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This paper reports on a new approach to Signal Temporal Logic (STL) control synthesis,
that 1) utilizes a navigation function as the basis to construct a Control Barrier Function
(CBF), and 2) composes navigation function-based barrier functions using nonsmooth
mappings to encode Boolean operations between the predicates that those barrier
functions encode. Because of these two key features, the reported approach 1)
covers a larger fragment of STL compared to existing approaches, 2) alleviates the
computational cost associated with evaluation of the control law for the system in
existing STL control barrier function methodologies, and 3) simultaneously relaxes
some of the conservativeness of smooth combinations of barrier functions as a means
of implementing Boolean operators. The paper demonstrates the efficacy of this new
approach with three simulation case studies, one aiming at illustrating how complex STL
motion planning specification can be realized, the second highlights the less-
conservativeness of the approach in comparison to the existing methods, and another
that shows how this technology can be brought to bear to push the envelope in the context
of human-robot social interaction.
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1 INTRODUCTION

As soon as an infant starts moving she begins to perceive the world in fundamentally different ways
(Higgins et al., 1996). This is because children’s spatial knowledge (how to move in space, avoid
obstacles, estimate distances, find hidden objects, and decide which surfaces can bear weight)
depends on their ability to locomote (Campos et al., 2000; Clearfield, 2004). Infants make mental
models by computing spatial relations between their own body and other moving objects (Goksun
et al., 2010). Children with motor disabilities are therefore at a developmental disadvantage. Access
to power mobility is typically available after the age of 4 or 5 and without early intervention, most of
these children will have permanently lost the constant and daily richness of the early years. Infant
motor delays can thus have lifelong social and economical consequences, not only for the families,
but also for the society as a whole.

In robotic-assisted enriched pediatric rehabilitation environments for infants with motor
disabilities, our group has been utilizing robots as a means of encouraging infants to stay engaged
in active game-play, in which they explore their environment as well as the capabilities of their
own bodies (Kokkoni et al., 2020). In the context of this type of human-robot interaction,
preliminary work (Zehfroosh et al., 2017; Zehfroosh and Tanner, 2019) has offered some
evidence that in this context, appropriate and effective robot reactions to children behavior are

Edited by:
Lars Lindemann,

University of Pennsylvania,
United States

Reviewed by:
Elias B. Kosmatopoulos,

Democritus University of Thrace,
Greece

Ryan K. Williams,
Virginia Tech, United States

*Correspondence:
Ashkan Zehfroosh
ashkanz@udel.edu

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 24 September 2021
Accepted: 28 February 2022

Published: 13 April 2022

Citation:
Zehfroosh A and Tanner HG (2022)

Non-Smooth Control Barrier
Navigation Functions for STL

Motion Planning.
Front. Robot. AI 9:782783.

doi: 10.3389/frobt.2022.782783

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7827831

ORIGINAL RESEARCH
published: 13 April 2022

doi: 10.3389/frobt.2022.782783

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.782783&domain=pdf&date_stamp=2022-04-13
https://www.frontiersin.org/articles/10.3389/frobt.2022.782783/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.782783/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.782783/full
http://creativecommons.org/licenses/by/4.0/
mailto:ashkanz@udel.edu
https://doi.org/10.3389/frobt.2022.782783
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.782783


modeled more effectively by temporal (as opposed to static,
propositional) logic. In contrast to other branches of temporal
logic that like Linear Temporal Logic (LTL), STL is interpreted
over continuous-time signals (Maler and Nickovic, 2004) while
still capturing timing constraints associated with complex
tasks. This feature makes STL an even more appropriate
choice for defining robot tasks within time-limited pediatric
motor rehabilitation sessions.

Motion planning with STL specifications is known to be
hard and usually leads to computationally demanding
solutions (Lindemann and Dimarogonas, 2018). The
starting thread of work on STL motion planning relies on
a computationally demanding mixed-integer
linear programming process (Raman et al., 2014;
Sadraddini and Belta, 2015; Liu et al., 2017). The
computational complexity of these methods makes real-
time implementation particularly challenging, especially in
the presence of dynamic obstacles (Gundana and Kress-Gazit,
2021). Not surprisingly, Jones et al. (2019) pre-compute the
control before execution to overcome real-time
implementation issues, at the cost of sensitivity to run-
time disturbances.

Lindemann and Dimarogonas (2018) reduced the
computational burden of STL motion-planning through a CBF
based methodology (Ames et al., 2019). Their method can
account for a fragment of STL that includes conjunctions in
the predicates or the temporal operators. The control design
involves the solution of a Quadratic Programming (QP) problem
at each motion planning step. Subsequent extensions of this CBF-
based STL motion planning method were made along the
directions of multi-agent systems with conflicting local
specifications (Lindemann and Dimarogonas, 2019a), and
dynamically coupled multi-agent systems (Lindemann and
Dimarogonas, 2020).

