'.\' frontiers

1In Robotics and Al

ORIGINAL RESEARCH
published: 18 February 2022
doi: 10.3389/frobt.2022.834177

OPEN ACCESS

Edited by:

Yongping Pan,

National University of Singapore,
Singapore

Reviewed by:

Jishnu Keshavan,

Indian Institute of Science (lISc), India
Kai Guo,

Shandong University, China

*Correspondence:
Ahmad Ataka
ahmad.ataka.ar@ugm.ac.id

Specialty section:

This article was submitted to
Robotic Control Systems,

a section of the journal
Frontiers in Robotics and Al

Received: 13 December 2021
Accepted: 21 January 2022
Published: 18 February 2022

Citation:

Ataka A, Lam H-K and Althoefer K
(2022) Magnetic-Field-Inspired
Navigation for Robots in Complex and
Unknown Environments.

Front. Robot. Al 9:834177.

doi: 10.3389/frobt.2022.834177

Check for
updates

Magnetic-Field-Inspired Navigation
for Robots in Complex and Unknown
Environments

Ahmad Ataka'*, Hak-Keung Lam? and Kaspar Althoefer®

"Signal Processing Laboratory, Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta,
Indonesia, 2The Centre for Robotics Research (CoRe), Department of Engineering, King’s College London, London,

United Kingdom, 3The Centre for Advanced Robotics @ Queen Mary (ARQ), Faculty of Science and Engineering, Queen Mary
University of London, London, United Kingdom

Over the course of the past decade, we have witnessed a huge expansion in robotic
applications, most notably from well-defined industrial environments into considerably
more complex environments. The obstacles that these environments often contain present
robotics with a new challenge - to equip robots with a real-time capability of avoiding them.
In this paper, we propose a magnetic-field-inspired navigation method that significantly
has several advantages over alternative systems. Most importantly, 7) it guarantees
obstacle avoidance for both convex and non-convex obstacles, 2) goal convergence is
still guaranteed for point-like robots in environments with convex obstacles and non-maze
concave obstacles, 3) no prior knowledge of the environment, such as the position and
geometry of the obstacles, is needed, 4) it only requires temporally and spatially local
environmental sensor information, and ) it can be implemented on a wide range of robotic
platforms in both 2D and 3D environments. The proposed navigation algorithm is validated
in simulation scenarios as well as through experimentation. The results demonstrate that
robotic platforms, ranging from planar point-like robots to robot arm structures such as the
Baxter robot, can successfully navigate toward desired targets within an obstacle-laden
environment.

Keywords: magnetic-field-inspired navigation, reactive navigation, motion control, path planning for manipulators,
obstacle advoidance

1 INTRODUCTION

Over the past decade, robotic technologies have found their way into an ever-growing number of
fields. No longer limited to the well defined and structured environments commonly found in
industrial sites, robotic devices have moved into all manner of environments as they become key
“players” in a variety of domestic and care tasks, as well as in post-disaster evacuation and nuclear
decommissioning. In line with this shift in robotic applications, the need to equip a robot with the
ability to navigate arbitrarily-shaped obstacles within unknown environments, while relying on
limited sensor information, becomes increasingly important.

The problems of robot navigation, path planning, and obstacle avoidance have been widely
explored over the last 30 years (Latombe, 1991), (Choset, 2005). In the early years, solutions focused
on producing geometrical paths for the robot to take to reach its target. While theoretically elegant,
this type of planning was found to be rather impractical due to the costly numerical computation that
was needed to create the configuration space (C-Space) (LaValle, 2011). This prompted a new
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approach, known as sampling-based planning which randomly
samples and checks whether a configuration lies in free space or
not (Choset, 2005). Other algorithms produce initial paths for
static environments that are based on a known map and modify
those paths online (Brock and Khatib, 2002; Vannoy and Xiao,
2008). Another approach that employs potential function with a
single global minimum has been proposed. Examples of this kind
of navigation method include a harmonic function (Garrido et al.,
2010) and a fast-marching method (Valero-Gomez et al., 2013).
The properties of magnetic fields have also inspired several
researchers to create navigation systems that mimic the
behaviour of magnetic fields. Examples include those reported
in (Singh et al., 1996, 1997) and (Haddadin et al., 2011). However,
and significantly, most of these algorithms rely on perfect
knowledge of the environment prior to the onset of any
motion on the part of the robotic device.

For applications in which no prior knowledge of the
environment is available, a reactive sensor-based navigation
system is employed, in which the robot senses the
environment and the acquired sensor information is used to
produce motion signals in real-time (Valle, 2011). An example of
widely-used reactive navigation is the Artificial Potential Field
(APF) method in which obstacles produce a repulsive behaviour
repelling the robot while the target attracts it (KKhatib, 1985). The
main advantage of this method is its simplicity which indeed has
led to its widespread application (Choset, 2005) and to the
emergence of a variety of similar methods (Park et al., 2008).
These methods, however, all suffer from the well-documented
problem of local-minima often causing the robot to get stuck in
undesired configurations and fail to reach its target (Choset,
2005). To avoid this problem without diminishing its reactivity, a
vortex field, designed to circulate around the obstacle surface, is
incorporated (Rizqi et al., 2014), although in this case, the authors
present no guarantees in terms of stability or collision avoidance
capability. Inspiration from computational geometry has also led
to the use of power diagrams as a route to solving the problem of
reactive navigation in an unknown environment (Arslan and
Koditschek, 2016). Despite being able to guarantee obstacle
avoidance and target convergence, this approach is however
only suitable for a topologically simple environment consisting
of spherical obstacles in a planar world.

