the class

conditionals are the cause of domain shift. By utilising the

low-rank empirical kernel embedding ~K � KAATK

[Schölkopf et al. (1998)], the MMD cost function can be

minimised using a Lagrangian approach in order to identify a

linear mapping A on a kernel matrix K = k (X, X′) where X =

Xs ∪ Xt. The inferred latent space is therefore

Z � KA ∈ R(Ns+Nt)×k, where k is the dimension of the latent

space (k < d). For the complete details of BDA the author is

referred to Wang et al. (2017).

A k-nearest neighbours (kNN) classifier is trained on

the Gnat (source) dataset in the latent space identified by

BDA and used to classify the Piper Tomahawk (target)

dataset. F1 scores are presented in Table 5 for the four MCSs,

where the F1 score is a commonly-used measure of classification

accuracy and is defined as the harmonic mean of the recall and

precision metrics. It can be seen that MCS 1) produces 100%

classification accuracy on the Piper Tomahawk, showing that it is

possible to transfer knowledge from the Gnat to the Piper

Tomahawk aircraft without performance loss. A

visualisation of the transfer component space for MCS 1) is

shown in Figure 2.

In order to understand the usefulness of the abstract

representation of structures, transfer learning and

classification was performed for all 15120 combinations. It

was found that only 92 combinations produced F1 scores of

1 on the Piper Tomahawk, which is around 0.6% of the total.

This result shows that leveraging structural information

TABLE 6 Regular Elements for the Right Wing, Horizontal Stabiliser Right, and Landing Gear of the generalised Hawk T.Mk1. See Section 6.1.1 and
Section 6.2.1 for the Left and Center counterparts of the generalised Hawk T. Mk1.

Element Name Contextual Type Material Type Geometry Type

Right wing

right-wing-a Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-b Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-c Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-d Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-e Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-f Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-wing-g Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-flap-a Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-flap-b Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-flap-c Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-flap-d Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-flap-e Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-aileron Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

Right Horizontal Stabiliser

right-horizontal-stabiliser-a Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

right-horizontal-stabiliser-b Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

Right Landing Gear

right-shock-absorber Other Metal → Aluminium Alloy Solid → Translate → Cylinder

right-support Other Metal → Aluminium Alloy Plate → Other

right-wheel Wheel Other Other
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reduces the computational burden required to perform

PBSHM. The process of building IE models, AGs and

performing graph-matching has led to a probability of the

perfect F1 score being 0.25 instead of 0.006, demonstrating the

effectiveness of the proposed methodology. This process has

also yielded an association of labels that matches engineering

intuition, by aligning panels that corresponding to “cantilever-

like” sections in each wing.

4 Irreducible element model for an
aeroplane

The previous section has demonstrated how IEmodels can be

used to inform transfer learning for aircraft components. This

section describes how IE models can be constructed to describe a

full aircraft–a Hawk T. Mk1.

The Hawk T. Mk1 is the end result of an RAF project to

replace the aircraft in their fast jet pilot training programme. A

detailed history of the Hawk can be found in Fraser-Mitchell

(2011). The particular Hawk featured in this paper was used as

the ‘bad guy’ during training exercises, hence the skull and cross

bones decal visible in Figure 3A. For the purposes of this paper

and the wider PBSHM work, the Hawk represents a full-size

aircraft that was conveniently available for taking physical

measurements, as well as other interrogations and testing.

Within an IE model it is possible to include details of the

structure down to the nuts and bolts; however, in most cases this

would not be required, and an IE model would only be generated

to the level of detail required for the intended use case. Brennan

et al. (2022) describe the process of generating an IE model of the

Hawk T. Mk1 at the Laboratory for Verification and Validation

(LVV) in Sheffield, United Kingdom. For the IE model described,

the stated aim was to generate a model that described the Hawk’s

TABLE 7 Relationships for the RightWing, Horizontal Stabiliser, and Right Landing Gear of the generalised Hawk T.Mk1. See Section 6.1.2 and Section
6.2.2 for the Left and Center counterparts.

