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In robotics, deep learning models are used in many visual perception

applications, including the tracking, detection and pose estimation of robotic

manipulators. The state of the art methods however are conditioned on the

availability of annotated training data, which may in practice be costly or even

impossible to collect. Domain augmentation is one popular method to improve

generalization to out-of-domain data by extending the training data set with

predefined sources of variation, unrelated to the primary task. While this

typically results in better performance on the target domain, it is not always

clear that the trained models are capable to accurately separate the signals

relevant to solving the task (e.g., appearance of an object of interest) from those

associated with differences between the domains (e.g., lighting conditions). In

this work we propose to improve the generalization capabilities of models

trained with domain augmentation by formulating a secondary structured

metric-space learning objective. We concentrate on one particularly

challenging domain transfer task—visual state estimation for an articulated

underground mining machine—and demonstrate the benefits of imposing

structure on the encoding space. Our results indicate that the proposed

method has the potential to transfer feature embeddings learned on the

source domain, through a suitably designed augmentation procedure, and

on to an unseen target domain.
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1 Introduction

1.1 Motivation

In recent years, deep learning models have increasingly been applied to solve visual

perception problems in robotics. For structured environments such as factories or

warehouses that are not changing dramatically over time, training such models and

obtaining successful results in test data is possible. However, for fully autonomous

operations, these methods should work under test conditions in unstructured and

unpredictable environments as well—e.g., in scenes with continuously changing

background, illumination or appearance. Data augmentation is one common
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approach to enhancing the ability of deep visual models to cope

with unexpected changes in the environment. The basic principle

is to increase robustness by introducing synthetic changes to the

source domain during training, such as changing background or

texture, cropping images, introducing artificial camera noise. Yet,

simply adding more samples to the training data may not be

enough to cover every scenario that can occur during testing1.

To address the discrepancies between domains, models need

to learn what are the task-relevant features in the data. Data

augmentation helps to accomplish this by simply showing the

model more varied data during training. However, there is an

alternative: explicitly supervising what training samples should

be considered similar or dissimilar by the model. Metric learning

is one such alternative that aims to find an appropriate way to

structure the similarities and differences in the underlying data

(Kaya and Bilge (2019)). Metric learning however typically

requires annotated data from all the potential target domains

during training (e.g., detecting faces from different viewpoints

(Schroff et al. (2015))). However, collecting and labeling

sufficient data from all potential domains is at best time

consuming and often impossible in a robotics scenario. In this

work we explore the possibilities of combining the two

approaches: domain data augmentation and metric learning.

This allows us to use a metric learning objective without

access to labeled data from the target domain, making a

principled approach to domain augmentation possible.

The target application we investigate in this work is the visual

state estimation of an articulated mining machine (Figure 1A).

Kinematic chains, such as traditional robot manipulators and the

booms of our mining machine, are composed of individual links

coupled with actuators. The state estimation problem is thus

typically solved by measuring angles between links through joint

encoder sensors. However, encoders can cause erroneous pose

estimates due to sensor noise, cable strain, deflection or vibration

of the manipulator. Drilling rigs that are used in mining and

construction operate in dangerous and highly corrosive

environments (Figure 1B). Hence, encoder sensors and data

cables are subject to high wear and tear, motivating the need

for a redundant visual state estimation system (Figures 1C–E).

1.2 Related work

Our work is at the intersection of several different field,

i.e., robotics, computer vision, machine learning, and topics, e.g.,

transfer learning, domain augmentation, metric learning, triplet

loss etc. To give a comprehensive overview for each of the related

works from these topics is out of scope of this paper. In this

section, we briefly overview each related topics very briefly and

list the papers that we see the most relevant for our work.

1.2.1 Robotics pose estimation through vision
In recent years, several studies in robotics have focused on

estimating the pose of articulated links through visual sensors.

Approaches based on markers (Vahrenkamp et al. (2008)), as

well as on depth data and 3D models (Krainin et al. (2011);

FIGURE 1
(A) A heavy-duty drillingmachinewith an articulatedmanipulator produced by themining equipmentmanufacturer Epiroc 1 (B)Cabin view from
the samemachine operating in a mine (C–E) Epiroc testing warehouse. We collect a source domain data set with the hall lights on in (C), as well as a
target domain data set with only on-board lightning in (D) (E) shows augmented source domain data that we alter to simulate conditions in the target
domain.

1 Epiroc AB, https://www.epirocgroup.com/.
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Klingensmith et al. (2013); Schmidt et al. (2014)) have been

proposed. A large amount of work uses discriminative

approaches that learn a direct mapping from the features of

visual data (e.g., RGB or point cloud) to joint states or pose of

articulated links (Widmaier et al. (2016); Byravan and Fox

(2017); Zhou et al. (2019)). These features are usually

extracted using either hand-made feature extractors or more

end-to-end approaches such as Convolutional Neural Network

(CNN) models. We choose the latter type of approach and

employ a CNN architecture that can learn complex tasks

directly from visual data (Krizhevsky et al. (2012)).

The feature-based methods mentioned above rely on the

availability of a large amount of annotated data from both source

and target domain. However, it may not be possible to collect

annotated data for all the conditions a robot can encounter in a

complex uncontrolled real-world environment such as an

underground mine.

1.2.2 Transfer learning
Transfer learning is a huge field that have been categorized in

several ways, e.g., label-setting wise where labels of source and/or

target domain are available (transductive, inductive) or

unavailable (unsupervised), domain feature space wise where

source and target domain feature spaces are similar

(homogeneous) or different (heterogeneous), field/topic wise

such as deep learning, computer vision, activity recognition

etc. (Zhuang et al. (2020)). To give a detail analysis and

comparison for each of these different types of categorizations

with respect to our proposed method is out of scope of this paper.

However, in brief, the objective of transfer learning is to

improve the generalization of a learned model on the target

domain by transferring knowledge contained in different but

related source domains. This objective is accomplished by

minimizing the distance between target and source domain

data during training (e.g., Ganin et al. (2016); Tzeng et al.