“Circular fields” or “gyroscopic forces” (Singh et al., 1996,
1997; Haddadin et al,, 2011), which work by redirecting rather
than repelling the robot, have been researched extensively during
the last decade and an algorithm based on this has been used in a
planar point-like robot to achieve tasks such as boundary
following (Zhang et al., 2004a,b), obstacle avoidance (Chang
and Marsden, 2003), and formation control for multi-agent
systems (Chang and Marsden, 2003). However, obstacle
avoidance and goal convergence are only guaranteed in
environments with convex obstacles, limiting its applications
in realistic environments. Applying these techniques for non-
convex obstacles is not straightforward because simply
redirecting the direction of the robot’s movement to follow
non-convex obstacles’ surface is not sufficient to guarantee
collision avoidance. Adding a repulsive term will help to
guarantee collision avoidance. However, it affects the goal
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convergence and potentially leads the robot towards a local
minimum. More recent work has explored the possibility of
using a gyroscopic control method for maze-like environments
(Matveev et al,, 2013) as well as environments with dynamic
obstacles (Savkin and Wang, 2013, 2014) and those with
deforming obstacles (Matveev et al, 2012, 2015). These
methods, summarized in (Savkin and Wang, 2015), were
however all specifically designed for planar unicycle-like
mobile robots. Subsequent to that, efforts have been focused
on the application of gyroscopic forces in fully-actuated or under-
actuated robotics systems in 3D environments (Garimella et al.,
2016). This method, though, is specifically designed for
environments consisting of spherical and cylindrical obstacles.
While efforts to apply gyroscopic force algorithms to formation
control of multiple robots in 3D have also been reported (Justh
and Krishnaprasad, 2004; Sabattini et al, 2013, 2017), these
algorithms only provide solutions for collision avoidance in
point-like robots.

In this paper, we present a reactive magnetic-field-inspired
navigation system for robots in 3D environments. The moving
robot generates an artificially-induced electric current on the
surface of an obstacle which, in turn, induces a magnetic field on
the robot. Although reliant on local sensor information only,
indeed without any required knowledge of the geometry or
position of any obstacle in the given environment, the
proposed algorithm has the ability to navigate point-like
robots to their desired targets without any local minima issues.
Our algorithm outperforms other magnetic-field-inspired
navigation algorithms (Singh et al, 1996, 1997; Haddadin
et al, 2011) as no requisite knowledge of the environment is
required. It is also superior to the reactive gyroscopic force
methods (Zhang et al, 2004a,b; Chang and Marsden, 2003;
Garimella et al, 2016; Justh and Krishnaprasad, 2004;
Sabattini et al., 2013, 2017), indeed including our own recent
works (Ataka et al., 2018a,b), as obstacle avoidance and goal
convergence are guaranteed in environments consisting of
convex and non-maze concave obstacles. Moreover, our
algorithm is not limited to 2D environments, as is the case for
methods presented in (Savkin and Wang, 2015), but also enables
the guidance of robots to their target within 3D environments.
Alongside these advantages, our algorithm has a further benefit,
which relates to its generic nature - and its consequential
applicability to a variety of robotic platforms operating in a
wide range of settings. To the best of our knowledge, we
believe that this paper is the first to propose a reactive,
magnetic-field based robot navigation system that is capable of
guiding robots around arbitrary-shaped and unknown convex
and non-maze concave obstacles to its target, within 3D
environments.

2 INSPIRATION FROM NATURE

Our ideas are inspired by phenomena observed in classical
electromagnetism. Prominent among its underlying theorems
is the Biot-Savart law which describes the relationship between
a current-carrying conductor and the surrounding magnetic field
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FIGURE 1 | (A) A current-carrying wire with electric current in the direction of dl,, will produce magnetic field dB in the space around it. In this configuration, dB
points inside the paper. (B) Two wires with electric currents I, and I, each flowing towards opposite direction of each other, will generate a repulsive force F on both wires
directed away from each other. (C) A positively-charged particle is affected by Lorentz force F due to the presence of magnetic field B induced by current I,,.

(o]

1 ) Iy

that it produces. A current-carrying wire segment with an
infinitesimal length dl, and electrical current i, will induce a
magnetic field dB. This magnetic field, whose direction is
illustrated in Figure 1A, is expressed by the following
equation (Halliday et al., 2013)

g dodl, x 1

B = > i (1)
Where r specifies the position of an arbitrary point in the
surrounding space of the wire segment relative to the current-
carrying wire, yo specifies a permeability constant, while x
specifies the operation of vector cross product. The total
magnetic field produced by the wire can be derived by
integrating the above operation over a wire length [ which will
depend on the wire configuration.

This magnetic field will produce a force dF on any other
current-carrying wire with an infinitesimal length dl, and current
i, flowing in the opposite direction, as illustrated in Figure 1B,
and expressed by the following equation

dF =i,dl, x B. 2)

The direction of the force is perpendicular to the direction of
both the electric current i, (in the direction of the vector dl,) and
magnetic field vector B. This force also generates a repulsive
behaviour in the pair of wires, such that it drives the wires apart.

In a similar manner, as illustrated in Figure 1C, the movement
of a charged particle g will be influenced by the magnetic field as it
moves into the vicinity of the current-carrying wire. This magnetic
field will apply a force F to the moving particle in a direction
perpendicular to the particle’s velocity vector v and the magnetic
field vector B. This force, usually known as Lorentz force, is
expressed by the following equation (Halliday et al., 2013)

F=gv xB. 3)

Substituting the expression for B from (1) and abandoning the
infinitesimal notation, the force both in Eqs 2, 3 can be
expressed as

_ YoGio L, x (I, xr)

F
4m |rf?

) 4

Where 1, denotes either the direction of the current in the case of
the wire in Figure 1B or the particle’s velocity in the case of the
charged particle in Figure 1C.

