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Low stiffness, large stroke, and axial force capabilities make Extensile Fluidic Artificial
Muscles (EFAMs) a feasible soft actuator for continuum soft robots. EFAMs can be used to
construct soft actuated structures that feature large deformation and enable soft robots to
access large effective workspaces. Although FAM axial properties have been well studied,
their bending behavior is not well characterized in the literature. Static and dynamic
bending properties of a cantilevered EFAM specimen were investigated over a pressure
range of 5–100 psi. The static properties were then estimated using an Euler-Bernoulli
beam model and discrete elastic rod models. The experiments provided data for the
determination of bending stiffness, damping ratio, and natural frequency of the tested
specimen. The bending stiffness and the damping ratio were found to change fourfold over
the pressure range. Experimentally validated bending properties of the EFAM presented
insights into structural and control considerations of soft robots. Future work will utilize the
data and models obtained in this study to predict the behavior of an EFAM-actuated
continuum robot carrying payloads.

Keywords: soft robotics, soft actuator, fluidic artificial muscles, bending properties, elastic rod model, pneumatic
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INTRODUCTION

FAMs are a popular choice for soft robotic systems due to their force output, low weight and
manufacturing simplicity. The muscle is a form of soft actuation as its stiffness is magnitudes lower
when compared to traditional pneumatic cylinders or linear electric motors (Majidi (2014)).
Modeling and testing of their axial behavior has been covered by a number of research groups
(Chou and Hannaford (1996); Tondu and Lopez (2000); Takosoglu et al. (2016); Salahuddin et al.
(2021); Chambers andWereley (2021)). Achieving variable stiffness of the actuators was investigated
in Xiang et al. (2016). Some research groups also investigated the bending behavior for developing
elephant-trunk-like manipulators (Guan et al. (2020)) or to achieve larger contraction ratios (Bruder
and Wood (2022)). Buckling behavior was also investigated by Kim et al. (2021).

FAMs can be classified as contractile (pullers) and extensile (pushers) based on their behavior
when pressurized. The defining parameter for that behavior is their braid angle which is the angle
between FAM lateral cross-section and the fiber direction as was shown in Figure 1. A FAM is
contractile if the braid angle is larger than 35.26°, or extensile if the braid angle is smaller than 35.26°

(Liu and Rahn (2004)).
Unlike contractile FAMs, which were reported to reach normalized length changes between 24%

and 35% for pressures of up to 690 kPa (Pillsbury et al. (2017)), extensile FAMs (EFAMs) can provide
much larger strokes that exceed their initial length. Theoretically, 200% extension can be achieved at
a braid angle of 22° (Garbulinski et al. (2021)), although in practice stroke values of up to 100% have
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been reported (McMahan et al. (2006); Garbulinski et al. (2021)).
Our motivation to study extensile FAMs stems from their
compact size and their large stroke that is beneficial for
performance of continuum soft robots (Trivedi et al. (2010)).

Fluidic artificial muscles are composed of three main parts
that are shown in Figure 1: a bladder (dotted) which is an
elastomeric tube typically made from latex or silicone; a
braided bi-axial fiber sleeve (blue line) wound around the
bladder, which is made from high-strength material such as
kevlar; and two rigid end-fittings that bind the sleeve and the
bladder together as well as keep the muscle airtight. Since the
internal pressure changes are interchangeably converted into
force or extension, the EFAM stiffness varies with the
pressure. Moreover, as was shown in this study, due to low
stiffness, EFAMs are prone to large lateral deformations
under loads.

