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Strategic management and production of internal energy in autonomous robots is
becoming a research topic with growing importance, especially for platforms that
target long-endurance missions, with long-range and duration. It is fundamental for
autonomous vehicles to have energy self-generation capability to improve energy
autonomy, especially in situations where refueling is not viable, such as an
autonomous sailboat in ocean traversing. Hence, the development of energy
estimation and management solutions is an important research topic to better optimize
the use of available energy supply and generation potential. In this work, we revisit the
challenges behind the project design and construction for two fully autonomous sailboats
and propose a methodology based on the Restricted Boltzmann Machine (RBM) in order
to find the best way to manage the supplementary energy generated by solar panels. To
verify the approach, we introduce a case study with our two developed sailboats that have
planned payload with electric and electronics, and one of them is equipped with an
electrical engine that may eventually help with the sailboat propulsion. Our current results
show that it is possible to augment the system confidence level for the potential energy that
can be harvested from the environment and the remaining energy stored, optimizing the
energy usage of autonomous vehicles and improving their energy robustness.

Keywords: autonomous sailboat, energy self-generation, energy management, renewable energy, boltzman
machine

1 INTRODUCTION

Autonomous robots are machines that have embedded systems with some specific purpose,
which depends on the application. Nonetheless, in general, they have computational and
physical resource restrictions (Almeida, 2016), being the energy performance one of the
main issues to be accounted for when developing such machines (Aldegheri et al., 2018).
Surface aquatic robotic (ASV or USV) and submersible (AUV) vehicles allow human beings to
explore the ocean in innovative ways, with less cost, greater efficiency, and reducing risks
inherent to marine operations, quickly following its natural course towards its ultimate goal: full
automation for working in the ocean. In this direction, an emerging generation of devices and
their systems is being designed and developed to operate independently, making decisions
during operation, without direct control of a human operator.
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Nevertheless, there are several cases where energy
autonomy is still a big issue, contrasting with its reliability
in the face of day-to-day missions (Alaieri and Vellino, 2016).
Energy autonomy refers to the robotic agent’s ability to
maintain itself in a viable state for long periods, or as
necessary. Its behavior must be always stable in such a way
that it does not lack any vital resources. For example, in some
situations, it must not exceed some limit of energy
consumption. Until recently, autonomy has been always
approached from a computing perspective. For example,
consider the case of a battery-operated robot that is
released to perform its task without outside intervention.
When the task is completed or when the battery charge
decreases, the robot returns to a base for recharging and/or
further instructions. Thus, in this case, only certain aspects of
robot behavior can be considered autonomous, for example,
computational and control decisions. On the other hand,

without a human in the loop, this kind of robot would not
be able to replenish its energy to perform the task. In the case
of this work, the robot should be long-running, for weeks or
even months without intervention, as it will be explained
further. So, the human in the loop is not possible and all
energy management should be done by the robot system itself.

Hence, in this paper, we aim to introduce a novel energy
estimation and management process, based on the Restricted
BoltzmannMachine (RBM). An RBM is a stochastic network that
can be used for representing undirected generative models that
use a layer of hidden variables to model a distribution that has as
input a set of visible variables Larochelle and Bengio (2008). RBM
are widely used to compose deep belief networks (DBN)
extracting characteristics from a dataset through unsupervised
training (Hinton and Salakhutdinov, 2006). As it will be
explained further in Subsection 2.3, the network used in this
work has an initial layer with 6 neurons that, after normalization,
gets to 55 neurons in the visible units and at least 55 neurons in
the hidden unit. The main strategy here is to use this approach
aiming at finding a solution to the distribution of energy
consumption problem with solar panels in our autonomous
sailboat, the F-Boat. Our current proposal is inspired by our
previous project (Júnior et al., 2013; Negreiros, 2019), whose
main objective is the development of an autonomous vessel for
collecting and monitoring environmental data. This is an open
project, with complete documentation that can be found on our
web repositories (LAICA, 2015; Negreiros, 2019). The focus of the
project is to develop a long-endurance autonomous system,
satisfying quality criteria for being qualified as sustainable and
with environmentally friendly energy generation.