As shown in Figure 1C, the interaction between the magnetic
field and the moving charged particle produces a force whose
direction is perpendicular to that of the particle’s motion. The
net result is that the particle’s direction of movement is altered,
rather than its velocity decreased. Taking inspiration from this
behaviour pattern, a robotic arm can be envisaged as a moving
charged particle whose velocity is expressed by vector v while
the surface of a potential obstacle can be thought of as a
current-carrying wire. Collision avoidance can then be
achieved if the robot induces an artificial current 1, that
flows over the surface of an obstacle expressed by position
vector r, (with respect to the robot’s own position). This
artificial current will then apply a force F onto the robot,
pushing the robot away from and around the surface of any
obstacles in its pathway.

Using our definition of the positional vector, we get r, = — r.
Thus, we can rewrite the Eq. 4 in the following form

F=c lu X (ro X lo) f(|r0|’ |P|), (5)

In which ¢ > 0 is a positive constant, 1, is defined as the direction
of the robot’s velocity vector, while f (|r,|, [p]) >0 is defined as a
function which is dependent upon the distance between the
obstacle and the robot |r,| and/or speed of the robot [p|. To
help highlight the key characteristics of the algorithm, a skew-
symmetric matrix 1 is used to replace the operation of vector cross
product Ix of an arbitrary vector 1= [, I, L 1%. This matrix is
defined as

o L,
i=|L o - (6)
1, I 0

We can design this artificial vector field to produce a desired
robot behaviour by defining the current direction 1, on the
obstacle surface and the scalar function f (|r,|,|pl) as per the
explanation in Section 4.
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A B

FIGURE 2 | The environment considered in the paper can consists of any of the following obstacles: (A) a smooth convex obstacle, (B) a non-smooth convex

obstacle, (C) a smooth concave obstacle, and (D) a non-smooth concave obstacle.

e Mo

3 PROBLEM FORMULATION

Let us consider a point-mass robot in a bounded work-space
W c R* or W ¢ R? whose position is described by a position
vector p € WW. The robot is assumed to be equipped with a local
sensor that is sensitive to the surrounding environment within a
sphere of radius r, centred at the robot’s position p. The robot is

also able to measure, in real-time, its velocity p, whose direction is
defined as

@)

Lastly, the robot’s actuators are assumed to be non-

saturatable, i.e. they will always have the necessary energy to
produce the required movement. Significantly, the environment
is deemed completely unknown to the robot prior to its
actuation.

We assume that the environment of the robot consists of

m € N number of fixed obstacles O;. The obstacle O; can be any
of the following types:

1.

2.

a member of a convex set with smooth boundary, such as
illustrated in Figure 2A,

a member of a convex set with non-smooth boundary, such as
illustrated in Figure 2B,

amember of a simple concave set with smooth boundary, such
as illustrated in Figure 2C,

a member of a simple concave set with non-smooth boundary,
such as illustrated in Figure 2D.

The term simple refers to non-maze geometry in which the

obstacle surface will not require the robot to change its direction
of motion more than 180° from its initial trajectory towards the
target while following the obstacle boundary. The free space is
then formally defined as F = W\(JZ, O;. We assume that the
robot starts moving from an initial position p, € F to the desired
target position p, € F located at some distance from any of the
surfaces of an obstacle. Assuming a double integrator system with
dynamics described as

pP=u (®)

We want to determine the control signal u which will guide the
robot’s position p(t) towards the desired position pg as t — o
while keeping the robot free from collision throughout its entire
route, which is formally defined as

FIGURE 3 | The workspace of a robot on its way towards the target in

the close proximity of the polygonal obstacle. The artificial current on the
surface of obstacle |, is designed to have the same direction as the projection
of the robot’s velocity I, on to the obstacle surface.

p(t) € F,Vvt. 9)

4 PROPOSED ALGORITHM
4.1 General Algorithm

To ensure collision avoidance while moving toward the target, we
introduce a magnetic-field-inspired vector field F, consisting of
two terms: a boundary-following vector field F,, and a collision-
avoidance vector field F, as follows

F, =F, +F,. (10)

The magnetic-field-inspired vector fields Fy, and F, are created
by artificial currents on the obstacle surface induced by the
moving robot, 1, and 1,, respectively.

To induce boundary-following behaviour, so that the robot
follows the direction of artificial current 1,, the vector field Fy, is
defined as

Fy=c L, x (I xL) f(Irl, [pl). (11)

The behaviour of the moving robot under the influence of the
vector field F, mimics the behaviour of a charged particle moving
in the proximity of a current-carrying wire as illustrated in
Figure 1C.

In order to generate an artificial current 1, on the surface of an
obstacle, let us start with a point-mass robot in R? moving in an
environment as illustrated in Figure 3.

In this planar environment, the current on the obstacle surface
needs to be induced in such a way that the robot safely
circumvents the obstacle by following the obstacle boundary in
either an anti-clockwise or a clockwise direction. At the same
time, the effect of the current should not dramatically alter the
path that the robot is inclined to take to reach its target - it simply
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needs to ensure that collisions are avoided and unnecessary
oscillations are mitigated. To satisfy this requirement, we
define the proposed artificial current direction 1, as a
projection of the robot’s velocity direction 1, on to the surface
of a nearby obstacle, as illustrated in Figure 3.

Despite having no knowledge of the obstacle’s geometry, we
can still make a practical assumption regarding the surface of a
nearby obstacle using local sensory information only.

Suppose that the robot senses the closest point of the obstacle
surface located at position r, relative to the robot’s current
position. The surface of the obstacle at this specific point is
then assumed to have a normal vector n, in the opposite direction
of r,, i.e. the surface is assumed to be perpendicular to the vector
r,. The artificial current 1, can therefore be described as:

lgrg)ro

L=1- ( (12)

Ir, |*
Finally, to complete the definition of the boundary-following
vector field Fy, the scalar function f (|r,|,[pl) is chosen as:
.\ _ Pl
f ) 1pl) = . (13)
I
To keep the robot at a safe distance from the obstacle surface,
the vector field F, behaves much in the same way as a pair of
current-carrying wires in which the current flowing in one wire is
in the opposite direction to that of the other - see Section 2
(Figure 1B). The robot moving in a direction of 1, will induce an
artificial current 1,, in the opposite direction of current 1,
described in (12) as follows:

T
L. = —<1a —%) (14)

|r,

The field equation F, can then be derived following the general
equation in (5) with the scalar function f (|r,], |p|) chosen to be
inversely proportional to the robot-obstacle distance r as follows

CL

r
Folox(2x1) & (s)
r r
Where ¢, denotes a positive constant.