Modeling bending behavior of EFAMs is critical for
continuum soft robots as they move with deformation of their
intrinsically actuated structure that is composed of EFAMs.
However, the EFAM bending behavior is not well
characterized in the literature. The EFAM bending behavior
was previously modeled in the context of: FAM-based
continuum soft robots (FAM-CSR) (Trivedi et al. (2008)),
modeling dynamics of a multi-section FAM-CSR (Godage
et al. (2016)), braided continuum manipulators such as STIFF-
FLOP (Sadati et al. (2017)), and the capability of decoupling
stiffness in a FAM-CSR (Giannaccini et al. (2018)). Olson et al.
(2020) used an Euler-Bernoulli beammodel to analyze bending of
a continuum soft robot, which excluded actuator bending
stiffness purported to be a source of error.

The practice in these studies was to experimentally validate
analysis by either 1) comparing FAM models to measured axial
behavior, or 2) by comparing soft robot models to measurements.
Although these approaches were valid for modeling many light-
payload FAM-CSRs, incorporating actuator bending stiffness
into the analysis and developing a method to measure these
values is needed. Thus, the key goal of this study is to measure
EFAM bending properties, and to assess how bending properties
change with EFAM internal pressure. The bending behavior of an
EFAM cantilevered specimen was investigated. A
characterization method for bending stiffness is proposed, as
well as methods to characterize dynamic properties such as
natural frequency and damping ratio.

METHODOLOGY

To assess the properties of an EFAM composed of a latex bladder
and a kevlar sleeve, a method to determine static and dynamic
properties of an EFAM is proposed.

An experimental setup was developed in which the EFAMwas
cantilevered and its shape and tip position were tracked with a
motion capture system (as shown in Figure 2). For internal
pressure values ranging from 5 to 100 psi with five psi increments,
the EFAM was horizontally aligned and then released to bend
under its own weight. The EFAM was then allowed to stabilize at
a static deflection. Markers were sewn to individual fibers along
the EFAM to enable tracking with a motion capture system. The
movement and the steady-state positions of markers were tracked
and recorded by the motion-tracking system. Therefore, the
experiment provided us with shape-marker and tip
trajectory data.

After collecting experimental data, a static bending beam
model was optimized with bending stiffness to match the data
in the least-square error sense. For modeling of static bending, a
linear Euler beam model and a non-linear planar discrete elastic
rod model were used to validate and compare results. Dynamic
properties of natural frequency and damping were extracted
assuming a second-order system.

Experimental Characterization
The test setup (shown in Figure 2) consisted of: an EFAM
specimen, a Vicon motion capture system, a test stand to
expose the markers on the specimen to the motion-capture
cameras, a custom closed-loop pressure regulator for
maintaining isobaric muscle internal pressure, and a PC
computer to record, control, and supervise motion capture.

It was assumed that the motion capture system records the
static position of the markers with an error smaller than 0.5 mm
and a frequency of 100 Hz. The assumption on the error was
found to be conservative when compared with mean absolute
error value reported in the literature for a Vicon sytem (Merriaux
et al. (2017)). Additionally, the position and rotation of the base
was also tracked, and allowed for transformation of the marker
global position data into a local frame with origin at the center of
the base. The xz plane of the local frame was aligned with a
vertical plane crossing through a theoretical EFAM center-line. A
lab-built closed-loop pressure regulator (Garbulinski et al.

FIGURE 1 | (A) A view of an extensile FAM in: a resting state (top), a pressurized state (bottom). (B) A longitudinal cross-section view of an extensile FAM in: a resting
state (top), a pressurized state without external forces (bottom).
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(2021)) regulated internal EFAM pressure with a standard
deviation smaller than 0.7 kPa.

The Vicon system was first calibrated using the provided
calibration wand. The test stand was then placed in the center
of the motion capture area so that the markers on the EFAM
specimen were well exposed to the tracking cameras. Then, the
specimen was covered with a black cloth, and a map of unwanted
reflections was created that prevented the Vicon system from
identifying the reflections as markers. Then, the markers were
uncovered, and the pressurized air system was turned on. After
the systems were in place, powered on, initialized and calibrated,
the specimen was considered ready for a sub-test at an internal
pressure of five psi.