In this existing STL control design framework, combining
predicates and encoding them by (smooth) CBFs introduces a
degree of conservatism. This is because of the way the CBF
that incorporates the different predicates is constructed, as an
exponential summation of component CBFs. Interestingly,
one can compose CBF using nonsmooth operators (Glotfelter
et al., 2017). Naturally, this comes at the cost of introducing a
level of analytical complexity that makes analysis and control
design more challenging. Nonsmooth CBFs formulations now
exist for time-varying problem instantiations, where different
predicates are combined in the form of pointwise minima and
maxima of sets of component CBFs (Glotfelter et al., 2019).

Nonsmooth CBFs can relax the conservativeness of predicate
composition, but currently share the same method for
computing control laws as do smooth CBFs for STL motion
planning synthesis (Glotfelter et al., 2017), i.e., solving a QP
problem at each iteration of the control loop. Currently, the only
STL motion planning method that circumvents the
computational burden of solving a optimization problem at
every iteration is the funnel-based procedure that provides
continuous-time control laws (Lindemann et al., 2017;
Lindemann and Dimarogonas, 2019b, 2021). The downside

of the aforementioned approach is that it covers a much
smaller fragment of STL

This paper is the first to utilize nonsmooth CBFs in STL
motion planning and control, circumventing, at least in part,
computational control design problems by utilizing
navigation functions (Rimon and Koditschek, 1992).
Within this new framework, the reported methodology
provides directly closed-form control laws that result in a
feasible and safe robot paths. This new method 1)
considerably alleviates the computation burden related to
the solution of a QP optimization problem for
attaining control input at every time step, 2) covers a larger
class of STL (those that include disjunctions) compared to the
existing barrier-function based methods and 3) relaxes some of
the conservatism associated with existing CBF composition
operations by under-approximating of the minimum
operator for the sake of smoothness. What is more, the
proposed method allows the incorporation of both attractive
and repulsive for the system regions within the same analytical
expression, thus reducing the size of the STL specification for a
desired task. For clarity of exposition, the present
paper describes the methodology as it applies to sphere
world environments, with pathways to extensions to star
world (Li and Tanner, 2018), as well as time-varying robot
workspaces (Sun and Tanner, 2015; Chen et al., 2020) readily
available.

The rest of this paper is organized as follows: It starts by some
technical preliminaries on both STL semantics and non-smooth
CBF. Section 3 introduces the problem of interest in the paper by
specifying the fragment of STL specifications that motion
planning need to be done for. Control barrier navigation
functions are presented in Section 4 as a solution to the
problem, where both their construction steps as well as the
control input computation procedure are elaborated. Finally,
Section 5 offers simulation results that illustrate the
performance of the technical approach.

2 TECHNICAL PRELIMINARIES

This section introduces necessary mathematical background
needed for the subsequent technical discussion. The section
briefly reviews STL non-smooth CBFs, and some known results
that will be utilized in following sections. Before these concepts
are introduced, let us present the technical terminology for the
systems at hand. To that end, let x ∈ Rn denote the state of a
dynamical system with input u ∈ U ⊂ Rm, and let its dynamics
be in the form

_x � f x( ) + g x( )u , (1)
and assume that functions f: Rn → Rn and g: Rn → Rn×m are
locally Lipschitz continuous.

When every solution to (1) which starts in a set stays there,
then this set is said to be forward invariant relative to (1).
Specifically, we say that a set C(t) is forward invariant with
respect to (1) if x(t0) ∈ C(t) 0 x(t) ∈ C(t), ∀ t ∈ [t0, t1] ⊂ R+.
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There can be cases where the (closed loop) right hand side of
(1) needs to be discontinuous in x—and therefore cannot be
locally Lipschitz. In these cases, both the expression of dynamics,
as well as the trajectories of the system, need to be understood in a
more general sense. One option for expressing dynamics with
input discontinuities is by utilizing differential inclusions
expressed in the form of the Filippov set-valued map, where
one would write F [·]

_x ∈ F f + g u[ ] x, t( )
� co lim

i→∞
f xi( ) + g xi( )u xi, ti( ), SO xi, ti( ) → x, t( ){ } ,

(2)

using co to express the convex closure of a set, and S to
denote a Lebesgue zero-measure set where f + g u is
discontinuous.

The solutions of (2) can be understood in a number of ways, and
are generally not unique. One notion of solution is in the sense of
Carathéodory; if the Filippov set is nonempty, compact, and convex,
and the set-valued map x↦F (t, x) is upper-semicontinuous while
the set-valued map t↦F (t, x) is measurable, then it is known that
such Carathéodory solutions for (2)exist (Bacciotti and Rosier,
2005). A Carathéodory solution to (2) on an interval
[t0, t1] ⊂ R+ is an absolutely continuous map x(t) such that _x(t)
satisfies (2) for almost all t ∈ [t0, t1]. In what follows, solutions to (2)
are understood in this way. Similarly, we say that a set C(t) is
forward invariant with respect to (2) if every Carathéodory solution
of (2) starting from x(t0) ∈ C(t0) satisfies x(t) ∈ C(t) for almost all
t ∈ [t0, t1].