4.2 Properties of the Proposed Algorithm
In the following section, we outline the key properties of our
navigation algorithm. To simplify the analysis, we describe the
properties inherently possessed by each of the two vector field
components: the boundary-following vector field F, and the
collision-avoidance vector field F,.

Several properties of the boundary-following vector field Fy,
outlined in previous work by the authors (Ataka et al., 2018a), can
be summarised in Lemma 1 to Lemma 4. Please refer to our
previous work in (Ataka et al.,, 2018a) for the proofs of these
lemmas.

Lemma 1. The force Fy, described in (11) does not affect the speed of
the robot v = |p|.

Lemma 2. Suppose that the robot is in the vicinity of a flat obstacle
surface and it is located far enough from the obstacle such that no

Magnetic-Field-Inspired Navigation in Complex Environments

FIGURE 4 | The scenario of a robot moving in the vicinity of a concave
obstacle which has a continuous surface.

collision can occur during its movement. The force Fy, will guide the
robot to reach a direction of the artificial current 1,, causing the
robot’s direction to be parallel to the obstacle surface.

Lemma 3. Suppose that the closest surface of a convex-shaped
obstacle is located at initial distance ry = |r,| from the robot. The
robot will never touch the surface of the obstacle as long as its
initial direction 1, is not in line with the direction of vector r,
connecting the robot and the obstacle.

Lemma 4. The robot’s direction of movement will asymptotically
reach a direction in line with the direction of the artificial current.
This equilibrium direction is globally asymptotically stable.
Lemma 3-4 show that the boundary-following vector field F,,
ensures that the robot follows a direction parallel to the
nearby obstacle surface and hence avoids collision with a
convex obstacle. However, these features do not directly
control the distance to the obstacle surface. This creates a
problem for environments with concave obstacles as
maintaining the robot’s direction alone is not sufficient to
avoid collisions. It is here that the collision-avoidance vector
field F, comes into play. The properties of this vector field are
as follows:

Lemma 5. The force F, in (15) will not change the magnitude of
robot’s velocity v = |p|.

Proof. We introduce vector a, = (% x1o1) <. From the skew-

symmetric definition in (6), we conclude that
LR, =1](La,) =0, (16)

The dynamics of a point-mass robot characterized by mass m
and speed v = [p| is

dp dv dl,
Fa = —_= _lu — . 17
"t m(dt +th> (17)
Substituting F, into (16) and considering lz%”: 0, we
conclude that
dv
I'F,=m—=0. 18
, mo (18)

The only solution to the previous equation is Z—‘t’ = 0, which
proves the claim that the robot’s speed is not affected by the
force F,.
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To prove obstacle avoidance, let us imagine an environment in
which the obstacle has a concave continuous surface; this means
that the surface is smooth with no discontinuity and each point
on the obstacle surface can be described by a curvature parameter
K, which is a reciprocal of a radius of a surface. Suppose we have
an obstacle whose closest point to the robot is located at vector r,
and the robot’s location is defined by vector r, with respect to a
static reference point O as illustrated in Figure 4. According to
the Frenet-Serret formula in R? space (Millman and Parker,
1977), the surface of the obstacle can be described by the
following equations

or, al, on,

— =l = =wn,, — = —«l,, (19)
0s L 0s > Os ?
Where s represents curve segment, while n, and 1, represent unit
vectors whose direction is normal and perpendicular respectively
to the closest obstacle surface as shown in Figure 4. Via the chain
rule, we get the following set of equations
ds, . ds ds

- = _lmlo = — KIly, .0 =7 lo~ 20
feo=— 7 "o B 7 (20)
Since the robot’s speed is shown to be unaffected by the vector

field, the robot’s motion can be described by
i, = v,y 1, = wng, i = ~ol,, (21)

With o = Fd,

Lemma 6. For a concave obstacle which produces vector field F,
expressed in (15), the rate of angle 0 between the robot’s direction
and the obstacle surface (as illustrated in Figure 4) is given by

0= ( ild c )cos 0. (22)

1—-xr mvr

Proof from Figure 4, we can infer that

I'n, =siné. (23)

o

Differentiating the equation with respect to time, we have
T X .
In, + lZna = 0O cos 0. (24)
Combining with 20, 21, we get

ds

e xnln, +1 (-wl,) = 6 cos 6. (25)

T

Recalling that n'n, =11, = cosf, we can simplify the

equation into

. ds
= —K—-W®. 2
0 dtK w (26)

Using [l; x (3 x1,1)| = [l,.| = cosf, we can provide a
simplified representation of w as follows,

|F,| Cillax(%’XIOL)H ¢, cosf
w=—= = .

myv my mvr

(27)

From Figure 4, we also get

r'l, = 0. (28)

Magnetic-Field-Inspired Navigation in Complex Environments

Differentiating with respect to time, we get
L, + 7, = 0. (29)

Combining with 20, 21 and noting that = I, — t,, we get

ds ! ds
(Elo - vla> 1, + KIEI' n, = 0. (30)

Combining the equation with the fact that 171, = cos @ and
rTno = —r1, we get

ds vcosf
dt 1-xr

(31)

Substituting the value of % in (31) and w in (27) to (26), we get

. KV c
0= ( - )cos 6. (32)
1—xr mvr
Lemma 7. Force F, in (15) will guarantee collision avoidance with

any continuous concave surface if the following conditions are
satisfied:

1. the initial direction of 1, is not in the direction of r,, and
2. the surface’s curvature k and the robot’s distance to the surface r
follows the following condition at all times

1

K< — (33)

r
Proof Using the chain rule of derivative, Eq. 22 can be modified
into

a0 . ( KV c.

el )cos 0. (34)

1-xr mvr

The robot’s velocity component in y-axis is equal to — as
follows

7 =—-vsin6. (35)

Inserting the value of 7 from (35), we get

sin 6 K c
fcos 9d9 B J<_1 " mvzr)dr' (36)
Details on how to solve the integral are provided in the
Appendix. The final equation has the following form

(1- Kr)rﬁ cosf =D, (37)

Where D denotes the constant relating to the initial condition.
We assume that the robot is in an initial condition described by:

1. r > 0, i.e. the robot does not touch the obstacle, and
2. (1 = kr) > 0, i.e. there is a single point on the obstacle surface
that has the shortest distance to the robot.