(2017); Laradji and Babanezhad (2020)). This naturally

requires access to target domain data during training or fine-

tuning, which as mentioned previously is often not readily

available. Differently, in our work, we apply domain-aware

augmentation to the source domain data without requiring

training/fine-tuning in target domain.

1.2.3 Domain augmentation
Domain augmentation is a way of overcoming the data

scarcity problem by adding a large amount of annotated

synthetic data or by transforming existing data. Data

augmentation is a huge field (e.g., Shorten and Khoshgoftaar

(2019)) with various techniques and in-depth discussion of each

of these techniques is out of scope of this paper. Nevertheless, we

can say that the techniques such as background augmentation,

adding noise or cropping/transforming images, are common

means to increasing the data variation in the source domain

(Lambrecht and Kästner (2019); Gulde et al. (2019); Lee et al.

(2020); Labbe et al. (2021)). The model is then trained under

more varied conditions which helps improve generalization and

break the dependence on annotated data from the target domain.

In our work, rather than such random augmentations, e.g.,

random noise injection in images or geometric

transformations, we apply a domain-aware augmentation by

assuming target domain knowledge is available. Hence, even

though we do not have sufficient target data, we complete this

insufficiency through target domain-aware augmentation of

source data.

1.2.4 Metric learning
Metric learning is another approach to improving model

generalization by learning the relation between samples in a

dataset belonging to a certain domain. Learning such relations

imposes a structure to the feature encoding domain, which in

turn has been demonstrated to improve transfer in various

applications, such as multi-view face recognition (Schroff et al.

(2015)), medical imaging (Litjens et al. (2017)) or remote sensing

for hyperspectral image classification (Dong et al. (2021)). The

main challenges when combining deep learning with metric

learning include the design of the metric loss function (e.g.,

contrastive or triplet loss function), the strategy for selecting

samples (e.g., hard-negative, semi-hard negative), and the design

of the network structure (e.g., siamese, triplet networks) (Kaya

and Bilge (2019)). We apply a standard triplet loss and propose a

domain-specific sample selection strategy as our contribution.

1.3 Problem definition and contribution

In this article we aim to address some of the challenges in

transferring learned vision-based models to new domains. In

particular, we are interested in training a machine learning model

for operation in an environment in which we are not able to

collect data. We instead propose to use the background

knowledge and prior information available at design time in

order to appropriately augment the training procedure.

In doing so, our contributions are as follows:

• We combine techniques from domain

augmentation—namely, the use of a designed

augmentation procedure—and from metric learning.

• We adapt the triplet learning methodology and propose

an approach for principled integration of domain-

augmented data as a source for both positive and

negative examples. Our main contribution is thus the

said principled treatment of domain augmentation

with the purpose of transfer of a vision-based

learned model.

• We evaluate our approach on a data set within mining

robotics, thus demonstrating the practical use of the

proposed approach.
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2 Methods

In this section we present a learning architecture aimed at

recovering the joint angles of an articulated kinematic chain from

visual observations. We design our approach to utilize domain

adapted training data to improve model transfer to images

collected in previously unseen environments. We accomplish

this by posing two objectives—a primary joint recovery objective

and a secondary metric learning objective. This section begins

with a problem specification in Section 2.1, followed by a

discussion of the base joint regression task in Section 2.2.

Next, in Sections 2.3, Section 2.4, Section 2.5. We augment

our method with a secondary objective that aims to learn a

smooth feature embedding space.

2.1 Learning a generalizable visual model

In this paper we are interested in solving a particular task

relevant to mining robots: the visual state estimation problem.

The base problem of recovering the robot state from visual

observations has been previously discussed in other contexts,

such as e.g. for robot manipulators (Zhou et al. (2019)). Given

sufficient observations, it is possible to successfully train a neural

network architecture, such as the one described in the following

section. The challenge here lies in the difficulty of collecting

sufficiently varied observations that span the full range of

possible operating conditions for the machine. This problem

is often solved via data augmentation, but as we show here, data

augmentation alone may not be sufficient to guarantee good

transfer of the learned visual models to out-of-domain data.

We formalize our problem as follows. We assume access to a

sufficiently large data set of in-domain annotated examples. In

our case these are supervised pairs of images I and measured

robot joint configurations q from an onboard encoder system. In

addition, we assume some prior knowledge of the target domain,

which allows us to design an imperfect, yet admissible data

augmentation procedure gaug(I). The goal is then to best use

the fixed data augmentation procedure in order to train a model

that successfully generalizes to a novel domain.

2.2 Regressing joint states

Our approach is based on a CNN that extracts feature

embeddings f, given a batch of RGB images I. The CNN is

trained on a source domain of images, where each sample depicts

a predetermined articulated kinematic chain (e.g., manipulator,

machine boom) in a known configuration q. The joint regression

task is thus to estimate a configuration q̂ that is as close as

possible to the true configuration q. We use the VGG16 network

architecture (Simonyan and Zisserman (2014)) as a

backbone for the feature extraction task and initialize it using

weights pre-trained on the ImageNet classification data set (Deng

et al. (2009)). Note however the proposed method is not

dependent on any single CNN backbone and VGG16 could be

substituted by an alternate feature extraction architecture. We

then supervise the feature extraction task with a joint regression

head, as seen in Figure 2 and outlined below.

The backbone, based on the VGG16 architecture (Simonyan

and Zisserman (2014)), feeds the input image Ii through a series

of convolution layers. We use all convolutional and pooling

layers of VGG16, but discard the last fully connected layers,

i.e., FC-4096 and FC-1000 in (Simonyan and Zisserman (2014)).