To combat the effects of FAM performance creep (Hocking
and Wereley (2012)), at the beginning of each sub-test, the
specimen was pressurized 5 times in a cycle from 0 psi to 100
psi and back. After internal pressure cycling, the specimen was
pressurized to an actively regulated value of five psi. At this point,
length and outer diameter of the specimen were measured with a
ruler and a caliper, respectively. After the geometric
measurements, the tracking data acquisition was started and
directly followed with a start of a handheld timer. Then, the
specimen was manually raised to a horizontal configuration and
released when the timer indicated that 20 s had elapsed. The FAM
was let to vibrate and reach a steady-state in 20 s. After the EFAM
reached a steady-state, in a 10 s period the EFAMwas raised again
to the horizontal position and released. This raise-and-release
procedure was repeated 6 times. After the specimen stabilized for
the last time, 10 s were added and the tracking was stopped. The
acquired data was saved to CSV-format file for post-processing.

The 5-psi sub-test was followed by the same 19 sub-tests with
the internal pressure incremented by five psi up to 100 psi. Only
increments in pressure were used under the assumption that
hysteresis in bending properties was negligibly small. Since the
base position was recorded, it was possible to evaluate the
position deviation of a tracked object that was assumed to be
fixed. With our first iteration of this method, it was observed that
the standard deviation of the base position did not exceed
0.19 mm. The error of this size was very close to the tracking
resolution of the assumed motion capture system. This assured us
that the test stand was rigid during the test and the vibration

coming from EFAM dynamic response or manually raising the
specimen negligibly affected the results.

Modeling
With the tip-displacement data acquired through the motion
capture testing and a model of beam extension and bending, the
flexural stiffness, EI, can be determined. Two bending models
were applied: an Euler-Bernoulli beammodel (Popov (1976)) and
a finite-element Planar Discrete Elastic Rod (PDER) model
(Goldberg et al. (2019)). The two models enabled comparison
of the measured flexural stiffness. The comparison was useful
because large EFAM deformations were observed during the
experiments. Those deformations had the potential to violate
assumptions of the Euler-Bernoulli beam model or induce errors
for lower resolution PDER models.

The non-linear model was a discrete and planar
approximation of Kirchoff’s rod theory based on the
formulation of discrete elastic rod theory developed by Bergou
et al. (Bergou et al. (2008)). PDER is a finite element model that
for its constitutive equation uses a bending stiffness constant. The
theory is sufficiently general to model the stretching, torsional,
and flexural deformations of extensible flexible rods. Here, the
theory was restricted to the planar case and the torsional
deformation was neglected.

Below, two models are presented to calculate bending stiffness
from the experimental data, and their results are compared.

For beam modeling using a static Euler-Bernoulli model, a
super-position method was used. The EFAM was modeled as a
beam with a load corresponding to its distributed weight, q. It was
also subject to a point load, P, representing the weight of the end-
fitting and the 3D printed marker attachment. The values of q and
P were obtained with weight measurements of specimen parts. A
graphical representation of the model was overlaid on a diagram
of the experiment in Figure 3. This model gives an equation for
the displacement in the vertical coordinate, z, as a function of x
(Popov (1976); Young et al. (2012)):

zw x( ) � − qx2

24EI
x2 + 6L2 − 4Lx( ) (1)

zF x( ) � −Px
2

6EI
3 L + ΔL( ) − x( ) (2)

FIGURE 2 | (A) A cantilevered extensile fluidic artificial muscle pressurized to 15psi in a test setup. (B) A top view diagram of the test setup.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8040953

Garbulinski and Wereley Bending Properties of an EFAM

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


zEuler x( ) � zw x( ) + zF x( ) (3)
where x is the horizontal position coordinate and z is the vertical
position coordinate. A constant, q is the distributed load, which is
calculated from the weight measurements of the braided sleeve
and the bladder. L is the active length of the EFAM, measured
before each subtest.ΔL is a length needed to shift the weight of the
end-fitting to the center of the EFAM end tip. P is the weight of
the EFAM end-tip. EI is the bending stiffness of the EFAM. The
model assumes negligibly small x displacements, which was not
the case for the experiment due to low EFAM stiffness. To find the
z coordinate of the tip, the curve length was numerically
integrated along x until it was equal the measured length of
the EFAM. With that modification, the model gave a more
realistic value for xtip and ztip (ztip shown as zmod

tip in
Figure 3A). A model without this modification (ztip shown as
zEulertip ) resulted in a relatively large error and was discarded for
further analyses.