Relationship Name Element Set Type

Right wing

right-wing-a-b {right-wing-a, right-wing-b} Perfect

right-wing-b-c {right-wing-b, right-wing-c} Perfect

right-wing-c-d {right-wing-c, right-wing-d} Perfect

right-wing-d-e {right-wing-d, right-wing-e} Perfect

right-wing-e-f {right-wing-e, right-wing-f} Perfect

right-wing-f-g {right-wing-f, right-wing-g} Perfect

right-wing-flap-a {right-wing-a, right-flap-a} Joint → Dynamic

right-wing-flap-b {right-wing-b, right-flap-b} Joint → Dynamic

right-wing-flap-c {right-wing-c, right-flap-c} Joint → Dynamic

right-wing-flap-d {right-wing-d, right-flap-d} Joint → Dynamic

right-wing-e-aileron {right-wing-e, right-aileron} Joint → Dynamic

right-wing-f-aileron {right-wing-f, right-aileron} Joint → Dynamic

right-wing-g-aileron {right-wing-g, right-aileron} Joint → Dynamic

right-wing-a-flap-e {right-wing-a, right-flap-e} Joint → Dynamic

right-wing-b-flap-e {right-wing-b, right-flap-e} Joint → Dynamic

right-wing-c-flap-e {right-wing-c, right-flap-e} Joint → Dynamic

right-wing-d-flap-e {right-wing-d, right-flap-e} Joint → Dynamic

right-wing-a-fuselage-f {right-wing-a, fuselage-f} Joint → Static

Right Horizontal Stabiliser

right-horizontal-stabiliser-a-b {right-horizontal-stabiliser-a, right-horizontal-stabiliser-b} Perfect

right-horizontal-stabiliser-a-fuselage-k {right-horizontal-stabiliser-a, fuselage-k} Joint → Dynamic

Right Landing Gear

right-shock-absorber-wing-b {right-shock-absorber, right-wing-b} Joint → Dynamic

right-shock-absorber-support {right-shock-absorber, right-support} Joint → Dynamic

right-support-wheel {right-support, right-wheel} Joint → Dynamic

right-wheel-ground {right-wheel, right-ground} Boundary
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overall airframe structure for the purpose of determining the

similarities between itself and other aeroplanes. Being able to

include more detail at a later date opens up the possibility for

future revisions of the IE model of the Hawk, where a more

detailed look into specific systems/the whole structure may be

desired for damage localisation, such as individual panels or sub

systems like the avionic systems.

Because the IE model in question is only of the Hawk’s

airframe, the level of detail required is one that captures the

overall geometry of the Hawk aircraft. Comparing the overall

geometry of various aircraft may be useful when looking for

aircraft with similar configurations in terms of engines, wings,

control surfaces, etc. Such similar configurations should have

some similarity in terms of flight dynamics. To capture the

overall geometry of the Hawk, the elements chosen subdivide

the major components of the aircraft into smaller elements to

facilitate improved representation of its geometry. For example,

to accurately capture their geometry, the wings are subdivided

into multiple elements along their length. This is necessary as the

cross-section of each wing varies considerably along its length.

Another area where it was necessary to subdivide one of the

major components of the aeroplane was the fuselage of the Hawk,

as the air intakes and other features of the aircraft create a

complex geometry.

Given the approach described above, the aircraft was divided

into three major sections, namely: the body (see Figure 3A),

which consists of the fuselage and vertical stabiliser; the aerofoils

(see Figure 4A), which consists of both wings and both horizontal

stabilisers; and finally, the landing gear (see Figure 5A), which

consists of the left, center and right landing gear. This approach

TABLE 8 List of elements and relationships, as well as their properties, for the Gnat aircraft wing.