Hence, the last layer of the backbone is the fifth maxpool layer of

VGG16 and f is the feature embedding extracted from this

maxpool layer. We regress the joint target q̂ in Figure 2 via

two fully-connected layers, fc. These layers have the same input

structure as the FC-4096 layer of VGG16 and for that reason we

resize the input image to 224 × 224 using nearest-neighbor

interpolation.

We supervise the joint target regression task with a loss

defined on the predicted state q̂. In our evaluation scenario

discussed in Section 3.1 we have an output space with q ∈ R7,

where each dimension represents the state of a joint in the

kinematic chain. Five of these joints are revolute, while two

are prismatic, resulting in a non-homogeneous configuration

vector which is partially defined in radian and partially in meters.

To counter to this difference, we regress radian (q̂rad ∈ R5) and
meter joint states (q̂met ∈ R2) in different layers simultaneously.

The range of motion of joints in radian can be between 0 and 2π.

Hence, to avoid issues due to angle wraparound, we define our

regression loss function over a cosine/sine transform of the

radian joint angles and concatenate them in a single array,

q̂ � {cos(q̂rad), sin(q̂rad), q̂met)} ∈ R12. Then, the loss for a

batch of size nbatch is calculated by computing the Mean

Squared Error (MSE) between the ground-truth q ∈ Rnbatch×12

and estimated q̂ ∈ Rnbatch×12:

Ljs � 1
nbatch × 12

∑
nbatch

j�1
∑
12

i�1
qi,j − q̂i,j( )

2
(1)

2.3 Learning a metric space

Estimating joint states from visual input, as described in the

previous section, works well if we have sufficient in-domain data.

In this work we are however interested in a case when such data

are not readily available. To improve our model’s generalization

potential we lean on the concept of metric space learning. In

particular, we employ a triplet loss function similar to the ones

used in (Schroff et al. (2015); Sun et al. (2014)). It is a well known

loss function. However, for the sake of completeness of the

methodology, we explain the details of our usage of triplet

loss function in this section.
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Given an image Ii, we aim to extract a lower-dimensional feature

embedding f ∈ Rd. Intuitively, we want that our embedding should

map similar images to close by feature vectors, while dissimilar

images shouldmap to locations that are far apart. Crucially, similar in

this case signifies a similarity in terms of the primary task—that is,

images that show the articulated manipulator chain in close by

configurations—and not in terms of image similarity per say.We bias

ourmodel to learn such an embedding by feeding the network with a

triplet of images—associating to every sample Ii a similar image Ipos
and a dissimilar image Ineg—as seen in Figure 2. In the metric

learning literature, these images are known as the anchor Ii, the

positive Ipos and the negative Ineg.

As depicted in Figure 2, the three images are embedded to

corresponding feature-space vectors via copies of our backbone

architecture, where the weights of the three networks are shared.

The corresponding feature embeddings f, fpos and fneg are

extracted from the final fully connected layer of the backbone

networks and normalized. We want to enforce a margin m

between similar and dissimilar features where:

‖f − fpos‖22 +m< ‖f − fneg‖22 (2)

Hence, we formulate andminimize the following loss (Triplet

Target in Figure 2):

Ltriplet � ∑
nbatch

i

max ‖f i − f ipos‖22 − ‖f i − f ineg‖22 +m, 0( ) (3)

where fi is ith element in the batch. We incorporate this

secondary objective in the overall training loss, which

corresponds to our modification in usage of the triplet loss

function. It is minimized as:

Ltotal � wLjs + 1 − w( )Ltriplet (4)

where w is a weight specifying the relative importance between

the primary (Ljs) and secondary (Ltriplet) targets.

2.4 Selecting samples

Choosing the negative and positive examples to use for each

anchor in a triplet is known to be critically important for fast

convergence and good performance. Hence finding anchor-

negative pairs that violate Equation 2 (i.e., hard-negatives) is

important (Schroff et al. (2015)). To select negatives, we use an

online negative exemplar mining strategy from the whole training

data set. In this section, we explain our proposed online negative

mining strategy adapted for our dataset.

At the end of each training epoch, we calculate and store the

Euclidean distance between the embedded features of each

training sample, obtaining a confusion matrix Cf(f) ∈ RN×N

(where N is the cardinality of the training data set):

Cf i, j( ) � ‖f i − fj‖2 (5)

In addition, we also calculate and store the distance between

ground-truth joint state of each training sample, obtaining

another confusion matrix Cq(q) ∈ RN×N:

Cq i, j( ) � ‖qi − qj‖2 (6)

FIGURE 2
The overall proposed machine learning architecture. We use a CNN model based on the VGG16 architecture as a backbone for feature
extraction.We extract feature embeddings f from a given image I and regress the joint state q via a fully connected output layer. In addition, we pose a
metric learning objective where we strive to keep the embedding f close to select positive examples (fpos) and far from select negative ones (fneg).
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Then, for each sample i, we eliminate all samples k that are

too close in terms of joint configuration, that is ∀k: Cq (i, k) < α

with a preset similarity threshold α. Finally, we select hard-

negative samples among the remaining possible pairs by looking

up the feature-space confusion matrix Cf and choosing the closest

feature-space sample arg min
r

Cf(i, r).

2.5 Data augmentation

We apply the domain-aware augmentation procedure gaug
randomly with 50% chance to the negatives Ineg mined from the

source domain. This results in negative images that are

appearance-wise both dissimilar (gaug (Ineg)) and similar (Ineg)

to the anchors Ii. For positive pair selection, we apply

augmentation to each anchor image Ipos = gaug (Ii) and select

it as the positive pair for anchor Ii. Augmentation makes positive

images appearance-wise dissimilar to the anchor image, while

keeping an identical joint state configuration. Hence intuitively,

we aim to bring closer the embeddings of these visually distinct

images by learning to abstract from appearance and focus on

what matters for the primary task.

3 Materials and equipment

In this section, we overview our data collection and

experimental setup in Sections 3.1 and Section 3.2.