The current project version named F-Boat is an evolution of
previous USV projects that our research group has developed, such
as the N-Boat 1 (Júnior et al., 2013) and N-Boat 2 (Negreiros,
2019). F-Boat is a twin, new version of N-Boat 2 with updated
architectural design and equipment. It is also an autonomous
unmanned vessel (a sailboat USV) as seen in Figure 1 With
respect to the planning of missions, they can be established
using our multi purpose platform regarding some restrictions.
The main one is mission duration, which should be determined
based on how many hours or days without solar charging the
vehicle will face and if the electrical engine propulsion will be
required. Considering the worst situation, with no sunlight, the
theoretical endurance is 62 h without using the electrical motor
(navigation only with sail and rudder). The endurance is 11 h if
using the electric motor on a continuous basis, in the case of no
wind situation, for example. Knowing that, it is possible to stay for a
long time on the water without charging, and with the batteries
recharging when necessary, which is provided by the solar panels.
The two boats are self-sufficient considering their current set of
electric and electronics, being satisfactory to date. However, our
main issue in this paper is related to future power consumption, as
the emergency electrical motor and other eventual payload devices
would be embarked, which may eventually increase said
consumption. In this case, planning on future available energy
and defining what equipment or device will function, must be done
based on an estimation of said production. In this newer version, in
addition to the sensors necessary for autonomous navigation, other

FIGURE 1 | F-Boat hull with its solar panels.
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more dedicated sensors are used, such as the stereo camera Zed that
has a 16 m range (Ortiz-Fernandez et al., 2018) for very short
forward-visual sensing and a 360°camera for larger-range visual
sensing. Both sensors allow the robot to perceive its immediate
environment and find short-range obstacles. We notice that the
depth information provided by the ZED is useful only in the short
range (16 m and less). In general applications, the idea is to
complement the depth information with a LIDAR, however, we
have not bought it at the time that this article has been written.
Nonetheless, we are working on accurate detection algorithms for
the short range based on the Zed information, in order to guarantee
that the boat stops when some obstacle is detected just on its front.
At the moment we are also working with computer vision and AI
approaches using the 360 camera, which can be applied for larger
depth distances. All of these sensors generate a massive amount of
data that are locally processed by an embedded processor based on
an nVidia Xavier board. Part of the data is locally saved for future
analysis and comparison with a simulator that has been
implemented (Paravisi et al., 2019). This data can also be sent
to a ground control station (GCS), which is an option for mission
updates or telemetry (we use the Mission Planner for that). We
initially intended to use this high-performance processing board as
a kind of a single board computer (SBC), for communication with
the GCS and managing all boat resources and systems, besides
visual data processing. However, due to real-time restriction, we are
studying the possibility of using another board as the SBC, since
visual processing may complicate the real-time implementation
aspects of the system. Hence, the general contribution of the project
is a step forward for solving the several challenges faced when
developing a sailboat robot, beginning with the boat’s architectural
design and construction itself, including solutions for autonomous
sailing navigation, image processing, obstacle detection, and
control issues.

With this general objective of the project in mind, the energy
management is treated as the specific focus of the contribution of this
paper, which resides on describing reliably and ecologically correct
solutions to both sailboats’ energy problems. We propose a
particular solution that involves the use of offgrid energy
production based on solar panels to maintain the more complete
as possible set of components operating, such as the emergency
electric motor and other actuators, processors, and cameras. Hence,
it is necessary to make an intelligent use of the scarce energy
resource, aiming at an autonomous, sustainable, and ecologically
correct system. Having this focus in energy management, the
practical contribution that we propose here is a set of rules that
are implemented for setting up what are the devices that can operate
given certain weather conditions to the sailboat, including
emergency cases. This management is implemented by way of
using a Boltzmann machine (Bu et al., 2015; Passos et al., 2020).
Therefore, our main contribution is this methodology to predict
energy production from solar panels in the near future, to increase
the sustainability of the sailboat through better energy management
and thus reducing the navigation problem induced by negative
power input (consumingmore than it produces). Our current results
demonstrate the use of Boltzmann machine to forecast the expected
future energy production as a solution to improve energy autonomy
of mobile platforms.

Some theory on sailboat projects are introduced in the
following Section, in which we will also describe the basics an
BoltzmannMachine, that will be the intelligence approach behind
the vehicle’s energy resource. Then, we provide the energy
generation system followed by the use of Boltzmann Machine
approach, with a experiment on energy management and our
final discussions.

2 BACKGROUND ISSUES RELATED TO
AUTONOMOUS SAILBOAT

A sailboat that intends to operate at the sea gives up important
challenges that are brought by physical environmental
phenomena such as waves, wind, water salinity, and
temperature, among others. Most of these phenomena can be
represented by dynamic variables, which is one natural alternative
for building, analyzing, and comparing techniques for
autonomous sailing. In order to better understand, also for
design and implement a fully autonomous sailboat, it is
necessary to gather some multidisciplinary contents. In this
section, we get into some of these, with important issues
related to the energy management, architectural design of our
sailboat, and details of Boltzmann machine energy management
solution.