2.1 Signal Temporal Logic
Signal temporal logic (STL) is a temporal logic formalism that involves
logical predicates, denoted μ, whose truth values are evaluated over
continuous signals. In this particular case, the continuous signals are
the system’s state trajectories at time t, namely x(t). The predicates
assume their logical valuates based on a (continuous) predicate
function h: Rn × R+ → R as in

μ: � True if h x, t( )≤ 0
False if h x, t( )> 0 .

{ (3)

Based on such predicates, an STL formula φ can be recursively
defined as

φ:: � True | μ | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | > a,b[ ] φ

| □ a,b[ ] φ | φ1 U a,b[ ] φ2 ,

where a, b ∈ R+ with a ≤ b are timing bounds, ¬ represents
negation, ∧ expresses conjunction, ∨ denotes disjunction, >

stands for eventually, □ stands for always and U denotes the until
temporal operator (Maler and Nickovic, 2004).

If a solution x: R+ → Rn of (1) satisfies an STL specification φ
at time t, then we write (x, t)⊧φ. The STL semantics are recursively
given by the above (top of this page) rules.

2.2 Nonsmooth Control Barrier Functions
A CBF enables controller synthesis for dynamic systems in a
way that ensures that if the system starts inside a set, it will
never leave that set, rendering the set forward invariant with
respect to the dynamics of system. A CBF can characterize the
set of allowable control inputs that guarantee forward
invariance of certain regions for a dynamical system at
hand. The required control input is picked from a set
defined in terms of the CBF for example by solving an
optimization problem in a sampled-data fashion (Ames
et al., 2016).

Nonsmooth CBFs allow more flexibility in the encoding of
state constraints and specifications compared to their
smooth counterparts. The utilization of such functions
typically leads to consideration of the dynamics of the
system in the form (2), primarily due to the
discontinuities introduced by the control law u when it
depends on the gradient of a nonsmooth CBF In fact,
since the latter are nonsmooth, their gradient cannot be
defined everywhere in the usual way. At points of
nondifferentiability, one can understand their gradient as
a set, rather than a singleton vector, and express it using the
concept of the generalized gradient, which in finite
dimensional spaces enjoys the following concrete
characterization as Theorem 1

THEOREM 1. [(Clarke, 1990, Theorem 2.5.1)]. Consider a locally
Lipschitz function b: Rn × [t0, t1] → R. Let S be any set of
Lebesgue measure zero in Rn+1 and Ωb denote the zero-
measure set where b is non-differentiable. Then, with co{A}
denoting the closure of the convex hull of set A, the generalized
gradient zb(x, t) of b at point (x, t) can be written in terms of the
limits of sequences (xi, ti) → (x, t) as follows

zb x, t( ) � co lim
i→∞

zb
zx1

. . . zb
zxn

zb
zt( )u: S ∪ΩbO xi, ti( )→ x, t( ){ }.

(4)
Examples of nonsmooth functions include the point-wise
minimum or maximum of a finite collection of locally
Lipschitz functions. Indeed, these specific nonsmooth
functions are of particular interest in the context of STL
synthesis because they can capture the conjunction and

(x, t)⊧μ iff h (x, t) ≤ 0
(x, t)⊧¬ φ iff ¬ ((x, t) ⊧ φ)
(x, t)⊧φ1 ∧ φ2 iff (x, t)⊧φ1 and (x, t)⊧φ2
(x, t)⊧φ1 ∨ φ2 iff (x, t)⊧φ1 or (x, t)⊧φ2
(x, t)⊧>[a,b] φ iff ∃ t1 ∈ [t + a, t + b] s.t. (x, t1)⊧φ
(x, t)⊧□[a,b] φ iff ∀ t1 ∈ [t + a, t + b], (x, t1)⊧φ
(x, t)⊧φ1 U[a,b] φ2 iff ∃ t2 ∈ [t + a, t + b] s.t. (x, t2)⊧φ2 and ∀ t1 ∈ [t + a, t2], (x, t1)⊧φ1
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disjunction of a number of predicates, when each of the latter is
expressed by its own component CBF

In particular, suppose b(x, t) � maxi∈{1,...,k}{bi(x, t)}, where
each bi is Lipschitz near (x, t) (i.e., locally Lipschitz around (x,
t)). Then b is Lipschitz near (x, t), and if one denotes I (x, t) the set
of indices i for which b(x, t) � bi(x, t) then (Clarke, 1990,
Proposition 2.3.12):

z max
i∈ 1,...,k{ }

bi x, t( ){ } ⊆ co zbi x, t( ) | i ∈ I x, t( ){ } , (5)

with equality holding if bi is regular at x for all i ∈ I (x, t), in which
case b is also regular. Similarly, if b(x, t) � mini∈{1,...,k}{bi(x, t)}
and each bi is Lipschitz near (x, t), then again, b is Lipschitz near
(x, t), and

z min
i∈ 1,...,k{ }

bi x, t( ){ } ⊆ co zbi x, t( ) | i ∈ I x, t( ){ } , (6)

with equality holding now if −bi is regular at x for all i ∈ I (x, t), in
which case −b is regular too.