3.1 Dataset collection

We evaluate our approach on a task of visual state estimation

for a drilling rig (see Figure 3). The input of our method is an

RGB image, I ∈ R224x224x3, while the expected outputs are the joint

configurations q describing the state of one articulated boom of

the machine. We measure q by means of a number of encoder

and resolver modules attached to each rotational and prismatic

joint of the boom and connected to the vehicle’s CAN network.

Simultaneously, we record corresponding images from a

MultiSense S21 stereo camera, mounted on top of the

operator cabin as shown in Figure 3. Hence, we train the

network in our method using I as input, with the ground-

truth joint angle states q as output targets. Collecting

simultaneously the ground-truth joint angle states through

CAN network and the images from the stereo camera is

implemented via the Robot Operating System (ROS) (Quigley

et al. (2009)). We conducted our experiments on a computer with

GeForce RTX 2080 as GPU and an Intel(R) Xeon(R) E-

2176G CPU.

We collect data under two different sets of conditions,

mimicking the scenario that our system would need to face in

a real deployment. The machine is deployed in a service hall and

we record images of the boom in different configurations. We do

so first with the hall lights on, creating a source domain data set

with good lightning conditions (Figure 1C). Next, we repeat the

data acquisition but with the hall lights switched off and the on-

vehicle headlights turned on, creating a second target domain

data set (Figure 1D). This setup is meant to mimic the real

deployment conditions of our system, wherein it is not possible

to collect data from all target domains likely to occur in the field.

Overall, our data set consists of 20,066 annotated images

from the source domain, and 6,693 corresponding images in the

target domain. In both cases the range of motions of the booms

observed in the two data sets are similar. We partition the data

sets in a 60/20/20 split for training, validation and testing. We

apply the augmentation procedure gaug only to the source

domain data. In our experiments, gaug involves adding a

randomly weighted Gaussian noise to each pixel, randomly

decreasing the brightness of the full image with up to 40%,

and randomly adding simulated specular reflections. The last

step is meant to replicate the oversaturated reflections of the

vehicle headlights in the target domain and is implemented by

superimposing random white circles of varying radius and with

edges smoothed by a Gaussian filter (example shown in

Figure 1E).

3.2 Training details

We use TensorFlow’s estimator API for implementing

our network architecture. The joint regression loss Ljs is

calculated for each batch with size nbatch = 8 as described

in Section 2.2. For calculating the triplet loss Ltriplet we use

batches of nbatch = 8 image triplets I, Ipos and Ineg. The triplet

loss metaparameter m in equation 3 is set to 0.05. We

combine the two losses using equation 4, with w set to

FIGURE 3
We mount a MultiSense S21 stereo camera on the operator
cabin for data collection. Sensor placement is indicated by red oval
in figure. Alternate mounting locations were explored in different
data collection runs.
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0.1. Finally, the metaparameter α used in mining of negatives

(see Section 2.4) is set to 0.25.

We use the Adam optimizer (Kingma and Ba (2014)) to

minimize the total loss and train the network end-to-end. Adam

is a broadly used adaptive optimization algorithm for deep

learning applications in computer vision. It is a fast

converging optimization algorithm. Triplet loss is a difficult

loss function where speed of convergence can slow down e.g.,

due to sample selection. Hence, we want to use an optimizer that

can speed up the convergence process. We expect that its

estimation quality should be comparable with other

optimizers used in deep neural networks. Therefore, we use it

due to its being a fast converging and common practice method

in deep learning field. We set Adam’s learning rate of 1e-5 and

apply early stopping. We set λ and dropout to 5e-4 and

0.5 respectively for regularization. In addition,

L2 regularization is applied in each layer and dropout is

applied in the final fully connected (fc) layers. We apply early

stopping by terminating training if the loss does not decrease for

three consecutive epochs in the validation set.

We distinguish five distinct training/testing conditions. In all

cases we evaluate the trained architectures on the retained test

data from the target domain.

• Baseline target (BT): As a baseline we train a version of our

architecture that only contains the joint state estimation

head—that is, optimizing only the loss Ljs. The baseline is

given access to the training set from the target domain and

represents the ideal case. That is, the best possible

performance achievable by the architecture, if sufficient

labeled in-domain data were available. We note that this

baseline should not be taken as the performance we aim to

achieve, since the premise of this work is that we operate in

a regime in which it is not possible to collect data from all

conceivable deployment domains.

• Pre-trained baseline source (PBS): Under this condition we

directly transfer a network trained on the source domain

and evaluate it on the target domain. This case represents

the naive approach of hoping for the best and is meant to

evaluate the difficulty of generalizing between our two

domains.

• Pre-trained source domain data with 12k data

augmentation (PDA12k): It is a network trained only on

the joint estimation task, using source domain data that is

augmented with an dditional 12k samples (i.e., doubling

the training data by providing one augmented sample for

each).

• Pre-trained triplet loss with source (PTrip): It represents

the proposed approach. We train using both the joint state

estimation and metric learning losses, where we use the

same data as in the previous condition—all source domain

training data, plus an additional 12k augmented images.

4 Results

4.1 Estimation accuracy

As a first step, we evaluate the different transfer approaches

based on the primary task error. To evaluate the joint state

estimation error, we extract the estimates q̂rad and q̂met separately

from each architecture. Then, as explained in Section 2.2, to avoid

angle wrap-around errors we apply the cosine/sine transform to

the rotational joints. The transformed radian joint states and

meter joint states are concatenated in q̂ ∈ R12. For each data

sample i ∈ N, where N is number of test data, the prediction error

is calculated as the L2 norm:

Errjs � ‖qi − q̂i‖2 (7)

Since the error distribution is not Gaussian, rather thanmean

and standard derivation over the whole test data set, we compare

the median and interquartile range (IQR).

According to Table 1, both PDA12K and PTrip decrease the

error significantly, compared to direct transfer (PBS). Hence, our

way of using data augmentation with a triplet loss increases the

transferability capacity of the baseline model trained only on

source domain. However, even with the best performance, the

error of prediction with the transferred models is still much

higher (≈7 times) than the BT model which is trained directly on

labeled target domain data.