For the PDERmodel, the authors refer the reader to references
(Bergou et al. (2008); Novelia (2018); Goldberg et al. (2019)) as
comprehensive introduction of the model is out of the scope for
this paper. In the following model description, only the formulas
for elastic energy were presented as they differs from other
formulations. A graphical representation of the model for four
nodes was shown in Figure 3B. In the figure, the muscle is
discretized into n − 1 segments of equal length at the resting state
with vertices/nodes denoted as xk. In our models, the nodes were
equally distributed along the EFAM active length, and their
number was set to 4, 8, 16, 32, and 40. A special segment of
infinite stiffness, n, was also added to represents the end-fitting
and the marker cap. Each of the n − 1 segments has some weight
that comes from the density of the bladder and braided sleeve.
Based on those weights and related Voronoi regions, gravitational
forces, Qi, are calculated for each node. Each segment, ei can
rotate with an angle of ϕi and corresponding curvatures, κk. These
are given by (Goldberg et al. (2019)):

ei � xi+1 − xi, κk � 2 sin φk( )
1 + cos φk( ) � 2 tan

φk

2
( ). (4)

The elastic energy, Ee, of the system is modeled as:

Ee � Es + Eb,

Es � 1
2
∑n−2
j�0

EAj ej
��� ���
�ej
��� ��� − 1( )2

�ej
���� ����,

Eb � 1
2
∑n−2
i�1

EIi
�ℓi

κi − �κi( )2.
(5)

where Es is the extensional energy with a stiffness constant EA
and Eb is the bending energy with a bending constant EI.

Data from models of increasing number of nodes showed us
how the model error behaved based on discretization resolution.
Note that the PDER model requires extensional stiffness which
was obtained in prior research Garbulinski et al. (2021). With the
PDER model, our aim was to capture the non-linear behavior of
EFAM bending. As shown in Goldberg et al. (Goldberg et al.
(2019)), other energies and forces can be added to the model and
turned into a state-space dynamic model. Here, we only found
static solutions of the state-space where the velocities _xk � 0 and
optimized the tip error with the bending stiffness EI.

For each internal pressure test data, both models were
optimized with a MATLAB non-linear solver, Fminsearch.,
2021)), to find the bending stiffness constant that would give
the smallest error in the least square sense for the tip displacement
data. The fminsearch.m uses the simplex search method of
Lagarias et al. (1998).

To find the dynamic properties, the value for the vertical, z(t),
coordinate was extracted from the data. The damped natural
frequency, ωd was found with a Fourier transform of the z(t)
signal. An exponential decay approximation was used to find the
damping ratio, ζ, from the amplitude decay with the Matlab non-
linear solver (Fminsearch., 2021).

A t( ) � A0





1 − ζ2

√ e−ζωd/ 



1−ζ2

√
t (6)

The curve was fit to the consecutive peaks of the z(t) time
histories. Then, the natural frequency, ωn was calculated with
a formula:

ωn � ωd/ 





1 − ζ2

√
(7)

FIGURE 3 | (A) Euler-Bernoulli beam model in the context of the experiment. (B) PDER model in the context of the experiment.
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RESULTS

Data
For some tests, sporadic spurious data points were present in
position coordinate values. The data points were diagnosed as the
moments when the Vicon system was not able to evaluate marker
positions. Except for the spurious data points, no significant
difference was observed between the six raise-and-release test
data series. For each internal pressure level, only one test without
the spurious data points was selected as a representative of given
testing conditions.