Note that although the pairwise maximum of a finite set of
continuously differentiable functions is regular, the pairwise
minimum function may not be. Nonetheless, if all bi are
differentiable at x, at least the generalized gradient can be
computed in both cases in an expedient manner.

When either the dynamics of a system or the gradient of a
function is set valued, the Lie (directional) derivative of the
function along the solutions of the system will also be set-
valued. Strong (Bacciotti and Ceragioli, 1999) and weak
(Bacciotti and Ceragioli, 2006; Glotfelter et al., 2017)
versions of set-valued Lie derivatives have been introduced
depending on the regularity of the function being
differentiated. In this paper we utilize the weak version, at
the expense of more relaxed convergence conditions, because
we need to consider generalized gradients of functions that
may not be regular.

With 〈·, ·〉 denoting the inner product of two vectors, the weak
set-valued Lie derivative of a scalar locally Lipschitz function b is
now defined as

LW
F b x, t( )

� η ∈ R | ∃ ] ∈ F f + gu[ ],∃ ξ ∈ zb x, t( ) s.t. 〈ξ,[ ]
1
]〉 � η{ } .

(7)
The following lemma (Lemma 1) links time derivative of function
b along the solutions of (2) to the weak set-valued Lie derivative
of b(x, t):

LEMMA 1. [cf. (Glotfelter et al., 2019)]. Consider a Carathéodory
solution x: [0, t′] → D ⊂ Rn to the differential inclusion (2), and
let b: Rn × [0, t′] → R be a locally Lipschitz function. Then,

_b x, t( ) ∈ LW
F b x, t( ) a.e. (8)

For a locally Lipschitz scalar function b: D × [0, t′] → R with
D ⊂ Rn, consider the associated set

C � x, t( ) ∈ Rn × R+ | x ∈ D, b x, t( )≥ 0{ } .

Now the notion of forward invariance can be linked to the
concept of CBF through the following definition
(Definitions 1,2):

DEFINITION 1. [cf. (Glotfelter et al., 2017, Def. 4) and
(Lindemann and Dimarogonas, 2018, Def. 3)]. A continuous
scalar function b: D × [0, t′] → R where D ⊂ Rn is a candidate
nonsmooth CBF if for all (x, 0) ∈ C, there exists a Carathéodory
solution to (2) such that (x, t) ∈ C for all t ∈ [0, t′].

DEFINITION 2. [cf. (Glotfelter et al., 2017, Def. 3) and
(Lindemann and Dimarogonas, 2018, Def. 2)]. A continuous
candidate nonsmooth CBF b: D × [0, t′] → R where D ⊂ Rn is
a valid nonsmooth CBF for (2), if for any (x, 0) ∈ C there exists a
class-KL function β: R+ × R+ → R+ such that

b x t( ), t( )≥ β b x 0( ), 0( ), t( ) ∀t ∈ 0, t′[ ]
for all Carathéodory solutions of (2) starting from x (0).

The following theorem gives a useful equivalent condition for
a valid CBF

THEOREM 2. [cf. (Glotfelter et al., 2017, Thm. 2)]. LetD ⊂ Rn be
an open and connected set, and b: D × [0, t′] → R a locally
Lipschitz candidate nonsmooth CBF If there exists a locally
Lipschitz extended class-K function α: R → R such that

minLW
F b x t( ), t( )≥ − α b x, t( )( ) , ∀ x, t( ) ∈ D × 0, t′[ ] ,

(9)
then b is a valid non-smooth CBF for (2).

In the special case where the differential inclusion (2) reduces
to a singleton and g(x)g(x)u is positive definite (so that a simple
feedback transformation can bring (1) to the form _x � u), a
straightforward application of Theorem 2 leads to Corollary 1

COROLLARY 1. A candidate non-smooth CBF b(x, t) is a valid
non-smooth CBF for (1) if there exists a locally Lipschitz extended
class-K function α: R → R such that

sup
u∈U

_b x t( ), t( )≥ − α b x, t( )( ) .

In other words, for a valid non-smooth CBF there is always a
control input u to make the set C(t) forward invariant.