Element Name Description Material Type Geometry Type Contextual Type

Gnat aircraft wing

1 Wing Panel Metal → Aluminium Plate → Other Aerofoil

2 Wing Panel Metal → Aluminium Plate → Other Aerofoil

3 Wing Panel Metal → Aluminium Plate → Other Aerofoil

4 Wing Panel Metal → Aluminium Plate → Other Aerofoil

5 Wing Panel Metal → Aluminium Plate → Other Aerofoil

6 Wing Panel Metal → Aluminium Plate → Other Aerofoil

7 Wing Panel Metal → Aluminium Plate → Other Aerofoil

8 Wing Panel Metal → Aluminium Plate → Other Aerofoil

9 Wing Panel Metal → Aluminium Plate → Other Aerofoil

Element Name Description Boundary — —

A Fuselage Ground — —

Relationship Name Element Set Type

A {1, 2} Perfect

B {2, 3} Perfect

C {3, 4} Perfect

D {1, 6} Perfect

E {2, 6} Perfect

F {3, 6} Perfect

G {4, 5} Perfect

H {5, 6} Perfect

I {5, 9} Perfect

J {6, 9} Perfect

K {9, 8} Perfect

L {8, 7} Perfect

M {1, A} Boundary

N {2, A} Boundary

O {3, A} Boundary

P {4, A} Boundary
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of dividing a structure into major components is similar to the

process using in Gosliga et al. (2022) for IE model generation

from bridges, where each bridge was divided into sections

corresponding to the deck, the supports, the foundations, etc.

Each sub-component within a section required a different

approach for dividing said sub-component into elements.

Figure 3 depict how the fuselage and vertical stabilisers were

divided into their corresponding elements. The division of the

fuselage matches construction markers on the surface of the

body; i.e. where there is a visible delimiter via either rivets or

welds holding together multiple pieces of sheet metal together.

However, the vertical stabilisers have been divided according to

curvature changes along the leading edge. The elements and

relationships for the body section are listed in Tables 1, 2,

respectively.

In contrast, within the aerofoil section, the wings (depicted in

Figure 4) have been divided inline with the control surfaces at the

rear of the wing. The horizontal stabilisers, however, are divided

into elements according to changes in curvature along the leading

edge, similar to the vertical stabilisers. Tables 6, 7 list the elements

and relationships for the aerofoils.

Finally, the landing gear (shown in Figure 5), are divided

based upon the function of each sub-component, and as such, the

regular elements and relationships used for this section are also

listed in Tables 6, 7. The landing gear also make contact with the

ground and so feature ground elements, as listed in Table 3.

TABLE 9 List of elements and relationship, as well as their properties, for the Piper Tomahawk aircraft wing.

Element Name Description Material Type Geometry Type Contextual Type

Piper Tomahawk aircraft wing

1 Wing Panel Metal → Aluminium Plate → Other Aerofoil

2 Wing Panel Metal → Aluminium Plate → Other Aerofoil

3 Wing Panel Metal → Aluminium Plate → Other Aerofoil

4 Wing Panel Metal → Aluminium Plate → Other Aerofoil

5 Wing Panel Metal → Aluminium Plate → Other Aerofoil

Element Name Description Boundary — —

A Mount Ground — —

Relationship Name Element set Type

A {1, 2} Perfect

B {2, 3} Perfect

C {3, 4} Perfect

D {4, 5} Perfect

E {1, A} Boundary

FIGURE 6
Top down view of the right wing of the Hawk T. Mk1 at the Laboratory for Verification and Validation.
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5 Problem-driven irreducible element
models

As mentioned in Section 4, the current IE model of the Hawk

has been created to capture the overall geometry of the airframe.

Therefore, the current IE model of the Hawk does not include the

internal components and other features of the aircraft. When

creating an IE model, the information captured and the chosen

division of the structure into elements is driven by the SHM

context. In this case, the SHM context (or problem) is one of

comparing the overall airframe with other aircraft, and so the

elements have been chosen accordingly. If considering a different

SHM problem, one may wish to include internal components.