An average position of the base was calculated together with
average values for the quaternions representing the base rotation
in the global coordinate system. Then, the maximum out-of-
plane tip deflection for all the recorded trajectories was found to
be 35.96 mm. The mean out-of-plane tip deflection of all
maximum tip deflections for each case was 20.02 mm with
standard deviation of 8.2 mm (Figure 4). The out-of-plane
deflections were attributed to the manufacturing imperfections
of the bladder which resulted in a specimen that slightly tilted its
tip in the lateral directions upon pressurization.

When the lateral deflection was normalized by the length of
the EFAM for a given pressure, the worst lateral end-tip deflection
was 18.5% of the EFAM length. The mean of the normalized
deflection for all pressure levels was 7.12% with a standard
deviation of 4%. Keeping in mind a mean error smaller than
10%, only the in-plane position values were used for the further
analysis.

In this study, time histories and steady-state tip deflection
positions were extracted from the data for each test of different
internal pressure level. Tip trajectory and position data was
shown in Figure 4. The green dot in the figure represents the
position of the base. The figure also shows trajectories of the

EFAM tip position which were color-coded for different internal
pressures. On each trajectory lies a dot of the same color which
represents the steady-state tip position of the EFAM tip. For
clarity, only half of the collected data is shown with +10 psi
increments starting from the EFAM internal pressure of five psi.
One can observe that with increasing pressure the distance to the
base increases as the EFAM length increases with pressure. Then,
for higher pressures, the length increments are smaller and the
EFAM stiffens which changes the steady-state position of the tip.

Bending Stiffness
Because of EFAM stiffness changes with the internal pressure, its
bending stiffness was expected to change over the pressure range
of 5–100 psi. Figure 5 shows the bending stiffness, EI, of the
EFAM calculated using different methods. The first method with
its results was represented with the solid blue line. This method
used the axial force data from Garbulinski et al, (2021). The axial
rigidity was recalculated to bending stiffness under the
assumption that the EFAM was a rod made from isotropic
material. For calculation of the bending stiffness, the following
formula was used:

EI � Eπ
D4 − d4

64
� EA

D2 + d2

16
(8)

where E was the Young’s modulus; A was the circular cross-
sectional area of the EFAM; D was the outer diameter measured
with a caliper around the center of the EFAM, and dwas the inner
diameter calculated from the EFAM braided sleeve kinematics
and an assumption of bladder incompressibility.

The two methods which results were showed in Figure 5 were
described in the previous section, Modeling. The figure
demonstrated that the values estimated from the optimization
were different from those obtained with the axial stiffness data.

FIGURE 4 | EFAM tip trajectories (solid lines) and static tip positions (circle) in 10 psi increments starting at five psi. The green circle at the axes origin represents
position of the base.
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The values of the Euler-Bernoulli beam model and the PDER
models (from 8–40 nodes) were found to be in agreement. The tip
error found by the minimization procedure was shown in
Figure 6A. Figure 6B also shows that the accuracy of the
model improves with increasing bending stiffness of the
specimen as well as that the error decreases with the number
of nodes in the PDER model.

The numerical data for the modeling was shown in Table 1
and Table 2. In the tables, the subscript 0 indicates the resting
state. θ stands for the braid angle. L stands for the EFAM length.
Din and Dout represent the inner and outer bladder diameter,
respectively. ρL0 is the mass of the active part of the bladder and
the braid per unit length. ΔL is the length from the end of the
bladder to the center of mass of the tip.