Then, recalling the assumption that the initial angle 0 #+ 2
and the fact that 8 € (-7, J), we can conclude that cos 6 > 0, which
results in D > 0. In other words, in order that the robot-to-
obstacle distance maintains the condition r > 0 (i.e. no contact

Frontiers in Robotics and Al | www.frontiersin.org

February 2022 | Volume 9 | Article 834177


https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Ataka et al.

Magnetic-Field-Inspired Navigation in Complex Environments

|
rl
O "

[ 4

N =

'
d
Y

1
K>

FIGURE 5 | Three possibilities of a robot in the vicinity of a smooth concave obstacle: (A) the case where x < } (B) the case where k = 1

r
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and (C) the case where

&

with the obstacle surface), it is necessary for (1 — xr) > 0. This
concludes the proof.

There are three possibilities regarding the relation between
obstacle-to-robot distance r and curvature of the obstacle
surface k:

1. The first case, where « <1, describes the situation where
there is only a single point on the obstacle surface closest to the
robot, as illustrated in Figure 5A. Lemma 7 guarantees that in this
condition, the algorithm makes sure that the robot will be able to
avoid colliding with the obstacle.

2. The second case, k = 1, refers to a condition where the robot
is located at a distance r which is equal to the radius of curvature 1
of the obstacle surface, as illustrated in Figure 5B. This means
that there are several points along the obstacle surface, each
equidistant from the robot. In this case, with multiple closest
points, the algorithm, as things stand, will not be able to guarantee
collision avoidance.

3. The final case, where « > 1, refers to a condition in which the

point on the obstacle surface, where vector r is perpendicular to
vector l,, is not the obstacle’s closest point to the robot, i.e. there
are other points (at least one) along the obstacle surface which are
closer to the robot, as illustrated in Figure 5C. Those other points
are characterized by distance vector r« (with |r.| < [r]), which is
also perpendicular to vector 1,. The actual point on the obstacle
surface that is closest to the robot will then fall under one of the
previous two cases.
Remark. From these three cases, we can conclude that Lemma 7
actually guarantees obstacle avoidance for any concave obstacle
with a continuous surface and a single point that is closest to the
robot. Cases with multiple closest points will be explored in
Section 4.4.

I«

4.3 Properties of Goal Convergence

For the chosen point-mass robot model (as described in Section
3), the control law for navigating the robot past obstacles towards
the desired goal position is given by:

u=F,+F, (38)

The control law in (38) consists of an obstacle avoidance term F,,
in (10) and a goal attraction term F,. For simplicity, in this section,
we use a proportional-derivative (PD) controller for F, with goal
position pg as the equilibrium point, represented as follows:

Fy = —-Kp(p - p,) — Kpp. (39)

Here, Kp and Kp, are both positive constants.

To prove goal convergence, we assume that the robot is in an
environment with small-sized non-maze obstacles such that the
robot’s distance to the goal, when following the boundary of the
obstacle surface, is never greater than its initial distance to the
goal. By setting this constraint, we are assuming that the robot’s
speed will never be zero as it follows the boundary. In this case,
the control law in (38) is globally asymptotically stable.
Lemma 8. The control law in Eqs 38, 39 when applied to a point-
like robot using the dynamic model described in (8), has a
globally asymptotically stable equilibrium at the goal position
pg This assumes that the robot never stops while following the
boundary, and that its direction of motion is not orthogonal to
the closest obstacle surface.

Proof.The proof begins with the following Lyapunov function
candidate
V= lpr + 1Kpele (40)
2 SRree
In which we define error vector as e = (p — pg). The rate of change
of V is given by

V=p"p+Kpele (41)

Substituting (10), (38), (39) into (8) and considering that & =

p while, according to Lemma 1 and Lemma 5,
p'Ey = p'Fy + p'F, = 0, the equation can be simplified into
V = -Kpp'p. (42)

On this basis, the condition V' < 0 always holds including at p =
pg and p = 0, which is the equilibrium point where V = V=0.
Therefore, we can therefore conclude that this goal position is
indeed a globally asymptotically stable equilibrium.

4.4 Extension for Special Cases Condition

Thus far, the proposed vector field F, guarantees obstacle
avoidance for: I) an arbitrary-shaped convex obstacle
(irrespective of whether it has a continuous or discontinuous
surface) and 2) a concave obstacle provided that it has a
continuous surface and a unique closest point at all times. The
real world however can be uncooperative in this regard and is
likely to present us with obstacles that do not adhere to these
requisite constraints. There are objects with concave sharp
corners or with surfaces whose curvature x changes abruptly.
We therefore need to consider situations in which we may not
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FIGURE 6 | The averaging technique employed to post-process the
sensory information can be used to solve the problem of a concave sharp
corner where (A) the curvature surface is discontinuous and (B) there are non-
unique closest points.

have a unique point on the obstacle’s surface that is closest to the
robot. To mitigate this issue, we propose an extension to our
original algorithm.