We also test the prediction accuracy of the evaluated

models on a secondary task—that is, the task of pose

estimation for the links of the boom. In reality, this

secondary task is of more interest in our application, but is

very challenging to efficiently supervise the network. We

calculate the error of pose estimation of the end-effector

using the model-based displacement measure (DISP)

introduced by (Zhang et al. (2007)). DISP calculates the

maximum distance between corresponding vertices of a

mesh model of a given manipulator, when placed in

different configurations. In our case we are interested in

the DISP measure between the ground-truth configuration

q and the estimated configuration q̂. This measure provides a

more interpretable metric and directly correlates with the

expected accuracy in task space when using the estimated

joint configurations. Formally, we calculate the measure over

all points p that are vertices of the manipulator mesh M as:

TABLE 1Median joint-space error Errjs. The bold text indicates the best
results among transferred models (PBS, PDA12K, PTrip).

BT PBS PDA12k PTrip

Median 0.0937 0.91 0.639 0.71

IQR 0.0931 0.53 0.567 0.435
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DISPM q, q̂( ) � max
p∈M

‖p q( ) − p q̂( )‖2 (8)

where p(q) is the position of point p when the model is placed in

joint configuration q.

The DISP errors for each evaluated approach are shown in

Table 2. We note that our proposed approach with domain-

aware data augmentation and triplet selection performs best at

this measure. Both our full approach and the domain-aware data

augmentation variant result in improved pose estimation,

compared to the direct transfer approach. Overall, the PTrip

approach results in an improvement of roughly 30% compared to

the direct transfer baseline (PBS). While this is encouraging, we

note that all transfer approaches remain far from the desired

performance attained by the method trained in-domain.

It is important to note that, although our approach performs

better on the DISP measure, we did not directly supervise this

task, and consequently there is a degree of randomness to this

outcome. Our intuition is that the metric space learning objective

forces our prediction model to make errors in a similar direction

for similar joints. The results is that, although PTrip often makes

errors in predicting a joint configuration comparable to those of

the PDA12K model, these errors are correlated and often cancel

out. As an illustrative example, consider Figure 4. Two input

images are shown, along with a corresponding birds’s-eye view

visualization of the estimated and ground-truth configurations

(Figures 4A,B). The prediction in Figure 4C has a higher

configuration-space error than the one in Figure 4D.

However, the bulk of the error in the first case is distributed

on the two prismatic axes, with opposite error magnitude. This

results in a lower DISP measure for the estimate in Figure 4C.

Visually, this result is not unexpected, as the models make

predictions based on appearance, and in appearance space the

two predictions in Figure 4C are much closer. We note this

unexpected benefit of our proposed method and defer deeper

investigation for future work.

4.2 Statistical analysis

To determine whether the error results of transfer learning

models stated in Table 1 and Table 2 are not random and their

difference are statistically significant, we apply further statistical

TABLE 2 Median DISP error that calculates error of the pose of end-
effector in meter for target domain data with different training/
testing approaches. The bold text indicates the best results among
transferred models (PBS, PDA12K, PTrip).

BT PBS PDA12k PTrip

Median 0.265 1.719 1.487 1.198

IQR 0.189 1.046 0.819 0.67

FIGURE 4
(A), (B) Two example frames from the target data set. Contrast and colors re-adjusted for clarity of display (C), (D) Corresponding ground truth
(in yellow) and predicted (in purple) boom configurations. The prediction in (C) results in a large joint state error, but a low DISP measure (Errjs = 0.6,
DISP = 0.57). On the other hand, the prediction in (D) results in a low JSE, but a high DISP measure (Errjs = 0.35, DISP = 0.89).
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tests. We choseMood’s median test (Mood (1954)) to do that due

to the error distributions are non-Gaussian, as we state above.

Mood’s median test is a non-parametric statistical test. It can

replace more common statistical tests such as t-test or ANNOVA

that requires normal data assumption. Hence, we use Mood’s

median test to show that the accuracy results we state in Table 1

and Table 2 are not randomly found values but they have

statistical significance.

Mood’s median is a very well known statistical test. Yet, for the

sake of completion, we explain it very briefly. The null hypothesis of

Mood’s median test is that the population medians are all equal,

hence there is no significant difference between populations. To

assess this null hypothesis, we choose α = 0.05 as significance level.

Then, to test the null hypothesis, a chi-square value is calculated

between k populations. In our case, we compare PBS, PDA12K and

PTrip’s error results with each other two by two, i.e., k = 2. Another

important parameter is critical value that we compare the calculated

chi-square value with. If chi-square is bigger than the critical value,

we can reject the null hypothesis and the difference between our

errors states in Table 1 and Table 2 aremeaningful. The critical value

is determined based on k and chosen α. For k = 2 and α = 0.05, the

critical value is determined as 3.841.

For clarity, we show the chi-square results in a matrix format

in Table 3 and Table 4. Our results clearly show that all the chi-

square values are at least 10 times bigger than critical value in

Table 3 and Table 4. Hence, the null hypothesis is rejected and we

can say that the difference between errors stated in Table 1 and

Table 2 are statistically significant.

Also, the statistical results are consistent with the error

results. For instance, the smallest chi-square value is between

PTrip and PDA12k in Table 3. Therefore, the significance of

difference between the errors of PTrip and PDA12k is not as high

as the ones of PTrip and PBS, or, PBS and PDA12k. This results is

consistent with the smallest error difference between PTrip and

PDA12k, as shown in Table 1. We can observe similar

consistencies between Table 4 and Table 2 for PBS and

PDA12k as well.