3 PROBLEM STATEMENT

This paper considers the following fragment of STL

ψ:: � True | μ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 (10a)
φ:: �> a,b[ ] ψ | □ a,b[ ] ψ | ψ1 U a,b[ ] ψ2 | φ1 ∧ φ2 | φ1 ∨ φ2 ,

(10b)
where formulae ψ1 and ψ2 are of the type defined in (10a), and
formulae φ1, φ2 are of the type defined in (10b). This is a larger
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class of STL compared to Lindemann and Dimarogonas (2018) as
it allows for disjunctions in the predicates or the temporal
operators.

We make similar assumptions (Assumptions 1,2) on the
trajectories and the nature of the term g(x) in (1):

ASSUMPTION 1. (Lindemann and Dimarogonas (2018)). For
an STL formula φ as defined by (10b), there exists a constant C ≥ 0
such that (x, 0)⊧φ 0 ‖x(t)‖ ≤ C ∀ t ≥ 0.

In other words, satisfaction of formula φ guarantees a bounded
trajectory.

ASSUMPTION 2. [Lindemann and Dimarogonas (2018)]. The
vector function g(x) in (1) is such that g(x)g(x)u is positive definite
for all x ∈ D.

Now, the problem under consideration of this paper can be
stated as Problem 1

PROBLEM 1. Find an input control law u(x, t) that guarantees
the solution(s) x: R+ → Rn of (2) starting from x0 = x(0) be such
that (x, 0)⊧φ.

4 TECHNICAL APPROACH

This section introduces a time-varying and nonsmooth CBF that
is constructed following the original principles of navigation
functions set forth by Rimon and Koditschek (1992). The
reported construction leverages the navigation function
properties of the CBF to yield a direct method for obtaining
the control law u in (2) that is guaranteed to satisfy the desired
STL specification.

4.1 Navigation Functions as Control Barrier
Functions
This section borrows primarily from Sun and Tanner (2015),
based on the foundation of sphere world navigation functions of
Rimon and Koditschek (1992), to construct a time-varying CBF
with navigation function properties. While Sun and Tanner
(2015) allow for time-varying destination configurations, and
Chen et al. (2020) consider time-varying obstacle locations, here
the construction of the navigation function component of the
CBF is itself time-invariant, just as in the original methodology
(Rimon and Koditschek, 1992), although time-varying
extensions appear plausible (Sun and Tanner, 2015; Chen
et al., 2020).

An STL specification consists of logical predicates μ as in (3)
that can be interpreted as different regions of interest in the state
space of the dynamical system at hand, which need to be visited or
avoided at particular time periods. Working in a sphere world, all
regions of interest (those that a robot needs to approach or those
it needs to avoid) are assumed to have spherical shapes. This
assumption does not limit the generality of the approach since
both Rimon and Koditschek (1992) for the time-invariant case, as
well as Li and Tanner (2018) for the case of time-varying

destinations, show that diffeomorphic transformations can
extend navigation function properties from sphere to (forests
of) star worlds.

The key feature of the construction of Sun and Tanner (2015)
that is adopted here is the non-point destination. Specifically,
instead of the target of navigation being the convergence to a
single point, Sun and Tanner (2015) allow for a destination
manifold in the shape of a spherical shell, which is the zero
level set of the function

hi x t( )( ) � ‖x t( ) − xci‖2 − r2i , (11)
which serves as the predicate function encoding logical predicate
μi. In the above, one distinguishes the predicate function’s center
xci and its radius ri. Consistent with STL semantics (3), μi is true
when hi(x) ≤ 0 and false otherwise. Regions of the robot’s
workspace that always need to be avoided can be encoded as
(static) obstacles and incorporated all together in a specific
functional representation inspired by Rimon and Koditschek
(1992). Specifically, assuming that the implicit representation
of each one of those isolated (obstacle) regions is defined as a
function

ζj x( ) � ‖x t( ) − xobj‖2 − r2obj j � 1, . . . ,M ,

where xobj and robj denote the center and radius of each
undesirable spherical (obstacle) region. Our understanding is
that obstacles are being avoided as long as ζi(x) > 0. Similarly,
the boundary of the workspace itself is captured by the function

ζ0 x( ) � −‖x t( ) − xws‖2 + r2ws ,

where xws and rws stand for the center and radius of the
workspace, respectively. Given these constructs and the fact
that all obstacles are assumed to be disjoint, the combined
obstacle representation can take the form

ζ x( ) � ∏M
j�0

ζ j x( ) ,

and with that, a navigation function ϕi(x) can be explicitly
constructed for predicate μi as

ϕi x( ) � hi x( )
hi x( )κ + ζ x( )[ ]1/κ , (12)

with κ = 2n for n ∈ N in the role of a positive tuning constant
which be set sufficiently high to guarantee navigation function
properties for (12). Note that for all x that do not satisfy μi, it is 0 <
ϕi(x) ≤ 1, and ∇ϕ(x) is non-zero almost everywhere (with the
exception of a finite number M of isolated critical points).