Two models were used to obtain the bending stiffness values
from experimental data and cross-validate the methods. Using

the static tip position and optimization techniques, bending
stiffness values, EI, were found for both models. The discrete
element model, the PDER model, led to a trend that was in
agreement with the trend obtained with the Euler-Bernoulli beam
model (Figure 5). This means that the simpler Euler-Bernoulli
can be used to determine bending properties of EFAMs. Another
implication of this result is that the values obtained with the
Euler-Bernoulli model could be employed in the finite-element
PDER models. This is beneficial because the PDER models are
useful for simulations of soft robots where modeling of EFAM
deformations needs computational approach.

Shape Comparison
Our measurements also included dynamic and steady-state
positions of markers placed along the EFAM longitudinal axis.
This data allows us to qualitatively evaluate the shapes of the
EFAM when compared to our models. To do that, Figure 7 was
compiled which holds the experimental data overlaid on top of
our models at each internal pressure.

The figure shows experimental shape markers steady-state
positions (blue-circle curve) and the end tip position for each case
(blue cross). The figure also shows modeled beam shapes for: the
Euler-Bernoulli model (color: bright blue, row: I), the 4-node
PDER model (green, II), the 8-node PDER model (purple, III),
the 16-node PDER model (yellow, IV), the 32-node PDER model
(red, V) for a range of internal pressures. To account for the
collective form of the plots, each consecutive model data set was
shifted down by 350 mm down and right by 350 mm for a five psi
pressure increment. The experimental data (blue) showing the tip
position and the marker positions at the steady state is overlaid
for each modeled beam.

It was observed that the Euler-Bernoulli beam model did not
capture the EFAM curve accurately for the pressure range of
20–50 psi. This pressure range corresponds to low bending
stiffness of the EFAM specimen. The curvature of the Euler-
Bernoulli beams was smaller after a point when compared to the
experimental data. Similar behavior was observed for the 4-node

FIGURE 5 | Bending stiffness of an EFAM versus EFAM internal
pressure. The blue line represents bending stiffness recalculated from axial
rigidity experimental data. The red and yellow lines represent bending stiffness
obtained through tip error minimization procedure for PDER models and
Euler-Bernoulli models, respectively.

FIGURE 6 | (A) Tip displacement error as a norm of Cartesian coordinates relative to the experimental tip positions. (B) Tip displacement error normalized by EFAM
length as a function of bending stiffness. The markers represent data points, and the solid lines represent least squares linear fit to the data points. Only four out of six
PDER models are shown for clarity.
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PDER model, however, the shape accuracy improved with each
increase in the number of nodes.

Another important qualitative observation is that a similar
trend of accuracy was seen for the rotation of the tip of beam. The
tip rotation of the Euler-Bernoulli beam for the shape-
misrepresented pressure range appears to be different than
that which would be extrapolated from the last shape marker
to the tip. Again, the tip rotation accuracy appears to improve

with the number of nodes in the PDER models. This observation
has implications for multi-section EFAM-based continuum soft
robots as with each erroneous rotation of a section end, the error
would affect errors in positions and orientations of consecutive
sections.

Natural Frequency and Damping
The dynamic properties were obtained based on the Cartesian
coordinate data of the tip deflection. The static bias in the time
histories of the coordinates was cancelled with their steady-state
values. Then based on the z (t) coordinate history for each subtest
the damping ratio was calculated with the method described in
the modeling section.

Damping ratio values were obtained for each tested internal
pressure level with a visual example of a subtest at 15 psi
demonstrated in Figure 8. It can be observed that there exists
a slight bump in the z(t) time history. The bump and the
asymmetry of the signal comes from large displacement of the
tip. The deflection is so large that the tip rotates more than 90°. At
the peak of its trajectory, the tip travels upwards. Fortunately, our
method for finding the damping ratio operates only on the upper
peak values and the bump does not affect the algorithm. This
should also remind the reader that the EFAM was a non-linear
highly-flexible beam, and that approximating it with a linear
Euler-Bernoulli model was an attempt to obtain an
approximation useful for engineering purposes.