2.1 Renewable Energy Sources in Sailboats
The usage of renewable sources, such as the sun, wind, tides,
among others are important ways for enhancing energy
autonomy in future vehicles (Dupriez-Robin et al., 2009). In
this direction, the use of wind propulsion is an important solution
for surface water autonomous vehicles (USV or ASV). However,
to ensure that a sailboat is an electrically self-sufficient platform,
since all onboard electronics require one or more energy sources,
considerations must be taken regarding the total energy required
and how much operating time will be spent on the missions.
Rechargeable batteries are typically used as primary sources for
energy storage. It is essential to consider on-site energy
production using some self-sustaining model. On vessels, there
are several ways to obtain energy. One of the most used is solar
panels, which is an excellent alternative energy source for
embedded systems in general (Raghunathan et al., 2005).

Solar panels are devices that convert energy from solar
radiation into electrical energy. However, depending on factors
involving the panels’ nature, such as direct radiation, hours of
sunlight, and temperature, substantial variations in the amount of
energy produced by these mechanisms can occur. It is necessary
to use a charge controller, which stabilizes varying energy ranges.
As occurs in any transformation process in nature, a part of the
energy is lost. Thus, the price of this transformation is a decrease
in the energy efficiency rate of the system as a whole.

It is important to mention that choosing a sail-powered vessel
is a strategic and main point of long-range monitoring projects.
Since we choose well-designed energy sources and also use well-
defined consumption strategies (Kanellos, 2014; Khan et al., 2017;
Vu et al., 2017; Letafat et al., 2020), sailboats are able to achieve
full autonomy, acting independently of human beings, as long as
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they are programmed for the task. A fully autonomous robotic
sailboat does not need to stop for recharging or refueling (Hole
et al., 2016). In cases of semi-autonomy, recharging strategies
during the mission must be considered and planned (Waseem
et al., 2019). The architectural design adopted in our sailboat is
described next.

2.2 N-Boat and F-Boat Behavioral
Architecture
As aforementioned in the Introduction, F-Boat is an upgrade
from the previous autonomous sailing boat called N-Boat. Both of
them are implemented inspired on the behavioral architecture
namely subsumption (Brooks, 1986), which constantly processes
and executes routines of the different layers. With this approach,
the basic actuation and sensing commands never cease to be
executed. The basic idea of the architecture is that more basic and
instinctive behaviors controls (robot survival) prevail over more
sophisticated and unnecessary behaviors. In order for this to be
orchestrated by a resource management algorithm, each behavior
has a weight, allowing them to be ranked. It is noteworthy that
behaviors below a given behavior are not suppressed, however,
the behaviors above can be suppressed. Figure 2 illustrates the
implementation of this approach. For example: Navigation
control has a more critical processing weight than Obstacle
avoidance. Thus, in extreme cases, the Obstacle avoidance
behavior routine is suppressed by the processing of Navigation
control routine. But it is important to understand that even in this
case the PID + control behavior is still processed because it has
even more priority.

The architecture represented in Figure 2 shows weights for
each behavior, on the left. These weights should be constantly
adjusted to adapt in real-time to the environment changes. The
machine learning model, which is inserted in the left of Figure 3,
is responsible for this update. Nonetheless, as the marine
environment (wind, tides, weather, swells, among others) is
highly dynamic, there is a great need for the weights of these
behaviors to quickly adapt. Furthermore, each behavior can use
machine learning, in its own context, to improve its performance.
As illustrated in the blue boxes next to each behavior. For

example, in the rudder control, the P, I, and D gains can be
adjusted by using the ML. In cases where regular algorithms are
not able to perform this task in the required time, the option of
using TEDA-Cloud Bezerra et al. (2016) is listed as an alternative.
For instance, if data processing can be made available online, it is
possible to establish a window in which the signals can be
processed with a greater degree of dynamicity (Bezerra et al.,
2016).

We notice that, with current embedded computing resources,
there is the possibility that behaviors can be computed at the same
time. Since many control cards already have more than one
physical core in the processor and chips or GPU cards. Therefore,
it is quite plausible that this architecture can delegate more than
one processing at the same time, which means that is possible for
the boat to compute the processing of an obstacle avoidance while
analyzing the processing of a payload, or the running energy
management system, based on the Boltzmann machine.

The integration of the energy management system based on
the Boltzmannmachine as a behavior in our basic sailboat control
architecture allows us to implement the energy-saving strategy.
Since the behaviors also have energy consumption grades,
routines that consume energy may be suppressed. It is
important to mention that our machine learning
implementations allows to predicting these cases, minimizing
the situations where these events may happen. The behaviors that
can be turned off should be above the energy management system
and behaviors that can not be turned off should be below it.

2.3 Restricted Boltzmann Machine
The data classification problem is intrinsically related to the
recognition of patterns and regularities in a given database. In
the context of learning systems, classifying data is considered a
supervised problem. However, unsupervised approaches, such as
the restricted Boltzmann machine (Smolensky, 1986; Hinton,
2002) and autoencoders (Bourlard and Kamp, 1988), have been
applied as feature extraction tools to feed supervised algorithms
such as artificial neural networks (Haykin, 1999). Thus, semi-
supervised techniques emerge, which have gained prominence in
recent years.