Another possible SHM problem would be one based on damage

localisation. This is similar to the problem posed with the Gnat and

Piperwings. In this context, damage localisationwas the priority, and

geometry a secondary concern. This prioritisation of damage

localisation is reflected in the IE models generated for both the

Gnat wing (Table 8), and the Piper wing (Table 9). The geometric

descriptions of elements in both the Gnat wing and the Piper wing

are much simpler than that of the Hawk (Table 6). The relationships

in the Gnat and Piper wing IE models are either “perfect” or

“boundary,” since the IE model considers the entire wing of

either aircraft to be a single component, similarly to how the

wings of the Hawk have been considered, ignoring the internal

construction of the wing. The internal construction of the wing was

not deemed relevant to theGnat and Piper transfer problem,with the

primary emphasis on subdividing the wing, so that each panel could

be identified within the IE model so that damage could be localised.

The differences that focus on the subdivision of the wings can

be seen by comparing the schematics of the Gnat and Piper wings

(Figure 1), to the photo of the Hawk wing shown in Figure 6.

From Figure 6, it can be seen that the boundaries of the elements

run through several of the inspection panels of the wing, whereas

in the case of the Gnat and Piper wings, the boundaries of the

elements very deliberately encompass the inspection panels and

avoid running through them.

If one were to pose of the problem of transferring knowledge

from the Gnat wing to the Hawk wing, an alternative IE model of

the Hawk wing would need to be created. An IE model of the

Hawk wing which respects the inspection panel location would

be required to localise damage in those areas of the wing.

6 Conclusion

In this paper, the PBSHM framework described in Worden

et al. (2020), is specifically applied to aerospace structures. There

are challenges in describing aircraft geometry that arise from its

complexity, that are not found when describing the relatively

simple geometries found in bridges, for example. An aircraft has

many curved surfaces with aerodynamic significance, compared

to some of the beam and slab constructions often found in civil

infrastructure. These challenges in describing the geometry can

be largely solved by careful subdivision of said geometry into

appropriate elements. New geometric types will also aid in

describing the geometries found in aircraft. Working out how

to describe different structures, and updating the schema to

accommodate these new descriptions forms a large part of the

work in creating a PBSHM framework that encompasses, and

remains consistent across all engineering structures.

Knowledge transfer looks promising for aerospace applications,

where to date, there has been successful knowledge transfer between

aircraft components following the ideas of generating IE models,

examining the subgraphs between the two structures, and using this

to informwhich knowledge transfer will be themost successful. This

is the PBSHM framework that has been laid out so far: find

similarities, or level of similarity, between two or more structures

and use this to inform transfer learning by selecting the most

appropriate methods and associations.

The paper discusses the generation of IE models from aircraft

components/substructures to a full-size jet aircraft, and through this,

shows that the IEmodels for aircraft are very different to the IEmodels

required for other classes of structure, with differentmaterial, geometric

and even contextual labels. This is promising (and expected), in as

much as it is very unlikely that bridges (for example), and aeroplanes

would ever match with one another in the PBSHM database, which is

the desired behaviour. In particular, there are certain contextual labels,

such as ‘fuselage’, that may make it trivial to separate aircraft from

bridges in the databases. This behaviour of driving structures apart (in

particular bridges and aeroplanes), as more descriptive labels are

included, is described in Worden et al. (2021). Furthermore,

including the different material and contextual labels found in

aircraft allows the PBSHM schema to be expanded, thus

incorporating a greater range of engineering structures.

This paper also discusses the need for different IE models,

depending on the problem at hand. For example, the current

elements within the IE model of the Hawk correspond largely to

changes in the overall geometry of the airframe, while the Gnat and

Piper wings are divided into elements which correspond to possible

damage locations. If the context for generating the IE model of a

structure were to change, then a new IE model may be necessary.