Previously, we had assumed that the robot identifies the
closest point on the obstacle surface from its sensor readings
by simply choosing the point with the smallest distance value
out of a selection of readings. In the revised scenario, the robot
obtains this value by computing the average over several
sensed distances. The robot chooses a number of sensed
distances from current sensor readings which are smaller
than a specified threshold &r. It then calculates the average
distance value from these readings, (¥,), which it uses for
subsequent calculations. For a concave obstacle, this distance
value (r,) will always be smaller in magnitude than the closest
sensed position, i.e. [F,| < |r,|, as illustrated in Figure 6, and so
we use this value as the new closest point. For a convex
obstacle, however, the condition is reversed, i.e. |F,|>|r,|,
and we can therefore revert to the standard position data
r, as the vector describing the closest point between the
obstacle and the robot.

The robot is now able to navigate around both convex and
non-convex obstacles, even when surfaces are not continuous
(such as a sharp corners, as in Figure 6). This holds true as
long as the robot’s initial direction is not entirely in line with
the vector connecting the robot and the closest obstacle point
(6% 7). This configuration could theoretically cause the
artificial current 1,, a projection of the robot’s speed I,
towards the obstacle surface, to drop to zero. The obstacle
would then produce no magnetic field to repel the advancing
robot. From a practical perspective, this would be unlikely to
happen as noise in the sensor’s measurements would naturally
yield a non-zero angle (even if it is a small one) between the
two vectors 1, and r,. To reduce the effect of this problem, we
use only the unit vector of the previously proposed artificial
current when the magnitude of the standard artificial current
is less than a positive constant e. Another special case is when
the environment consists of a large-size obstacle such that the
robot’s distance to the goal when circumnavigating the
obstacle could be larger than its initial distance to the goal.
Using only the PD control in (39), in this type of environment,
the robot could arrive at a zero-speed situation, i.e. when the
robot loses most of its kinetic energy due to the dissipation
term in the attractive field. To overcome this problem, we add

Magnetic-Field-Inspired Navigation in Complex Environments

TABLE 1 | List of parameter values used in the algorithm.

Param Point-like robot Baxter simulation Baxter experiment
c 10 4 20

cy 20 0.08 0.08

Kp 0.04 20 5

Kp 0.5 10 10

n 3m 0.3m 0.3m

I 2m 0.2m 0.2m

€ 3x10°° 0.05 0.05

a goal relaxation (GR) mechanism, having the property of
decreasing the goal attraction F; when the robot is close to the
surface of the obstacle, while the goal is still occluded by the
obstacle, and, vice versa, to increase the goal attraction when
the obstacle stops obstructing the desired position. Please
refer to (Ataka et al., 2018a) for more details on strategies for
the last two special cases.

5 IMPLEMENTATION

We implemented our magnetic-field-inspired navigation
algorithm to steer a dynamic model of a simulated point-like
robot using the control law described in (38). We first used PD
control as described in (39) as a goal attraction term Fg to guide
the robot towards its desired target. Constants Kp and K, are
determined via trial and error, given the maximum actuating
capability of the robot.

The second term F,, of the control law (38) relates to obstacle
avoidance, and consists of a boundary-following vector field F,,
described in 11-13 and a collision-avoidance vector field F,
described in 14, 15. In our algorithm implementation, the
boundary-following vector field is only used when the robot’s
closest distance to the obstacle falls below a specified limit 1, and
the collision-avoidance vector field is only used when the robot
get closer still, its threshold level being the distance ry,.

F, +F, if|r,|<ra,
F,=1 F, if [r,| >7r,and |r,| <7 (43)
0 if |r,| =7

The PD control law referred to in (39), however, does not
guarantee constant robotic speed. A scenario could occur in which
attraction to the goal causes the robot’s speed v to increase when
under the influence of a nearby obstacle. To prevent this from
occurring, we introduced a geometric control term as an alternative
to guide the robot towards the goal, loosely based on the work
described in (Bullo and Murray, 1995) for SO(3). This control term
has an interesting property: it is shown to globally asymptotically
guide the robot’s movement (toward the goal position p,) without
affecting the robot’s speed. A full description of geometric control
implementation is given in (Ataka et al., 2018b) for mobile robot
and in (Ataka et al., 2019) for quadcopter robot.

In order to implement the algorithm on a 7-DOFs Baxter arm,
we applied the vector field in the task space of the robot and used
the dynamic model of the robot to produce the joint accelerations.
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FIGURE 7 | (A) The robot’s trajectory drawn in dashed lines. The environment consists of a sharp corner obstacle. (B) The plot of the covered trajectory I(t) and the
positional error e(t) as function of time for 2D sharp corner environments.
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FIGURE 8 | The robot’s trajectory drawn in dashed lines from two different perspectives ((A,B)). The environment consists of a forest-like environment. (C) The plot
of the covered trajectory I(t) and the positional error e(t) as function of time for 3D forest environments.
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FIGURE 9 | The robot'’s trajectory using the magnetic-field-inspired navigation with geometric control in different environments populated with (A) a tree, (B) a
human, and (C) a castle.

The vector field used to guide the point-like robot in (38) is 6 RESULTS AND ANALYSIS
redeployed to guide the tip of the Baxter arm towards its goal

while avoiding obstacles along the way. A repulsive field is also ~ To analyze and evaluate the performance of the proposed
applied to the body of the manipulator to mitigate potential  algorithm, we present our results from both simulations and
impact, but to ensure that it doesn’t affect the behaviour of the  an experimental study. Our magnetic-field-inspired navigation
manipulator tip, we apply the torque in the null space of the  system was applied to a point-like robot model and tested in
Jacobian as described in (Brock and Khatib, 2002). several scenarios in R? and R?. The algorithm was also tested as
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FIGURE 10| The figure depicts experimental setup consisting of a seven
DOFs Baxter manipulator. The environment consists of a chair detected by
RGB-D camera.