The restricted Boltzmann machine (RBM) is a stochastic
network widely used to compose deep belief networks (DBN)
(Hinton and Salakhutdinov, 2006). RBM can extract
characteristics from a dataset through unsupervised training.
Due to this, approaches that use RBMs to compose a DBN

FIGURE 2 | Basic architecture of N-Boat and F-Boat inspired in the
subsumption architecture.

FIGURE 3 | Basic architecture combined with machine learning.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7882124

Negreiros et al. Energy Sustainable Solutions for Autonomous Sailboats

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


were developed as the first stage of a classifier based on artificial
neural networks (Salama et al., 2010; Tamilselvan and Wang,
2013).

The restricted Boltzmann machine (Smolensky, 1986;
Hinton, 2002) is essentially a stochastic network consisting
of two layers: visible and hidden. The visible units layer
represents the observed data and is connected to the
hidden layer, which in turn, must learn to extract
characteristics from this data (Memisevic and Hinton,
2010). Originally, RBM was developed for binary data, both
in the visible layer and the hidden layer. This approach is
known as Bernoulli-Bernoulli RBM (BBRBM). Since there are
problems where it is necessary to process other types of data,
Hilton and Salakhutdinov (Hinton and Salakhutdinov, 2006)
proposed the Gaussian-Bernoulli RBM (GBRBM), which uses
a normal distribution to model the visible layer neurons. In
this section, the basic concepts related to the GBRBM
approach will be described.

In RBM, the connections between neurons are bidirectional
and symmetrical. This means that there is information traffic in
both directions of the network. Furthermore, to simplify the
inference process, neurons from the same layer are not connected
to each other. Therefore, there is only a connection between
neurons from different layers, so that the machine is restricted.
Figure 4 shows an RBM with M neurons in the visible layer (v1,
. . ., vm), n neurons in the hidden layer (h1, . . ., hn), where (a1, . . .,
am) and (b1, . . ., bn) are the bias vectors andW corresponds to the
connection weight matrix. From here to the end of Section 2, the
set (W, a, b) will be called θ.

p v, h; θ( ) � e−E v,h;θ( )

∑v,he
−E v,h;θ( ) (1)

The RBM is an energy-based model, with the joint probability
distribution of the configuration (v,h) being described by:

E v, h; θ( ) � ∑
m

i�1

vi − ai( )2
2σ2

i

−∑
n

j�1
bjhj ∑

m,n

i, j�1

vi( )
σ2

hjwi, j (2)

As the RBM is restricted, it does not have neuron connections
between the same layer, the probability distributions of h given v
and v given h are described by Equations 3, 4, respectively.

p h|v; θ( ) � ∏
j

p hj|v( ) (3)

p v|h; θ( ) � ∏
i

p vi|h( ) (4)

The Restricted Bolztmann Machine that we use here is
implemented using Python, with the Numpy, Keras, and
Sklearn library help. After training, this network is able to
predict the future vessel’s dynamic consumption 24 h ahead.
Here, we use data collected from previous missions by the
F-Boat’s predecessor vessel (N-Boat), as the sensors provided
data on wind position and intensity, tides, vessel instantaneous
energy consumption, sail position, and rudder position. This
information is used as input to the neural network, which
begins its learning process by processing these data with a bias
lower than 0.01%.

3 SIMILAR PROJECTS (STATE OF THE ART)

Literature related to nautical autonomous vehicles is scarce when
compared to other types of autonomous vehicles. At this point,
we present the most relevant works related to the research topics
of this one, mainly for comparison. As organizational criteria, all
comparisons are described in Table 1 and their comments can be
found in the following text. Notice that other types of vehicles
appear in the table besides unmanned surface vehicles (USV),
including autonomous underwater vehicles (AUV), and
autonomous vehicles (AV).

Although the Sailbuoy team (Sailbuoy, 2018) is known to be
the first sailboat that completed the Microtransat challenge
(Microtransat, 2021) (June 2018), the achievement was not
fully autonomous, being remotely controlled at some parts of
the cross. Even still, it has proven to be a robust platform, staying
for months at sea transmitting and receiving data. The authors
point that their solution can be used in applications for measuring
ocean parameters (Hole et al., 2016), tracking oil spills, or as a
communication relaying station.

Competitions are an important source of references in sailing
robotics, as occurs in other robotic fields such as the world robot
soccer competition (Robocup). Examples of international
competitions related to robotic sailboats are the World Robotic
Sailing Championship (WRSC), derived from the Microtransat
Challenge, which is a competition between autonomous sailboats
aiming to cross the Atlantic Ocean. Other sailboats from Table 1
(Stelzer and Jafarmadar, 2007) and also from the literature (Alves
and Cruz, 2008; Stelzer, 2013; Dahl et al., 2015) were developed to
compete in this challenge.