For example, to transfer knowledge between the Gnat and theHawk

for the purposes of localising damage within one of the wings of the

Hawk, then the elements of the Hawk wing would need to be

changed to respect the inspection panel location. Alternatively, if

one desired a more detailed description of the Gnat or Piper wing

geometry, then new IE models featuring elements that correspond

to the geometry or construction would be required.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Frontiers in Robotics and AI frontiersin.org14

Brennan et al. 10.3389/frobt.2022.840058

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.840058


Author contributions

JG was responsible for writing the Section 1, Section 2,

Section 5, and Section 6, putting the final article together, as

well as conducting work on generating the IE model of the Hawk

and providing the graph-matching results for the Gnat-Piper

study. DB wrote Section 4 and produced the final IE model of the

Hawk. PG wrote Section 3 and conducted the transfer learning

work described in the Gnat-Piper study. RM helped to produce

the IE model of the Hawk, providing technical drawings, lab-

based assistance and expertise. KW is responsible for the whole

PBSHM project and has been involved in all aspects of the work

featured in this paper, as well providing detailed feedback with

comments and edits on the various drafts.

Funding

This research made use of The Laboratory for Verification and

Validation (LVV) which was funded by the EPSRC (grant numbers

EP/R006768/1 and EP/N010884/1), the European Regional

Development Fund (ERDF) and the University of Sheffield.

Acknowledgments

The authors would like to acknowledge David Hester,

Andrew Bunce, Nikoloas Dervilis, Lawrence Bull for their

contributions to the PBSHM framework. The authors wish to

acknowledge the assistance of Michael Dutchman in

generating the IE model of the Hawk and obtaining

measurements of the real structure. The authors would like

to thank the United Kingdom EPSRC for funding through the

Established Career Fellowship EP/R003645/1 and the

Programme Grant EP/R006768/1. The authors further wish

to thank the Defence Science and Technology Laboratory and

the Ministry of Defence (specifically Steve Reed and Ross

Whitten) for providing us with the particular Hawk T.

Mk1 featured throughout this paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Antoniadou, I., Dervilis, N., Papatheou, E., Maguire, A., and Worden, K.
(2015). Aspects of structural health and condition monitoring of offshore
wind turbines. Phil. Trans. R. Soc. A 373, 20140075. doi:10.1098/rsta.2014.
0075

Bacciu, D., Errica, F., Micheli, A., and Podda, M. (2020). A gentle introduction to
deep learning for graphs. Neural Netw. 129, 203–221. doi:10.1016/j.neunet.2020.
06.006

Barthorpe, R., Manson, G., and Worden, K. (2017). On multi-site damage
identification using single-site training data. J. Sound Vib. 409, 43–64. doi:10.
1016/j.jsv.2017.07.038

Beck, D., Haffari, G., and Cohn, T. (2018). Graph-to-sequence learning using
gated graph neural networks. Proc. ACL.

Brennan, D. S., Gosliga, J., Cross, E. J., and Worden, K. (2021).
On implementing an irreducible element model schema for
population-based structural health monitoring. In submitted to IWSHM
2021.

Brennan, D. S., Mills, R. S., Cross, E. J., Worden, K., and Gosliga, J. (2022). On a
description of aeroplanes and aeroplane components using irreducible element
models. In submitted to IMAC XL

Bron, C., and Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM 16, 575–577. doi:10.1145/362342.362367

Bull, L., Gardner, P., Dervilis, N., Papatheou, E., Haywood-Alexander, M., Mills,
R., et al. (2021). On the transfer of damage detectors between structures: An
experimental case study. J. Sound Vib. 501, 116072. doi:10.1016/j.jsv.2021.116072

Bull, L., Gardner, P., Gosliga, J., Rogers, T., Dervilis, N., Cross, E., et al. (2020).
Foundations of population-based SHM, Part I: Homogeneous populations and
forms. Mech. Syst. Signal Process. 148, 107141. doi:10.1016/j.ymssp.2020.107141

Cao, Y., Jiang, T., and Girke, T. (2008). A maximum common substructure-based
algorithm for searching and predicting drug-like compounds. Bioinformatics 24,
i366–i374. doi:10.1093/bioinformatics/btn186

Duesbury, E., Holliday, J., and Willett, P. (2017). Maximum common subgraph
isomorphism algorithms. MATCH Commun. Math. Comput. Chem. 77, 213–232.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A., et al. (2015). Proceedings of Advances in Neural
Information Processing Systems, 28.Convolutional networks on graphs for learning
molecular fingerprints.