The damping-pressure trend appears to be strongly
dependent on internal pressure (Figure 9). A fourfold
increase in damping was observed in the operating range of
internal pressure. The natural frequency of the EFAM turned
out to have a strongly non-linear trend with the frequency

TABLE 1 | Modeling constants.

θ0, ° L0, in Din0, in Dout0, in ρL0, kg/m ΔL, in tip-load mass, g gravity,m/s2

12.5 6.69 0.97 1.07 0.14227 0.662 54.92 9.81

TABLE 2 | Modeling variables.

P, psi L, in Din, in Dout, in EI (Axial),
Nm2

EI (Euler),
Nm2

EI (PDER
32), Nm2

5 6.69 0.97 1.07 0.00601 0.00991 0.01022
10 7.21 0.98 1.07 0.00859 0.00859 0.00923
15 7.99 0.98 1.06 0.01112 0.00667 0.00709
20 8.87 0.98 1.05 0.01355 0.00542 0.00595
25 9.69 0.97 1.04 0.0159 0.00517 0.00582
30 10.41 0.97 1.03 0.01818 0.00568 0.00621
35 11.06 0.96 1.02 0.02038 0.00611 0.00676
40 11.59 0.96 1.02 0.02255 0.00733 0.00801
45 12.01 0.95 1.01 0.0247 0.00803 0.0089
50 12.37 0.95 1 0.02683 0.00905 0.00985
55 12.67 0.95 1 0.02895 0.00977 0.01095
60 12.95 0.94 1 0.03105 0.01087 0.01202
65 13.15 0.94 0.99 0.03317 0.01202 0.01315
70 13.34 0.94 0.99 0.03527 0.01279 0.01414
75 13.51 0.94 0.99 0.03738 0.01448 0.01555
80 13.67 0.93 0.98 0.03945 0.01578 0.01689
85 13.81 0.93 0.98 0.04154 0.01662 0.01833
90 13.93 0.93 0.98 0.04363 0.01745 0.01914
95 14.03 0.93 0.98 0.04573 0.01886 0.0201
100 14.13 0.93 0.98 0.0478 0.02151 0.02259

FIGURE 7 | The figure shows modeled beam shapes for: the Euler-Bernoulli model (color: bright blue, row: I), the 4-node PDERmodel (green, II), the 8-node PDER
model (purple, III), the 16-node PDER model (yellow, IV), the 32-node PDER model (red, V) for a range of internal pressures. The internal pressure ranges: (A) P = (5, 10,
. . . , 50) psi (B) P = (55, 60, . . . , 100) psi.
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dropping from low pressures to 40 psi and linearly raising for
larger pressures (Figure 9).

The experimental data was employed for determination of the
dynamic properties such as damping and natural frequency.
From a robotics perspective, knowledge of the minimum
natural frequency is critical for avoiding structural resonance
when controlling a soft robot that bends. The damping values can
additionally help to estimate how fast the robot would stabilize.
For example, with our result in Figure 9, it can be reasoned that
for a continuum robot composed of more than one EFAM, the
lower bound on the robot natural frequency will be greater than
the lowest natural frequency of an EFAM.

Interestingly enough, in Figure 5 and Figure 9minima exist
at internal pressures of 25 psi for the bending stiffness and 40
psi for the natural frequency. Typically, when characterizing
beam samples of different stiffness, one could expect that the
beam with the minimum stiffness would also have the
minimum natural frequency. However, this is not the case
in our results. A possible explanation for this is that the natural
frequency of a beam also depends on the beam length (Alper
Erturk, 2011)). As it can be observed in Figure 4, the length
increases non-linearly with an increase of internal pressure.

Therefore, the sudden increase in length contributes to higher
natural frequency, and therefore to the positive shift of the
minimum when compared to the results for the bending stiffness.

Limitations
Here, we enumerate study limitations.

1) Only one EFAM was tested, and it remains to be seen if an
EFAM of the same diameter but different length would yield
the same result.

2) The EFAM diameter was observed to slightly vary along the
length, so that the beam cross-section is not uniform.