4.3 Latent space analysis

In addition to evaluating the primary task, we also analyze

the performance according to our secondary metric learning

objective. In particular, we are interested in the generalization

properties of the learned feature encoders, and thus in this

section we base our evaluation on sequences of images from

the target domain. We embed both consecutive images with

similar appearance and joint configuration, as well as images

from remote sections of the data set. In order to visualize the

obtained embeddings f ∈ Rd, we map the whole target data set

through each of the three test conditions PBS, PDA12K and

PTrip. We then take the corresponding data sets of feature

embeddings in d − dimensional space and pass them through

another dimensionality reduction step to obtain an interpretable

2D visualization. For the latter step we use the popular t-SNE

dimensionality reduction schema (Van der Maaten and Hinton

(2008)), as it creates locally smooth embeddings relevant for each

feature space. In this manner, we can easily discern how closely

similar/dissimilar feature points place in the learned latent space

(e.g., Figure 5) and qualitatively evaluate how well each approach

captures the smoothness and structure of the target domain.

For clarity, we select several data points from some

exemplary cases rather than plotting the whole feature space.

To display the similarity in the primary task space we color the

feature embeddings by Euclidean distance to a fixed reference

configuration. We plot the embedding of the reference with a red

cross (e.g., Figure 5) and use the same color scale in all images

with lighter colors representing more dissimilar joint

configurations. The euclidean distance is calculated using the

cosine/sine transformed q̂ ∈ R12 as explained in Section 2. We

plot both the feature embedding, as well as the corresponding

input.

Figure 5 illustrates the feature embeddings for a sequence of

images that capture a yawing motion of the boom of the machine

(Case1). Even though frame 2 is in almost equal distance to frame

1 and frame 3, it is placed closer to frame3 in both PBS

(Figure 5A) and PData12k (Figure 5B). On the other hand,

PTrip manages to bring them closer (Figure 5C) and thus

results in a more faithful representation of these points in

latent space. To verify this observation, we compare

smoothness of the estimated joint configurations with

smoothness of the ground-truth joint configurations.

Smoothness of joint configuration is an important factor for

TABLE 3 Mood’s median test’s chi-square values calculated from joint
state errors of different training/testing conditions. The italic ones
shows the smallest chi-square values. The bold text indicates the best
results among transferred models (PBS, PDA12K, PTrip).

PBS PDA12k PTrip

PBS N/A 156.912 157.15

PDA12k 156.912 N/A 11.593

PTrip 157.15 11.593 N/A

TABLE 4 Mood’s median test’s chi-square values calculated from DISP
errors of different training/testing conditions. The italic ones
shows the smallest chi-square values. The bold text indicates the best
results among transferred models (PBS, PDA12K, PTrip).

PBS PDA12k PTrip

PBS N/A 38.804 226.528

PDA12k 38.804 N/A 135.63

PTrip 226.528 135.63 N/A
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robots to move end-effector accurately and in a smooth

continuous manner along a specified trajectory. Therefore, we

calculate the trajectory smoothness for the joint configurations q̂i
predicted by each model over the entire yawing motion. We

measure smoothness using the center line average (CLA) metric:

i.e., 1
d

1
n∑

n
i |q̂i − �q| where �q is the sample mean and d = 12 We

calculate the average CLA over normalized joint state estimates

between 0 and 1 and report results in Table 5. We note for

example that for Case1 PTrip achieves a trajectory with

comparable smoothness to the one featured by the ground-

truth trajectory. Hence PTrip achieves the best representation

of the ground-truth joint states in latent space by bringing similar

features closer and keeping dissimilar ones apart.

In Figure 6, we display a more complex case (Case2) where

the boom is executing a combination of motions of several joints

simultaneously—i.e., the end effector is yawing, rolling and

translating. In Figure 6A, PBS pushes frame 2 (dark blue)

away from the reference point frame 1 (reference), while it

brings frame 5 (light green) closer to frame 2. This creates an

FIGURE 5
Case1: t-SNE plots of learned feature embeddings—(A) through PBS (B) PDA12K and (C) PTrip—colored with ground-truth joint states distance
to a reference frame (red cross). Both PDA12K and PBD separates the points in similar distance while PTrip brings them closer together.

TABLE 5 Center line average of predicted joint states for the selected
cases discussed. The bold text indicates the best results among
transferred models (PBS, PDA12K, PTrip).

PBS PDA12k PTrip Ground-truth

Case1 0.061 0.054 0.038 0.020

Case2 0.060 0.077 0.069 0.070

Case3 0.081 0.072 0.096 0.055

Case4 0.041 0.044 0.041 0.024

FIGURE 6
Case2: t-SNE plots of learned feature embeddings—(A) through PBS (B) PDA12K and (C) PTrip—colored with ground-truth joint states distance
to a reference frame (red cross). PTrip brings similar blue dots closer than PBS and PDA12K.
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inconsistency. PDA brings these similar points, frame 2 and

frame 1 closer while pushing frame 5 (a dissimilar point) further

away (Figure 6B). However, the mild green frames such as

frame4 that has almost the same distance to both frame 1 and

frame 5 are pulled in closer to the darker points. Finally, PTrip

finds a balance between these similar and dissimilar points

(Figure 6C).

In Case1 and Case2 we examine sample motion sequences

where PTrip performs better relative to the other models. However,

there are cases where PTrip also fails in bringing/separating similar/

dissimilar points in latent space. For instance, in Figure 7, frame 3

(mild green) is in equal distance to frame 2 and frame 4. But both PBS

and PTrip place it in a closer place to frame 4 (Figures 7A,C), while

PDA12k manages to place them in a more balanced way (Figure 7B).

This reflects to the smoothnessmeasure and PDA12k gives the closest

average CLA to the ground-truth value (Table 5).