Further, we select from Table 1 three examples of works dealing
with energymanagement in autonomous sailboats. The first one (Sun
et al., 2021) deals with energy control methods for saving energy by
improving the navigation system. The second (Liang et al., 2021) tries
to increase energy autonomy by changing the hull structure to carry
more battery packs. The third and last topic (Ou et al., 2021) is about
optimizing energy by improving the use of the motor in hybrid
sailboats (sail and engine).

FIGURE 4 | A simple Restricted Boltzmann Machine architecture.
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Finally, besides having the two twin sailboats constructed, we also
consider using another simulation environment that we have built
based on the N-Boat specifications (last item of Table 1) (Dos Santos
and Goncalves, 2019; Paravisi et al., 2019). By using simulators it is
possible to customize the same variables for different vehicles, as often
as necessary. Simulated environments are a viable startup testbed that
provides an initial performance for sailboat systems, tested inmultiple
environments, due to the aforementioned particularities and because
of the number of scenarios that can be considered. For example, the
Boltzmann machine can be implemented and tested in this
environment, before practical implementation.

4 POWER GENERATION SYSTEM

Despite converting wind into kinetic movement, electrical energy
is still required for the instrumentation that allows autonomous

sailing, which is the emergency and maneuvering electric
propulsion engine, the rudder and sail actuators, the onboard
computer, sensors, and the payload. Currently, the N-Boat and
F-Boat power generation systems are purely fed by solar panels
and a bank of nautical batteries. Details of this generation, storage
and other alternatives will be treated in the next sections. This
current generation is what is needed for long-termmissions (Boas
et al., 2016), which do not use the electric propulsion engine
constantly. The main hypothesis of this work is to allow the use of
the propulsion engine, without compromising the boat’s energy
supply in these missions. Therefore, it is necessary to use a
strategy that allows, at certain times, under certain
circumstances, its use during short a period of time.

4.1 Energy Generation Approaches
Self-sufficient autonomous vehicles can generate energy in several
ways. In this work, we are classifying the sources into renewable

TABLE 1 | Strictly related works.

Title Vehicles Focus Citation

Design of a Battery Carrying Barge USV Sailboat Energy endurance Liang et al. (2021)
for Enhancing Autonomous Sailboat’s
Endurance Capacity
Design and Energy Consumption USV Sailboat Energy optimization Ou et al. (2021)
Optimization of an Automatic
Hybrid Sailboat
Unmanned Surface Vehicle Simulator USV Sailboat Sailboat simulation Paravisi et al. (2019a)
with Realistic Environmental Disturbances
Offshore Sensing SailBuoy USV Sailboat Long endurance Sailbuoy. (2018)
Unmanned Surface Vessel surface vehicle
Autonomous Sailboat Navigation USV Sailboat Many Stelzer and Jafarmadar. (2007)
Routing and course control of an autonomous sailboat USV Sailboat Trace efficient routes Saoud et al. (2015)

using PRM-Dijkstra
High-Level Path Planning for an USV Sailboat Sailboat navigation Silva Junior et al. (2020)
Autonomous Sailboat Robot
Using Q-Learning
A Behavior-Based Architecture General boats Describe methodology Olenderski et al. (2006)
for Realistic Autonomous
Ship Control USV
An experimental comparison AUV Submarine Compare architectures Byrnes et al. (1992)
of hierarchical and
subsumption software architec-
tures for control of an auto =
nomous underwater vehicle
Reinforcement Learning in a AUV submarine Controle de submarinos Frost et al. (2015)
Behaviour-Based Control
Architecture for Marine
Archaeology
Control architectures for AUV Submarine Survey and control of AUVs Valavanis et al. (1997)
autonomous underwater
vehicles
A Hybrid Control Architecture AUV Robot Fish Collaborative control Liu et al. (2006)
for Autonomous Robotic Fish between fish robots
Functional system architectures AV Cars Survey and car control Taş et al. (2016)
towards fully automated driving
Development of Autonomous AV Cars Car control Jo et al. (2015)
Car—Part II: A case Study on the
Implementation of an Autonomous
Driving System Based on
Distributed Architecture
V-stability Based Control USV Sailboat Energy saving Sun et al. (2021)
for Energy-saving Towards
Long Range Sailing
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(ecological) and non-renewable. The renewable correspond to
Hydraulic, wind, solar, geothermal, marine, biomass and biogas.
The non-renewable are oil, natural gas, coal and nuclear.
Although there are many possible sources to be shipped, few
are feasible, those illustrated below in Figure 5.

Renewable sources, in addition to being ecologically correct,
allow for long-term missions. Several studies (Wang et al., 2008;
Waseem et al., 2019) demonstrate that this alternative ends up
being one of the best choices, but requires strategies that
guarantee a positive energy balance at the end. Since
propulsion is the main energy consumption item of
autonomous vehicles, there is a notable increase in energy
autonomy between sailboats and other types of autonomous
vehicles that are propelled by engines.