3) The bending stiffness value was only obtained for one loading
condition. It is unclear whether the bending stiffness is
dependent on the amount of EFAM deflection.

4) The bending stiffness was always measured under the
assumption that the EFAM was at free strain for the Euler-
Bernoulli model. Its agreement with the PDER model which
included extendable links showed that the axial strain was
indeed negligible for this experiment. However, how the
bending stiffness changes with the actuator axial strain
remains unknown.

FIGURE 8 | The figure is a visual example of the frequency analysis for a single test of an EFAM at an internal pressure of 15 psi. (A) A Relative Tip Displacement
Trajectory. (B) Amplitude Spectrum of the Tip Displacement.

FIGURE 9 | (A) Natural frequency versus EFAM internal pressure. (B) Damping ratio coefficients versus EFAM internal pressure.
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5) A non-linear behavior is observed for pressures up to 40 psi in
every calculated property. The effect and its potential relation
to the FAM’s braid angle need further investigation.

Despite limitations of this study, methods for determining
EFAMbending properties were established and provided physical
insights into EFAM bending behavior.

CONCLUSION

An extensile fluidic artificial muscle (EFAM) was analyzed for its
bending properties over a relatively large range of pressures. Motion
of the cantilevered testing specimen, an EFAM muscle of a blocked
force of 300 N (at 75psi) was captured and its measured bending
properties were assessed: bending stiffness, natural frequency, and
damping.

EFAM bending stiffness increased more than four times
from internal pressure of 25 psi to 100 psi. This result is
important for modeling behavior of continuum soft robots. A
common trend in the literature is to characterize the axial
properties of an EFAM (Tondu and Lopez (2000); Liu and
Rahn (2004)), and then to determine Young’s modulus so that
it could be used to calculate bending moments of the muscles
(Trivedi et al. (2008)). This approach enabled modeling of
continuum soft robots and reduced error when compared to
the previous purely kinematic constant-curvature models
(Webster and Jones (2010)). However, as observed in our
results (Figure 5), bending stiffness is strongly and non-
linearly dependent on EFAM internal pressure. Therefore,
our results can lead to improved modeling of bending and
helical FAMs (Guan et al. (2020)), as well as continuum soft
robots that use FAMs for intrinsic actuation.

The natural frequency of the cantilevered EFAM changed by
20% from a minimum at 30 psi and a maximum at 10psi
(Figure 9). This gives interesting insight from the robotics
perspective. The natural frequency increases with stiffness, so
that a continuum soft robot composed of more than one EFAM
should have a natural frequency greater than that measured for one
EFAM (if the mass properties stay the same). Our results thus yield
a lower bound on natural frequency of EFAM-driven continuum
soft robots. Knowledge of this bound is important for designing
control systems that avoid excitation at rates that can induce
structural resonance. The damping values of the EFAM
specimen increased by 450% from a minimum at 5 psi and a
maximum at 100 psi. This provide insight on the stabilization of a
continuum soft robot depending on its internal pressure. Due to a
steep increase in damping for low pressures, if the robot operated at
least at pressures higher than 30 psi, it would achieve two thirds of
its maximum operational damping.

Changes to EFAM internal pressure strongly affect the bending
properties of the muscle. The properties such as bending stiffness

and damping can change their values fourfold. The natural
frequency can also change by 20%. These strong relationships of
bending properties to the internal pressure are recommended to be
taken into account when designing structure and control of an
EFAM-driven continuum soft robots carrying payloads.

FUTURE WORK

In the future work, a broader set of FAM specimens should be
examined including both extensile and contractile fluidic artificial
muscles (CFAMs), and attempt at modeling efforts which would
match the axial properties as well as the bending properties. The
modeling efforts could be validated against different loading
cases. Next steps could include experimental validation of the
experimental values in static and dynamic models of EFAM-
driven continuum soft robots.
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