Finally, we show another relatively simple case (Case4)

similar to Case1 where we mainly observe a yaw motion of

the boom. For this sequence all the models fail to create a

consistent result with respect to the ground truth labels

(Figures 8A–C). While frame 2 and frame 1 capture almost

identical end effector poses, all three models place frame 2 much

FIGURE 7
Case3: t-SNE plots of learned feature embeddings—(A) through PBS (B) PDA12K and (C) PTrip—colored with ground-truth joint states distance
to a reference frame (red cross). PDA12K successfully brings similar points closer and provides a smooth transition between consecutive frames.
PTrip fails to do so. But as we see (A), ground truth data is also erroneous hence PTrip fails to correct the error. With a more accurate labeling for
training, PTrip should do fine as well.

FIGURE 8
Case4: t-SNE plots of learned feature embeddings—(A) through PBS (B) PDA12K and (C) PTrip—colored with ground-truth joint states distance
to a reference frame (red cross). All models fail to correct error in ground truth data and give erroneous results where similar points scattered different
places.
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closer to the dissimilar frame 3. Hence, for this sequence the

feature encoders map dissimilar poses as similar, which reflects

on the smoothness measure—all the models give two times larger

CLA values than the ground-truth. Intuitively this makes the

shape of the latent space more complex, which in turn places

higher demands on the following regression network, and may be

the cause of the observed high prediction errors and meager

transfer capability of the three evaluated models.

4.4 Discussion

In our result section, we discuss several experimental results to

show that our way of using data augmentation with a triplet loss

increases the transferability capacity of the baselinemodel trained only

on source domain. In these experiments, we observe an error decrease

in joint state estimation in PDA12K and PTrip compared to the direct

transfer baseline (PBS) in Table 1. Also in Table 2, the PTrip approach

results in an improvement of roughly 30% for pose estimation

compared to PBS. Moreover, our latent space analysis shows that

the feature embeddings learned through PDA12K and PTrip

represent the smoothness and structure of the target domain for

different cases better than PBS (Figure 5 and Figure 6).

However, even though we show the improved transferability

capability of our proposed method, there are limitations as well. The

main limitation of our approach comes from the fact that we have not

directly trained the regression task for pose estimation that is of more

interest in our application. Hence, this may cause a degree of

randomness to our pose estimation calculation (Figure 4), e.g., our

combined metric learning and data augmentation approach (PTrip)

performs better on the DISP measure (iable 2) compared to the ones

in joint state estimation (Table 1).We can observe this randomness in

the latent space analysis, as well. In Figure 8, for this sequence, the

feature encoders of all three models map dissimilar poses as similar.

As a result, we can conclude thatwe have amore complex shape in the

latent space than the other sequences presented in Figure 5. This

complex latent space places higher demands on the regression task.

This causes high prediction errors and low transfer capability.

Therefore, supervising the regression task directly over pose

estimation can help to differentiate similar/dissimilar poses in a

more accurate way in the latent space. As a result, the introduced

limitation stresses the importance of more careful selection of the task

for training (e.g., regression task directly over pose estimation).

5 Conclusion

In this paper we introduce a new transfer learning method that

combines metric learning and domain-aware data augmentation.

Differently from previous transfer learning methods, our approach

does not use target domain data directly during training but includes

target domain knowledge through source domain augmentation. We

apply the method to a scenario in mining robotics that features a

difficult to predict and fully capture deployment domain. We

concentrate on the challenging task of estimating the joint

configurations of an articulated manipulator in an unknown target

domain, by only having access to labeled data from a different source

domain. Our results indicate that the proposed integration of a metric

learning objective and domain-aware data augmentation have a

promising transfer capacity, with ≈ 30% improvement with respect

to a model trained only on source domain data. Moreover, we

qualitatively evaluate the latent space of our approach and

demonstrate that the feature encoder trained results in a smooth

embedding. Hence, our approach has the capacity to map images

of similar manipulator configurations to close-by regions of the latent

space, regardless of visual appearance. Due to the challenging transfer

task however, the error obtained for joint state prediction on the target

domain is still substantially higher than theones that can beobtainedby

supervising the model with real in-domain data. Our future work will

concentrate on further exploring the relationship between the latent

space smoothness and the subsequent regression task. We also aim at

devising more generic domain augmentation methods and explore

adversarial approaches to generating relevant out-of-domain data.

Data availability statement

The datasets presented in this article are not readily

available because Data will be made publicly available

pending approval by industrial partners. Requests to access

the datasets should be directed to PG, puren.guler@

gmail.com.

Author contributions

Conceptualization, PG, JS and TS; methodology, PG, JS, and

TS; software, PG, TS; validation, PG and TS; formal analysis, PG

and TS; investigation, PG and TS; resources, PG and TS; data

curation, PG and TS; writing—original draft preparation, PG;

writing—review and editing, TS; visualization, PG and TS;

supervision, TS; project administration, TS; funding

acquisition, TS. All authors have read and agreed to the

published version of the manuscript.

Funding

This work is supported by Vinnova/SIP STRIM project 2017-

02205.

Acknowledgments

TS and JS would like to acknowledge support by the

Wallenberg AI, Autonomous Systems and Software Program

Frontiers in Robotics and AI frontiersin.org12

Güler et al. 10.3389/frobt.2022.833173

mailto:puren.guler@gmail.com
mailto:puren.guler@gmail.com
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.833173


(WASP) funded by the Knut and Alice Wallenberg

Foundation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Byravan, A., and Fox, D. (2017). “Se3-nets: Learning rigid body motion using
deep neural networks,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA) (Singapore: IEEE), 173–180. doi:10.1109/ICRA.2017.7989023

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: A
large-scale hierarchical image database,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on (Miami, FL, USA: IEEE),
248–255. doi:10.1109/CVPR.2009.5206848

Dong, Y., Yang, C., and Zhang, Y. (2021). Deep metric learning with online hard
mining for hyperspectral classification. Remote Sens. 13, 1368. doi:10.3390/
rs13071368

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
et al. (2016). Domain-adversarial training of neural networks. J. Mach. Learn. Res.
17, 2096–2030.