a guiding method in a Baxter manipulator tip, a 7-DOFs
industrial robot platform. The task was for the tip to avoid
obstacles in R?, while the manipulator body itself was prevented
from collisions by the application of a repulsive potential. We
assume that the robot is only able to detect the surrounding
environment within a range ry = r; = 0.3 m in all directions
relative to its position. Some obstacles are generated as point
clouds from a 3D model of the real environment; others are
specifically designed to highlight the advantages of our
algorithm when compared to other methods. This
comparative study includes our magnetic-field-inspired (MFI)
navigation system (with both the PD and geometric controllers)
alongside several other navigation methods presented in the
literature - specifically the standard APF (Khatib, 1985), the
circular field (CF) (Haddadin et al.,, 2011), and the gyroscopic

Magnetic-Field-Inspired Navigation in Complex Environments

force (GF) (Sabattini et al., 2013). These methods were chosen as
they share the same properties as the proposed algorithm, i.e.
they are all reactive navigation methods, able to operate without
the need for prior environmental mapping and are capable of
operating in 3D environments populated with arbitrarily shaped
obstacles. The system comparisons focus on trajectory covered
and time needed to reach the goal while avoiding obstacles en
route. All our simulations and experiments use the Robot
Operating System (ROS) as a programming framework
(Quigley et al., 2009). The parameter values of the algorithm
are summarised in Table 1. These parameters are retrieved from
trial and error. We choose the parameters which produce the
most desirable trajectory in terms of the path length and the
time required to cover the path.

6.1 Simulation Results for Point-like Robot
In the first simulation, depicted in Figure 7, our MFI algorithm is
implemented in a point-like robot moving in a 2D plane
containing a sharp corner. In this scenario, Figure 7A, we see
that it is able to guide the robot towards its goal, using either
geometric (MFI+GC) or PD control (MFI+PD). The other three
algorithms, namely the APF, CF, and GF all fail to reach the goal.
The APF fails due to the cancelling out of the attractive terms
towards the goal by the repulsive field from the obstacle. The CF
and GF, on the other hand, fail due to the zero speed condition
caused by the attractive field towards the goal as seen from the
saturated behaviour of the robot trajectory 1(t) and positional
error e(t) in Figure 7B. The reason this issue does not arise with
our algorithm (whether using PD or geometric control) is that the
collision-avoidance vector field F, in (15) has the property of
repelling the robot without affecting its speed. This is a major
advantage over the CF and GF methods. In this 2D scenario, we
also observe how the averaging technique described in Section
4.4 helps the robot avoid the sharp corner despite it having a
number of non-unique points of closest distance to the robot.
To test the methods in a more realistic 3D scenario, we
designed a forest-like environment consisting of cylinders and
spheres that mimic trunks and leaves as shown in Figures 8A,B.
As before, we can see that the proposed algorithm (whether under
geometric or PD control) is able to successfully navigate the robot
amidst arbitrarily shaped obstacles towards the desired goal
position. The APF and GF methods both fail to circumvent
the trees in this environment due to the effect of local minima
(in the case of APF) and of the zero-speed problem (in the case of

v (mh y (mi

FIGURE 11 | The motion of the Baxter arm in a real scenario with environment consisting of black chair and table (drawn in black) using (A) the MFI algorithm with
geometric control, (B) the MFI algorithm with PD control, (C) standard APF method, (D) CF method and (E) GF method, respectively. The dashed lines are the tip’s

trajectory.
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FIGURE 12| (A) The plot of the trajectory covered by the Baxter’s tip I(t)
and (B) the position error e(t) as function of time for the case of real
environment with chair as an obstacle.

GF). The CF method is able to guide the robot to its goal, but does
so at the expense of a longer trajectory and convergence time as
shown in Figure 8C despite its knowledge of the obstacle’s
centre point.

To further demonstrate the ability of the proposed algorithm
in handling realistic scenarios, Figure 9 shows the trajectory of
the robot in more challenging environments that incorporate a
tree (Figure 9A), a human (Figure 9B), and a castle (Figure 9C).
In all these scenarios, we see that the proposed MFI algorithm is
able to navigate the robot through complex environments that are
cluttered with a range of obstacles differing in shape, convexity
and surface continuity, while relying only on a range sensor and
without any pre-knowledge of the environment. This last point is
crucial to the algorithms potential application in which
environment maps are unavailable such as in post-disaster
sites or open spaces with unpredictable landscapes.

6.2 Experimental Results Using Baxter Arm
In our experimental implementation, the proposed algorithm’s
guidance capabilities were tested to guide the tip of a 7-DOFs
Baxter Arm as depicted in Figure 10. The environment consisted
of a chair whose location was unknown to the robot at the outset.
The Kinect RGB-D camera was used to detect the position of the
obstacle and to feed that information to the robot only once the
tip of the robot’s arm got closer to the obstacle than limit distance
r,. Figure 11 shows the movement of the Baxter arm using the

Magnetic-Field-Inspired Navigation in Complex Environments

proposed MFI with geometric control (Figure 11A), MFI with
PD control (Figure 11B), the APF method (Figure 11C), the CF
method (Figure 11D), and the GF method (Figure 11E). We see
that the proposed algorithm with geometric control (Figure 11A)
is able to guide the robot towards the target while smoothly
avoiding the obstacle. The APF method (Figure 11E) results in
local minima issues, while the other algorithms produce non-
smooth robotic arm movements.

To further highlight the superiority of the proposed algorithm,
we present the performance comparison between the five
methods in Figure 12. Bar the APF method, which fails to
guide the robot to the goal, the others show similar
performance to our MFI algorithm in terms of the time the
robot needs to reach the goal - as evidenced by the plot of error
e(t). It is noted, however, that the CF and GF algorithms fail to
fluidly guide the tip to its goal in the real scenario - as evident
from the unstable value of error e(t) in Figure 12. This is due to
the non-existence of the collision-avoidance vector field in the
case of CF and the use of the repulsive term causing the tip to be
repelled too far from its path in the case of GF. In terms of the
trajectory taken by the tip, we can see that the proposed algorithm
with geometric control and the same with PD control take the
shortest and second shortest paths, respectively.