For a better hardware architecture understanding, we present
the solution based on the N-Boat and F-Boat models. Figure
Figure 6 illustrates all components that generate or consumes
some type of energy in these vessels. An important point is an
electric motor, which, as will be shown later on, its continuous use
can compromise the entire vehicle’s autonomy. Therefore, the
solution needs a strategy that only allows its use in special
moments, such as poor wind conditions, return to base,
emergency maneuvers, among other situations.

Our model uses a solar panel for electricity production. In the
future, there is the possibility of using wind power generation

and/or a mini-hydro generator. Solar production has some
advantages and disadvantages. The main advantage is that it
corresponds to the most efficient in terms of cost, generation,
extreme weather conditions resistance, and ease of installation.
However, there is a lack of moments where there is no source,
such as nighttime or bad weather conditions. Another drawback
is the large deck area required.

In the present project, we adopted a panel with the current-
voltage graph shown in Figure 7.

The generation of electrical energy in a photovoltaic
arrangement is intermittent and is strongly determined by
cloudiness and temperature. These factors cause the operating
point, which leads to the extraction of maximum power from the
photovoltaic array to change constantly. Thus, tracking this
Maximum Power Point (MPP) continuously is a way to
ensure greater efficiency in energy conversion, as can be seen
in the figure Figure 7.

To control the battery charge, a charger controller is necessary.
This equipment can find the perfect current and voltage ratio,
charging the battery bank with maximum efficiency.

PWM, which stands for Pulse Width Modulation, is a charger
controller that keeps a battery fully charged through high-

FIGURE 5 | Energy generation approaches.

FIGURE 6 | F-boat’s current energy generation model.

FIGURE 7 | Current × Voltage curve for a photovoltaic panel.

FIGURE 8 | MPPT regulator connected directly to power distribution.
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frequency voltage pulses. Thus, this driver allows to check the
battery charge status and adjust the sent pulses. This type is more
used in the market as it has a lower price than an MPPT driver.

MPPT stands for maximum power point tracking and is a
charger controller that looks for the best power point of the
module or solar panel. Enabling the system to make the
maximum power the panel has to offer and also can monitor
energy production and reduce system losses. This type of driver is
more expensive than the previous one, but it promotes greater
efficiency than the PWM controller.

In Figure Figure 8, it is possible to see a schematic diagram
that reflects an alternative configuration on the N-Boat and
F-Boat. For reasons of energy efficiency, the MPPT load driver
is directly connected to the power distribution. As the electronic
arrangement was designed with maximum system robustness and
reliability, power output is connected directly from the battery
bank, being much safer than installing through the charge
controller mentioned beforehand. Therefore, the boat can still
be powered by the battery bank with a remaining charge. Here we
also mention the necessity of using a general circuit breaker and a
fuse box (with one for each compartment) guaranteeing
maximum safety.

4.2 Electric and Electronic Components
In Figure 9 it is possible to visualize the F-Boat packages diagram.
It features all of the vehicle’s electrical and electronic components
in a structured way, including also related documents, classes,
diagrams, and packages. Each package is better described below.

The energy package, which is the main focus of this work,
contains the entire set of equipment responsible for the
generation, storage, and distribution of energy throughout the
vessel. The sail package contains the components responsible for
controlling the sail angular position and the rudder, as its name
suggests, involves the components responsible for controlling the
vessel’s rudder. Computers are the devices responsible for all
planning and data processing on the vessel. The communication
package contains all components related to both internal
(between all internal components of the sailboat) and external
(communication with the shore base) communication.
Motorization package relates all necessary hardware to
motorize the sailboat, used in specific situations. Sensors are
responsible for capturing the necessary data for both monitoring
and general movement of the sailboat, working together with the
cameras that are used for image acquisition, responsible for the
computer vision tasks of the vessel.

4.3 System Consumption
Using solar panels, the production is enough to keep, during a
short time, the sailboat system working without a lack of energy.
Of course, without using the electric propulsion motor. The
Boltzmann machine will be used for days when there is no full
sunlight and/or massive use of electric propulsion is required. In
these cases, the boat will need to turn off some modules and
behaviors for it to survive these moments. This same strategy
could be used to further increase their autonomy, if necessary, as
will be described later in this work.

FIGURE 9 | F-Boat’s package flow diagram.
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As each battery has 111 A/h and the boat has 4 batteries of
these embarked, the total of available amperage is 444 A/h. In
practice, this may go to lower values, as these batteries may not be
100% charged, addicted, or the battery life can vary from its use
and falling. Anyway, it is possible to assume, for a theoretical
environment, that this available power is sufficient for the tests.
Considering the consumption labeled in each equipment manual,
as shown in Table 2.