Gulde, T., Ludl, D., Andrejtschik, J., Thalji, S., and Curio, C. (2019). “Ropose-real:
Real world dataset acquisition for data-driven industrial robot arm pose
estimation,” in 2019 International Conference on Robotics and Automation
(ICRA) (Montreal, QC, Canada: IEEE), 4389–4395. doi:10.1109/ICRA.2019.
8793900

Kaya, M., and Bilge, H. Ş. (2019). Deep metric learning: A survey. Symmetry 11,
1066. doi:10.3390/sym11091066

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Klingensmith, M., Galluzzo, T., Dellin, C. M., Kazemi, M., Bagnell, J. A., and
Pollard, N. (2013). Closed-loop servoing using real-time markerless arm tracking.

Krainin, M., Henry, P., Ren, X., and Fox, D. (2011). Manipulator and object
tracking for in-hand 3d object modeling. Int. J. Robotics Res. 30, 1311–1327. doi:10.
1177/0278364911403178

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification
with deep convolutional neural networks,” in Advances in neural information
processing systems, 1097–1105.

Labbe, Y., Carpentier, J., Aubry, M., and Sivic, J. (2021). “Single-view robot
pose and joint angle estimation via render and compare,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR).

Lambrecht, J., and Kästner, L. (2019). “Towards the usage of synthetic data
for marker-less pose estimation of articulated robots in rgb images,” in 2019
19th International Conference on Advanced Robotics (ICAR)
(Belo Horizonte, Brazil: IEEE), 240–247. doi:10.1109/ICAR46387.2019.
8981600

Laradji, I. H., and Babanezhad, R. (2020). “M-adda: Unsupervised domain
adaptation with deep metric learning,” in Domain adaptation for visual
understanding (New York, NY, USA: Springer), 17–31.

Lee, T. E., Tremblay, J., To, T., Cheng, J., Mosier, T., Kroemer, O., et al. (2020).
“Camera-to-robot pose estimation from a single image,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA) (Paris, France: IEEE), 9426–9432.
doi:10.1109/ICRA40945.2020.9196596

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
et al. (2017). A survey on deep learning in medical image analysis.Med. image Anal.
42, 60–88. doi:10.1016/j.media.2017.07.005

Mood, A. M. (1954). On the asymptotic efficiency of certain nonparametric two-
sample tests. Ann. Math. Stat. 25, 514–522. doi:10.1214/aoms/1177728719

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
An open-source robot operating system,” in ICRA workshop on open source
software, Kobe, Japan, 5. vol. 3.

Schmidt, T., Newcombe, R. A., and Fox, D. (2014). “Dart: Dense articulated real-
time tracking,” in Robotics: Science and systems, Vol. 2.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (Boston, MA, USA:
IEEE), 815–823. doi:10.1109/CVPR.2015.7298682

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data
augmentation for deep learning. J. Big Data 6, 60. doi:10.1186/s40537-019-0197-0

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Sun, Y., Chen, Y., Wang, X., and Tang, X. (2014). “Deep learning face
representation by joint identification-verification,” in Advances in neural
information processing systems, 1988–1996.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). “Adversarial
discriminative domain adaptation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 7167–7176.

Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., Asfour, T., and Dillmann, R.
(2008). “Visual servoing for humanoid grasping and manipulation tasks,” in Humanoid
Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on (Daejeon,
South Korea: IEEE), 406–412. doi:10.1109/ICHR.2008.4755985

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579.

Widmaier, F., Kappler, D., Schaal, S., and Bohg, J. (2016). “Robot arm pose
estimation by pixel-wise regression of joint angles,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on (Stockholm, Sweden: IEEE),
616–623. doi:10.1109/ICRA.2016.7487185

Zhang, L., Kim, Y. J., and Manocha, D. (2007). “C-Dist: Efficient distance
computation for rigid and articulated models in configuration space,” in
Proceedings of the 2007 ACM symposium on Solid and physical modeling
(Beijing, China: ACM), 159–169.

Zhou, F., Chi, Z., Zhuang, C., and Ding, H. (2019). “3d pose estimation of robot
arm with rgb images based on deep learning,” in International Conference on
Intelligent Robotics and Applications (New York, NY, USA: Springer), 541–553.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A
comprehensive survey on transfer learning. Proc. IEEE 109, 43–76. doi:10.1109/
jproc.2020.3004555

Frontiers in Robotics and AI frontiersin.org13

Güler et al. 10.3389/frobt.2022.833173

https://doi.org/10.1109/ICRA.2017.7989023
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3390/rs13071368
https://doi.org/10.3390/rs13071368
https://doi.org/10.1109/ICRA.2019.8793900
https://doi.org/10.1109/ICRA.2019.8793900
https://doi.org/10.3390/sym11091066
https://doi.org/10.1177/0278364911403178
https://doi.org/10.1177/0278364911403178
https://doi.org/10.1109/ICAR46387.2019.8981600
https://doi.org/10.1109/ICAR46387.2019.8981600
https://doi.org/10.1109/ICRA40945.2020.9196596
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1214/aoms/1177728719
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ICHR.2008.4755985
https://doi.org/10.1109/ICRA.2016.7487185
https://doi.org/10.1109/jproc.2020.3004555
https://doi.org/10.1109/jproc.2020.3004555
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.833173

	Visual state estimation in unseen environments through domain adaptation and metric learning
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.2.1 Robotics pose estimation through vision
	1.2.2 Transfer learning
	1.2.3 Domain augmentation
	1.2.4 Metric learning

	1.3 Problem definition and contribution

	2 Methods
	2.1 Learning a generalizable visual model
	2.2 Regressing joint states
	2.3 Learning a metric space
	2.4 Selecting samples
	2.5 Data augmentation

	3 Materials and equipment
	3.1 Dataset collection
	3.2 Training details

	4 Results
	4.1 Estimation accuracy
	4.2 Statistical analysis
	4.3 Latent space analysis
	4.4 Discussion

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