Fraser-Mitchell, H. (2011). The Hawk story. J. Aeronautical Hist.

Gardner, P., Bull, L., Dervilis, N., and Worden, K. (2021). Overcoming the
problem of repair in structural health monitoring: Metric-informed transfer
learning. J. Sound Vib. 510, 116245. doi:10.1016/j.jsv.2021.116245

Gardner, P., Bull, L., Gosliga, J., Dervilis, N., and Worden, K. (2020a).
Foundations of population-based SHM, Part III: Heterogeneous
populations – mapping and transfer. Mech. Syst. Signal Process. 149, 107142.
doi:10.1016/j.ymssp.2020.107142

Gardner, P., Bull, L., Gosliga, J., Poole, J., Gowdridge, T., Dervilis, N., et al. (2022).
A population-based methodology for transferring knowledge between
heterogeneous structures in SHM: Damage localisation in a population of
aircraft wings. Submitt. Mech. Syst. Signals Process.

Gardner, P., Liu, X., and Worden, K. (2020b). On the application of domain
adaptation in structural health monitoring.Mech. Syst. Signal Process. 138, 106550.
doi:10.1016/j.ymssp.2019.106550

Gosliga, J., Gardner, P., Bull, L., Dervilis, N., and Worden, K. (2020). Foundations of
population-based SHM, Part II: Heterogeneous populations – graphs, networks, and
communities. Mech. Syst. Signal Process. 148, 107144. doi:10.1016/j.ymssp.2020.107144

Frontiers in Robotics and AI frontiersin.org15

Brennan et al. 10.3389/frobt.2022.840058

https://doi.org/10.1098/rsta.2014.0075
https://doi.org/10.1098/rsta.2014.0075
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.jsv.2017.07.038
https://doi.org/10.1016/j.jsv.2017.07.038
https://doi.org/10.1145/362342.362367
https://doi.org/10.1016/j.jsv.2021.116072
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1093/bioinformatics/btn186
https://doi.org/10.1016/j.jsv.2021.116245
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2019.106550
https://doi.org/10.1016/j.ymssp.2020.107144
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.840058


Gosliga, J., Hester, D., Worden, K., and Bunce, A. (2022). On population-based
structural health monitoring for bridges. Submitt. Mech. Syst. Signals Process.

Hamaguchi, T., Oiwa, H., Shimbo, M., and Matsumoto, Y. (2017). “Knowledge
transfer for out-of-knowledge-base entities: A graph neural network approach,” in
Proceedings of the 26th International Joint Conference on Artificial Intelligence.

Koch, I. (2001). Enumerating all connected maximal common subgraphs in two
graphs. Theor. Comput. Sci. 250, 1–30. doi:10.1016/s0304-3975(00)00286-3

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. (2019). “Graph matching
networks for learning the similarity of graph structured objects,” in Proceedings of
the 36th International Conference on Machine Learning.

Liao, R., Li, Y., Song, Y., Wang, S., Nash, C., Hamilton, W., et al. (2019). “Efficient
graph generation with graph recurrent attention networks,” in 33rd Conference on
Neural Information Processing Systems.