The following examples illustrate how (12) can be used to
construct a time-varying nonsmooth CBF b(x, t) that can encode
a combination of predicates μi.

EXAMPLE 1. Consider the STL formula φ = >[a,b]μ1. If ϕ1(x) is
defined as in (12) with hi(x) being the predicate function for μ1,
then a CBF that captures φ as a specification can be constructed in
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the form b(x, t) � 1 − ϕ1(x) − c1(t), where c1: R+ → [0, 1] is a
nondecreasing function satisfying c1(0) = 0 and c1(t′) = 1 for some
t′ ∈ [a, b]. Then for c1(t′) = 1, b(x(t′), t′)≥ 0 when ϕ1(x(t′))≤ 0,
which in turn happens only when h1(x(t′))≤ 0, implying that μ1
is true.

EXAMPLE 2. Consider the STL formula φ = φ1 ∧ φ2 where φ1 �
>[a1 ,b1]μ1 and φ2 � □[a2 ,b2]μ2. Start off by constructing a separate
CBF for each of the two component formulae: b1(x, t) � 1 −
ϕ1(x) − c1(t) for φ1, exactly as in Example 1, and b2(x, t) � 1 −
ϕ2(x) − c2(t) for φ2, where c2(t): R+ → [0, 1] is a nondecreasing
function with c2(0) = 0 and c2(t′) = 1 for all t′ ∈ [a2, b2].1 The CBF
that expresses φ can now be formulated as a pointwise minimum of
b1 and b2, i.e., b(x, t) � min {b1, b2}.

EXAMPLE 3. Consider the STL formula φ = φ1 ∨ φ2 where φ1 and
φ2 are as in Example 2. CBFs b1(x, t) and b2(x, t) for φ1 and φ2
are constructed exactly as in Example 2. However, this time the
overall CBF is formulated as a pointwise maximum of b1 and b2,
i.e., b(x, t) � max {b1, b2}.

The construction of the CBF based on navigation function
(12) provides number of advantages compared to existing
CBF-based STL motion planning methods [e.g., (Lindemann
and Dimarogonas, 2018)]; First note that since the navigation
function can encode unsafe regions (obstacles) through ζ(x), it
obviates the need for the explicit definition of additional logical
predicates corresponds to such unsafe regions, thus reducing
the size of the STL specification. This reduction in the size of
STL is particularly useful if this method is used in conjunction
with a reactive STL (event-based STL) motion planning
methodology (Gundana and Kress-Gazit, 2021) that
includes a prior higher-level automata synthesis step.
Another advantage of the nonsmooth formulation is that
not only paves the way for covering larger class of STL
compared to those considered by Lindemann and
Dimarogonas (2018), but also eliminates the conservatism
associated with under-approximation of minimum operator
for the sake of smoothness (see Section 5.2). Yet another
advantage of control barrier navigation functions is related to a
reduction of the computational load required for determining
control inputs (see Section 4.2).

Based on the idea illustrated in Examples 1, 2 and 3, the
following sections present the development of a three-step
process to produce CBFs that encode general specifications in
the STL fragment (10).

4.1.1 STL Specifications With no Conjunctions and
Disjunctions
This section describes how to construct a CBF for an STL
specification that does not involve conjunctions and
disjuctions of predicates and temporal operators.

If this STL specification in question is of the form >[a,b]μ1
then the CBF can be constructed as

b x, t( ) � 1 − ϕ x( ) − c t( ) , (13)
where c: R+ → [0, 1] is a non-decreasing function with c (0) = 0
and c (t′) = 1 for some t′ ∈ [a, b].

If the specification has the form □[a,b]μ, the CBF can have the
same general form b(x, t) � 1 − ϕ(x) − c(t), only now the non-
decreasing function c: R+ → [0, 1] is such that c (0) = 0 and c (t′)
= 1 for all t′ ∈ [a, b].

The remaining case refers to specifications of the form μ1U[a,b]

μ2, for which the CBF is constructed as

b x, t( ) � min b1, b2{ } , (14)
Where once again bi(x, t) � 1 − ϕi(x) − ci(t) for i ∈ {1, 2} as in (13),
with c2: R+ → [0, 1] a non-decreasing function satisfying c2 (0) = 0
and c2 (t′) = 1 for some t′ ∈ [a, b], while c1: R+ → [0, 1] is a non-
decreasing function satisfying c1 (0) = 0 and c1 (t″) = 1 for all t″ ∈ [a, t′].