The same table (Table 2)shows the components expected
energy consumption, which is informed by the datasheet or by
laboratory tests carried out in previous experiments. Notice that,
in the table, some of the items are labeled as fixed or variable. This
is because some of them stay turned on throughout the entire
mission, so their consumption is often identical to reported in the
datasheet. However, other components have a consumption
relative to their use. Such as the sail winch, which is only used
when it is necessary to trim the sail. Taking into account the
minutes that were turned on and relating it to the total
consumption hour, so that it is possible to estimate an initial
of the vessel’s total energy consumption.

5 ENERGY MANAGEMENT EXPERIMENTS
WITH RBM

Even though sailboats use wind as their main source of energy for
their movement, electrical energy is still necessary for directing
the sail and the rudder and also for their other components. As
the production and storage of this energy resource is limited and
scarce, therefore, a system that distributes energy efficiently and
safely inside the vehicle is necessary. Besides, a strategy is essential
to make intelligent use of this resource. With that in mind, we
designed our vessel so that in the case that the solar panels stop
producing energy, it is still possible to make severe use of the
battery banks during the next 48 h, without completely
discharging. This happens at night, for example (a 12 h period,
considering Natal, Brazil). This is to say that the boat would still
have remaining energy when the solar panels start recharging
again. If the recharging does not happen accordingly, the boat will
completely stop all systems.

That alone enables an ability to perform long missions, in case of
regions with restrictions on the periods of day and night. Besides,
protocols and consumption strategies were programmed, checking
this energy consumption process. For example, on a given mission, it
is possible to stay closer to the theoretical route, at a higher energy
cost. However, it is known that performing fewer maneuvers reduces

the sailboat consumption, but the actual accuracy on the theoretical
route would also decrease. Another example would be to make little
use of image processing in certain open sea locations. Leaving this
feature to places with already pre-mapped obstacles or in places full of
ships traffic. In addition to the embedded technology, all of this raw
and processed data is sent to a command base ashore or a nearby
support vessel. These data are displayed via a user-friendly platform
that allows data tracking, route changes, strategy changes, and
manual control of the sailboat for extreme situations. Besides
these exemplified strategies can and should be taken into account,
they are not the main subject of this work, as here we discuss the
possibility energy estimation. Actually, the application of solar panels
systems for ships depends on many factors mainly: 1) Solar radiation
availability in ship’s operation areas; 2) existence of sufficient and
adequate deck area to accommodate the solar panels; and 3) techno-
economic efficiency of a solar panels system that includes energy
efficiency, fuel oil rates, and investment costs.

Hence, in order to simulate the behavior of the system for the
sailboats, we implemented and tested it through a Boltzmann
Machine using data collected from the electrical and electronic
components of the N-Boat hardware architecture, such as
described above. The implemented system aims to show a
solution to find a better way to use the distribution of energy
consumption with solar panels in our autonomous sailboat
F-Boat, which contains a saving/rescuing engine. Through sensors
and data obtained directly from the charge controller, the proposed
system monitors and manages component power control through a
relay system. The system also connects to two modules: computers,
where it can change the energy operation of some of its components
depending on the current state of charging the batteries, and to the
vessel’s communication package, which can send data to the external
monitoring application.

We use the Boltzmann machine neural network with restrictions
to predict the vessel’s energy consumption in a 24-h range. For this
forecast, we designed the network to read data provided by sensors on
the vessel itself, thus using external natural phenomena, winds, tides,
lighting density, angle of incidence of sunlight. As navigation aids, we
can predict the vessel’s energy consumption with and without the use
of solar panels.

The Restricted Boltzmann machine neural network is fully
developed using Anaconda, Spyder 5 platform which is an open-
source cross-platform integrated development environment for
scientific programming in the Python language. This
development is aided by Numpy (2021), Keras (2021),
TensorFlow (2021) and Scikit-Learn (2021) libraries, which are
open source neural network libraries written in Python. They are
capable of running on top of TensorFlow, Microsoft Cognitive
Toolkit, R, Theano, or PlaidML. These tools are designed to allow
quick experimentation with deep neural networks, focusing on
being easy to use, modular and extensible.

Hence, we implemented a neural network code using
standardized techniques to facilitate the implementation of the
learning process with the network. The Boltzmann machine has
libraries already created and tested by other researchers, so we can
focus on information and data collected in the research, by using
these standard techniques. Most of them have their repository on the
Github site and in some cases, such as Tensor-flow, it has its own

TABLE 2 | Calculated energy consumption.