6.3 Discussion

Table 2 summarizes the simulation and experimental results,
comparing the artificial potential field (APF) method, the circular
field (CF) method, the gyroscopic force (GF) method, and our
magnetic-field-inspired (MFI) algorithm both with PD control
and with geometric control (GC). The comparisons among these
navigation methods are conducted in terms of their abilities in
obstacle avoidance, goal reaching, and path quality. The latter
parameter is judged by the length of trajectory 1(t) and
convergence time, i.e. a time needed for the distance error
e(t) to fall below a specified value e,. When an algorithm fails
to navigate the robot to its desired target, these variables are
not taken into account. We chose the distance threshold

TABLE 2 | Summary of Results.

Robot Obstacle Algorithm

Point-Like Robot 2D APF

CF

GF

MFI + PD

MFI + GC

Sharp Corner

Point-Like Robot 3D APF

CF

GF

MFI + PD

MFI + GC

Forest

Chair APF

CF

GF

MFI + PD

MFI + GC

Baxter Experiment

Success Covered path Time (s)
(m)

« _ _

« — —

« _ _
v 70.51 61.85
v 69.64 41.03
% _ _
v 55.80 86.13
% _ _
4 40.46 37.95
v 38.91 26.08
« _ _
v 3.80 6.58
v 3.69 16.3
v 2.03 3.08
v 1.35 6.21
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parameter to be set at e, = 0.05r,; in a simulation scenario in
which rg; denotes the initial distance between the robot and its
target at the outset, but opted for e, = 0.2 m for the
experimental setup, taking into account the steady-state
positional error of the Baxter’s tip.

Table 2 indicates that in both the simulation and the
experimental setup, our proposed reactive magnetic-inspired-
field navigation algorithm outperforms other navigation
methods in almost every tested scenario. This is of
particular note in regard to two aspects: the ability of the
algorithm to successfully navigate the robot to its desired
target amidst an obstacle-laden environment and its fast
convergence time of the positional error. We see that the
proposed MFI algorithms, both with PD control or
geometric control, are successful in every scenario. Our
algorithms are significantly more successful in environments
with concave obstacles, such as those with sharp corners. They
also outperform others in environments consisting of
arbitrarily shaped obstacles, such as a forest configuration.
In all simulation scenarios, the proposed method with GC
control invariably comes first in terms of its convergence
speed. This is principally due to the fact that the
whole vector field (both the goal attraction and the
obstacle avoidance terms) does not influence the robot’s
speed, other than at the very beginning and the final part of
the robot’s motion. Indeed it is this constant speed that
facilitates obstacle avoidance, enabling fast and fluid
movement around the boundary of any obstacle. In
addition to convergence speed, the proposed algorithms also
achieve the shortest trajectory - both in the simulation as well
as the experimental setup.

Most importantly, our MFI navigation algorithm does
not rely on prior knowledge of the environment, such
as obstacle geometry or location, as is the case with
other  magnetic-field-inspired  navigation = methods
(Singh et al., 1996; Haddadin et al., 2011). Our algorithm
only requires information from a local sensor able to
measure the spatial distance to nearby obstacles along
with information regarding the robot’s speed. Compared
to other gyroscopic-based navigation methods, the
proposed algorithm is superior since it can be applied
not only in 2D environments, but also in 3D
environments, with convex obstacles or non-maze concave
obstacles, including those obstacles with sharp corners.
In terms of computational burden, our algorithm
(summarised in Eq. 11 and Eq. 15) only uses simple
matrix multiplication process. The same process is also
employed by gyroscopic-based methods. In conclusion,
our algorithm achieves better performance in general
despite having similar computational burden to other
reactive navigation methods.

7 CONCLUSION

This paper presents and examines a reactive navigation
method that can guide a robot toward a target position

Magnetic-Field-Inspired Navigation in Complex Environments

within a 3D environment that is laden with arbitrarily
shaped convex and non-maze concave obstacles. Drawing
inspiration from magnetic field laws, we produce an
algorithm capable of steering a robot away from and
around obstacles that lie en route to the target. It is
demonstrably superior than the standard APF method, as it
is free from local minima in environments consisting of both
convex and non-maze concave obstacles. Compared to other
magnetic-field-inspired navigation methods, ours has a further
key advantage in that requires no prior knowledge of
the environment, in terms of geometry or obstacle location.
The algorithm is shown to successfully navigate a point-like
robot model in both R? and R* and a 7-DOF Baxter arm
towards a specified goal in the presence of previously unknown
obstacles. The results show that our navigation algorithm
has the potential to be used in a wide range of devices, such
as flying robots, underwater robots, soft continuum
manipulators, and even in swarming multi-robot systems.
Future work will consider the limitations of robotic actuators
and make in-roads into using such systems in unknown maze-
like environment and unknown environments with dynamics
obstacles.
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APPENDIX:
SOLVING [Sn0df = [(—1%; + -Sdr

cos 0 1-xr ' mv2r

Assuming u = cos 0, we have du = — sin 0d6. Hence, the left side of
the equation can be transformed into

1
—f—du =-lnu+E,
u
Where E denotes an integration constant. Defining v = (1 — «r),
we get dv = — xdr. Thus, the right side of the equation can be

simplified into

1 C 1 _c_
ffdv+—2f7dr=lnv+lnrmv2 +F,
v mv:t) r

Magnetic-Field-Inspired Navigation in Complex Environments

Where F denotes an integration constant. Combining the two
terms together, we get

ln(vurﬁ) =G,

_c_
vurm? =% = D,

Where G and D are constants. Substituting the value of u and v,
we arrive at

(1 - xr)rm? cos 0 = D,

And hence, conclude the derivation.
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