4.1.2 STL Specifications With no Conjunctions or
Disjunctions Between Temporal Operators
This section refers to STL specifications that may have
conjunctions and disjunctions involving predicates but not
temporal operators. We assume that the formulae inside a
temporal operator has been written in Conjunction Normal
Form (CNF), i.e., (μ1 ∨ μ2 ∨ . . .) ∧ (μ1′ ∨ μ2′ ∨ . . .) ∧ . . ..
Without loss of generality, take two illustrative cases of predicates

ψ1 � μ1 ∨ μ2( ) ∧ μ3( ) and ψ2 � μ4 ∨ μ5( ) ∧ μ6( ) .

Then if the specification has the form>[a,b]ψ1, the CBF can take
the form of

b x, t( ) � min max b1, b2{ }, b3{ } , (15)
Where each bi(x, t) is constructed as in (13) for i ∈ {1, 2, 3}, and
with each ci: R+ → [0, 1] being a non-decreasing function with ci
(0) = 0 and ci (t′) = 1 for some t′ ∈ [a, b].

For specifications of the form □[a,b]ψ1, the CBF can be similarly
constructed based on (15) with component CBFs as in (13), but
this time each ci: R+ is a non-decreasing function with ci (0) = 0
and ci (t′) = 1 for all t′ ∈ [a, b].

Finally, for specifications involving the Until operator and of
the form ψ1 U[a,b] ψ2, the CBF can be formed as

b x, t( ) � min max b1, b2{ }, b3, max b4, b5{ }, b6{ } ,

where all component CBFs bi(x, t) are constructed using the basic
template (13), but for i ∈ {4, 5, 6} ci: R+ → [0, 1] are non-
decreasing functions satisfying ci (0) = 0 and ci (t′) = 1 for some t′
∈ [a, b], while for j ∈ {1, 2, 3}, the functions cj: R+ → [0, 1] are also
non-decreasing but with cj (0) = 0 and cj (t″) = 1 for all t″ ∈ [a, t′].

4.1.3 General Case of STL Specifications
Combining the constructions of Sections 4.1.1, 4.1.2, one is
now in position to form CBF for more general STL
specifications in the fragment defined in (10). Again, we
assume that the STL specification is written in CNF
with respect to the temporal operators. As an illustrative
example, consider the case of
(>[a1 ,b1]ψ1 ∨ □[a2 ,b2]ψ2) ∧ (ψ3U[a3 ,b3]ψ4). Then the CBF can

1A smooth version of such a function can be implemented based on the
construction of Boothby (1986).
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take the form of (15) where b1(x, t), b2(x, t) and b3(x, t) are
each associated with one of the three temporal operators
appearing in the general formula, constructed based on the
designs of Section 4.1.1, and then combined according to the
rules outlined in Section 4.1.2.

In addition to the ability to cover STL specifications
including disjunctions, the construction process outlined in
Sections 4.1.1–4.1.3 generally yields less conservative CBFs
compared to the method of Lindemann and Dimarogonas
(2018), because the latter introduces some conservativeness
through its exponential summation to combine the
component CBFs (see Section 5.2); the perceived benefit of
this latter construction is that it preserves the differentiability
properties of the CBF and circumvents the need for nonsmooth
analysis. What is more, the computation process described
here can be further accelerated by adopting the deletion
mechanism of Lindemann and Dimarogonas (2018), whereby
a component CBF bi(x, t) drops from the composite
construction b(x, t) whenever time t exceeds the upper limit
of the time interval of its corresponding temporal operator,
say [ai, bi], i.e., t > bi. For the Always and Until temporal
operators, the associated barrier function is droped whenever its
value become negative in the time interval of the operator. The
section that follows highlights additional benefit of the
nonsmooth construction of CBFs using navigation functions:
1) the navigation function properties of component barrier
functions bi, i.e., that the associated (negated) gradient
system is guaranteed to converge to the zero level set of the
predicate function, is inherited through the composition
operations, and 2) the control law that realizes the STL
system specification can be derived in a straightforward
manner, usually obviating the need for the repeated solution
of a QP problem.

4.2 Efficient Determination of the Control
Input
Section 4.1 primarily illustrated how the use of navigation
functions and pointwise minimum functions can allow the
construction of CBFs that tightly encode STL specifications in
the fragment defined by (10). This section focuses on
demonstrating that control design can also be facilitated due
to the navigation function properties afforded by the proposed
component CBFs.