N° Description Fixed/Variable Consumption

1 Hardware Fixed 2.0 A/h
2 Sensors Fixed 0.2 A/h
3 Actuators Fixed 0.9 A/h
4 Cameras Fixed 1.0 A/h
5 Outboard engine Variable 30.0 A/h
6 Sail winch Variable 3.0 A/h
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library for research with official forums of participating developers
their difficulties and successes in designing architectures using these
techniques. Our network has an initial layer with 6 neurons that
receive input tide data, wind speed and direction, vessel battery
voltage, average motor consumption, and consumption of the
actuators. After normalization, we get 55 neurons invisible units
andmore than 55 neurons in hidden units, connected similarly to the
network presented in Figure 4, which process the data in 7 h and
28min with 4,903 iterations of epochs. As result, we obtain an
estimated consumption of the vessel in the range of 24 h.

The graphs in Figure 10 show the results generated by our
experiments. The green line is the consumption data that we
calculate by taking data from the N-Boat’s real electrical and
electronic components (Table 2). Notice that it is not the online
(real-time) consumed value of a true mission, however it is very close
to it as we use the real values of the equipment and devices
consumption to calculate it. The yellow line is the data calculated
for theN-Boat if using a solar panel. The red line is RBM’s predictions
without a solar panel, which were later placed under the real
consumption data (calculated from N-Boat electric and
electronics) to understand if it was correctly estimating the real
value. The blue line is the RBM estimates with the solar panel data.

We notice that for the experiments shown in Figure 10, we
estimated the recharge of the panels in operation by way of using
mathematical calculations based on the MPPT charger controller
actual parameters. Nowadays, we are already working on the
implementation of sensors for collection of this kind of data in
the newer version of our project, the F-Boat. So, the real consumption
value will soon have the real value given by these sensors and the
estimated value of consumption with the solar panel given by using
the neural network.

5.1 Results Discussion
With the collected data, our objective is to define the success rate of a
mission related to energy failures. Using maritime currents, wind
speed, solar luminance rate, among others, andmeasuring howmuch
natural energy can be transformed into mechanical energy, we can
estimate the success of amission.We chose to use a neural network so

that it can re-establish the calculations in case a natural phenomenon
occurs suddenly, a tide change or a storm that changes the wind or
reduces the sunlight, for example. Some questions appear that are
already answered or that we will work on in the short time. The first
one is what are we looking at here? We are looking for a system that
can be used to eventually help save energy and keep the sailboat alive
(running). Second question is how far ahead can we predict energy
consumption? This is one of the parameters that serves as input to the
Boltzmann machine. We should guarantee for this time the
minimum of 48 h as set in the N-Boat and F-Boat initial design.
With this time, some rescuing action can be taken.

Yet the model needs to train for 7 h and 28min in order to
generate a useful output, however with transfer learning this time can
be diminished. In practice, we believe that the mechanism can be
implemented in the SBC embarked, which are nVidia boards Xavier,
for online learning and changing the output parameters in certain
situations. We believe that this will produce a usable system which
can give predictions in real time. At this time the mechanism is only
suitable for offline use. Thus, what we are generating is not a forecast
or prediction of energy consumption, but amodel of actual data given
by N-Boat (our first sailboat) data. This simulation uses data from a
real mission that it performed in Natal, Brazil, in normal weather
conditions. In such an experiment, the boat basically used sail and
rudder to perform somemaneuverings. A last question is how would
we use this? This is not fully operating in our real sailboats yet.
However, from these initial experiments and tests we could devise a
way for the sailboat to manage without human intervention and
decide if certain equipment can be turned on or not during a long
running mission. Next step, in a very short time, is to put all of these
running inside the F-Boat, which is operational at Guanabara bay,
Niteroi, Brazil (https://youtu.be/mvJdl09Jazo).

6 CONCLUSION AND FUTURE WORK

We verified the use of the BoltzmannMachine as a prediction tool for
helping the management of the energy in our autonomous sailing
boats projects, and achieved some expected responses. The association

FIGURE 10 | Results for estimated consumption of the sailboat on a 24 h duration simulation, with data extracted from the N-Boat sailing experiment.
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between renewable and continuous energy generation with an energy
management strategy using the Boltzmann machine indicates
positively in this direction. Our results show that using artificial
intelligence is a possible direction of research towards defining a
strategy for energy monitoring, in order to further suggest decisions
such as sailmovement, the best path to the target and the correct start/
stop times for the electric propulsion engine.

Besides the results obtained in the simulation using the
Boltzmann machine showed some evidence of a solution to the
intelligent energy use problem in the sailboat, a series of future work
are still necessary in order to further provide better results on this
subject. Actually, more work is already planned to be done on this
project in order to improve the current one, such as the introduction
of other forms of sustainable energy generation (wind and hydro
generation), system monitoring through specific sensors for the
entire solar panels, providing more precise information related to
charging rate, battery bank charge, battery temperature, charge
controller errors, among others. Still, a more effective survey of
component energy consumption through bench and field testing in
various work modes is required.
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