Manson, G., Worden, K., and Allman, D. (2003b). Experimental validation of a
structural health monitoring methodology: Part III. Damage location on an aircraft
wing. J. Sound Vib. 259, 365–385. doi:10.1006/jsvi.2002.5169

Manson, G., Worden, K., and Allman, D. (2003a). Experimental validation of a
structural health monitoring methodology: Part II. Novelty detection on a gnat
aircraft. J. Sound Vib. 259, 345–363. doi:10.1006/jsvi.2002.5167

Pan, S., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/tkde.2009.191

Papatheou, E., Dervilis, N., Maguire, A., Antoniadou, I., and Worden, K. (2015).
A performance monitoring approach for the novel Lillgrund offshore wind farm.
IEEE Trans. Ind. Electron. 62, 6636–6644. doi:10.1109/tie.2015.2442212

Raymond, J., Gardiner, E., and Willett, P. (2002). Rascal: Calculation of graph
similarity using maximum common edge subgraphs. Comput. J. 45, 631–644.
doi:10.1093/comjnl/45.6.631

Schölkopf, B., Smola, A., andMüller, K.-R. (1998). Nonlinear component analysis
as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319. doi:10.1162/
089976698300017467

Sutskever, I., Vinyals, O., and Le, Q. (2014). Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2.Sequence to sequence
learning with neural networks

Tsialiamanis, G., Mylonas, C., Chatzi, E., Dervilis, N., Wagg, D., and Worden, K.
(2021). Foundations of population-based SHM, Part IV: The geometry of spaces of
structures and their feature spaces. Mech. Syst. Signal Process. 157, 107692. doi:10.
1016/j.ymssp.2021.107692

van Berlo, R., Winterbach, W., de Groot, M., Bender, A., Verheijen, P.,
Reinders, M., et al. (2013). Efficient calculation of compound similarity
based on maximum common subgraphs and its application to prediction of
gene transcript levels. Int. J. Bioinform. Res. Appl. 9, 407–432. doi:10.1504/
ijbra.2013.054688

Wang, J., Chen, Y., Hao, S., Feng, W., and Shen, Z. (2017). “Balanced distribution
adaptation for transfer learning,” in 2017 IEEE International Conference on Data
Mining (ICDM), 1129–1134.

Weiss, K., Khoshgoftaar, T., and Wang, D. (2017). A survey of transfer learning.
J. Big Data 3, 29. doi:10.1186/s40537-016-0043-6

Wickramarachchi, C., Leahy, W., Worden, K., and Cross, E. (2021). “On metrics
assessing the information content of datasets for population-based structural health
monitoring,” in Proceedings of the European Workshop on Structural Health
Monitoring.

Worden, K., Bull, L. A., Gardner, P., Gosliga, J., Rogers, T. J., Cross, E. J., et al.
(2020). A brief introduction to recent developments in population-based structural
health monitoring. Front. Built Environ. 6. doi:10.3389/fbuil.2020.00146

Worden, K., Hester, D., Bunce, A., and Gosliga, J. (2021). “When is a bridge
not an aeroplane?,” in Proceedings of SHMII-10 – the 10th International
Conference on Structural Health Monitoring of Intelligent Infrastructure,
Porto, Portugal.

Worden, K., Manson, G., and Allman, D. (2003). Experimental validation of a
structural health monitoring methodology: Part I. Novelty detection on a laboratory
structure. J. Sound Vib. 259, 323–343. doi:10.1006/jsvi.2002.5168

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2021). A
comprehensive survey on transfer learning. Proc. IEEE 109, 43–76. doi:10.1109/
jproc.2020.3004555

Frontiers in Robotics and AI frontiersin.org16

Brennan et al. 10.3389/frobt.2022.840058

https://doi.org/10.1016/s0304-3975(00)00286-3
https://doi.org/10.1006/jsvi.2002.5169
https://doi.org/10.1006/jsvi.2002.5167
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1109/tie.2015.2442212
https://doi.org/10.1093/comjnl/45.6.631
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1016/j.ymssp.2021.107692
https://doi.org/10.1016/j.ymssp.2021.107692
https://doi.org/10.1504/ijbra.2013.054688
https://doi.org/10.1504/ijbra.2013.054688
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.3389/fbuil.2020.00146
https://doi.org/10.1006/jsvi.2002.5168
https://doi.org/10.1109/jproc.2020.3004555
https://doi.org/10.1109/jproc.2020.3004555
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.840058


Appendix

Left aerofoil irreducible element model.

TABLE A1 Regular elements.

Element Name Contextual Type Material Type Geometry Type

Left wing

left-wing-a Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-b Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-c Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-d Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-e Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-f Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-wing-g Wing Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-flap-a Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-flap-b Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-flap-c Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-flap-d Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-flap-e Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-aileron Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

Left horizontal stabiliser

left-horizontal-stabiliser-a Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder

left-horizontal-stabiliser-b Aerofoil Metal → Aluminium Alloy Shell → Translate and Scale → Cylinder
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TABLE A3 Regular elements.

Element Name Contextual Type Material Type Geometry Type

Center landing gear

center-shock-absorber Other Metal → Aluminium Alloy Solid → Translate → Cylinder

center-support Other Metal → Aluminium Alloy Plate → Other

center-wheel Wheel Other Other

Left landing gear

left-shock-absorber Other Metal → Aluminium Alloy Solid → Translate → Cylinder

left-support Other Metal → Aluminium Alloy Plate → Other

left-wheel Wheel Other Other

TABLE A2 Relationships.

Relationship Name Element Set Type

Left wing

left-wing-a-b {left-wing-a, left-wing-b} Perfect

left-wing-b-c {left-wing-b, left-wing-c} Perfect

left-wing-c-d {left-wing-c, left-wing-d} Perfect

left-wing-d-e {left-wing-d, left-wing-e} Perfect

left-wing-e-f {left-wing-e, left-wing-f} Perfect

left-wing-f-g {left-wing-f, left-wing-g} Perfect

left-wing-flap-a {left-wing-a, left-flap-a} Joint → Dynamic

left-wing-flap-b {left-wing-b, left-flap-b} Joint → Dynamic

left-wing-flap-c {left-wing-c, left-flap-c} Joint → Dynamic

left-wing-flap-d {left-wing-d, left-flap-d} Joint → Dynamic

left-wing-e-aileron {left-wing-e, left-aileron} Joint → Dynamic

left-wing-f-aileron {left-wing-f, left-aileron} Joint → Dynamic

left-wing-g-aileron {left-wing-g, left-aileron} Joint → Dynamic

left-wing-a-flap-e {left-wing-a, left-flap-e} Joint → Dynamic

left-wing-b-flap-e {left-wing-b, left-flap-e} Joint → Dynamic

left-wing-c-flap-e {left-wing-c, left-flap-e} Joint → Dynamic

left-wing-d-flap-e {left-wing-d, left-flap-e} Joint → Dynamic

left-wing-a-fuselage-f {left-wing-a, fuselage-f} Joint → Static

Left horizontal stabiliser

left-horizontal-stabiliser-a-b {left-horizontal-stabiliser-a, left-horizontal-stabiliser-b} Perfect

left-horizontal-stabiliser-a-fuselage-k {left-horizontal-stabiliser-a, fuselage-k} Joint → Dynamic

Left and center landing gear irreducible element model.
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TABLE A4 Relationships.

Relationship Name Element Set Type

Left landing gear

left-shock-absorber-wing-b {left-shock-absorber, left-wing-b} Joint → Dynamic

left-shock-absorber-support {left-shock-absorber, left-support} Joint → Dynamic

left-support-wheel {left-support, left-wheel} Joint → Dynamic

left-wheel-ground {left-wheel, left-ground} Boundary

Center landing gear

center-shock-absorber-fuselage-b {center-shock-absorber, fuselage-b} Joint → Dynamic

center-shock-absorber-support {center-shock-absorber, center-support} Joint → Dynamic

center-support-wheel {center-support, center-wheel} Joint → Dynamic

center-wheel-ground {center-wheel, center-ground} Boundary
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