Without loss of generality, let p be the total number of
predicates and q be the total number of temporal operators
appearing in the STL specification. For j ∈ {1, . . . , q}, and
with the formulae inside the temporal operators written in
CNF (Section 4.1.3), then temporal operator indexed k will be
modelled by a CBF of the form

bp+j x, t( ) � min {max bkj x, t( ), . . . , blj x, t( ){ }, . . . ,
max bmj x, t( ), . . . , bnj x, t( ){ }} (16)

For some distinct kj, lj, mj, nj ∈ {1, . . . , p}. Then the temporal
operators of the STL formula can themselves be arranged in CNF

(Section 4.1.2), in which case the composite (total) CBF
capturing the complete STL specification would take a similar
compact form

b x, t( ) � min {max bp+k x, t( ), . . . , bp+l x, t( ){ }, . . . ,
max bp+m x, t( ), . . . , bp+n x, t( ){ }} (17)

For some other distinct k, l, m, n ∈ {1, . . . , q}, with
the understanding of each one of the bp+* component CBFs
above is of the form (16). Note that all bi with i ∈ {1, . . . , p} are
continuously differentiable functions, while all bp+j with j ∈ {1, . . . ,
q} are not, but they are still locally Lipschitz functions. In the rest of
the paper we refer to those p continuously differentiable components
of b as componentCBFs. In view of (16), (17), define the index set of
the component CBFs of the form (13) that simultaneously agree with
the value of b in (17) as

J x, t( ) � i ∈ 1, . . . , p{ } | b x, t( ) � bi x, t( ){ } .

Then the control input u that guarantees that b(x, t)≥ 0 can be
computed directly using the gradient of the CBF unless x is a point
where the latter non-differentiable. At such points, resorting to QP
for the determination of the control input u may be unavoidable,
although there are still cases where such a computationally
expensive procedure can be circumvented. The following
sections illustrate different options, starting with the
straightforward one where b is computed away from points of
nondifferentiability.

4.2.1 When the CBF is Differentiable at x
When the CBF is differentiable at point x, the set J is a singleton.
Without loss of generality assume that at that time t, it is J (x, t) =
{1}. Then the control input u (x, t) to guarantee b(x, t)≥ 0 can be
obtained as

u x, t( ) � k g x( )u zb1 x, t( )
zx

, (18)

Where k should be selected such that the following condition,
involving an extended class-K∞ function α, holds:

zb1 x, t( )
zx

u

f x( ) + g x( )u x, t( )( ) + zb1 x, t( )
zt

≥ − α b x, t( )( ) .

(19)
Therefore, k can be selected as the maximum between zero and
the solution of the equation

k
zb1 x, t( )

zx

u

g x( )g x( )u zb1 x, t( )
zx

[ ]
� −α b x, t( )( ) − zb1 x, t( )

zt
− zb1 x, t( )

zx

u

f x( ) . (20)

A solution to (20) exists almost everywhere since g(x)g(x)u is
assumed to be positive definite (by Assumption 2) and

zbj x, t( )
zx

� −∇xϕj x( ) ,
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and the latter is guaranteed to be non-zero almost everywhere
away from the level set of hj (with the exception of a finite number
of isolated points). Note that negative solutions for k can be safely
discarded, since the trivial choice of k = 0 would still satisfy (19)
and offer an admissible control law with an even smaller (than the
negative k) norm. Given that in the case considered in this
section, (5–8) reduce to singletons, _x � f + g u, and in view of
Theorem 2, the choice of u (x, t) given by (18) guarantees that
b(x, t)≥ 0.

4.2.2 When the CBF is not Differentiable at x
At configurations x where a CBF is not differentiable, one of the
following two cases can occur: precisely two component CBFs
agree with the value of b at the same x, or more than two
components CBFs the value of b simultaneously.

When just two component CBF agree with the value of b, then
without loss of generality assume that these are b1 and b2 in which
case J (x, t) = {1, 2}. Then, from (5–8), and Theorem 2 it follows
that for all w1, w2 ∈ R+ such that w1 + w2 = 1, the control input u
(x, t) needs to satisfy

w1
zb1 x,t( )

zx

u

f x( )+g x( )u x,t( )[ ]+w2
zb2 x,t( )

zx

u

f x( )+g x( )u x,t( )[ ]
+w1

zb1 x,t( )
zt

+w2
zb2 x,t( )

zt
≥−α b x,t( )( ).

(21)
For (21) to hold, it is sufficient that the following two inequalities
are simultaneously satisfied:

zb1 x, t( )
zx

u

f x( ) + g x( )u x, t( )[ ] + zb1 x, t( )
zt

≥ − α b x, t( )( )
zb2 x, t( )

zx

u

f x( ) + g x( )u x, t( )[ ] + zb2 x, t( )
zt

≥ − α b x, t( )( )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(22)
Assume now a control law of the form

u x, t( ) � k1 g x( )u zb1 x, t( )
zx

+ k2 g x( )u zb2 x, t( )
zx

, (23)

Where the control gains k1 and k2 are determined as the
maximum between zero and the solutions to the following
system of algebraic equations:

zb1
zx

u

gguzb1
zx

zb1
zx

u

gguzb2
zx

zb2
zx

u

gguzb1
zx

zb2
zx

u

gguzb2
zx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k1
k2

[ ]

�
−zb1
zx

u

f − zb1
zt

− α b( )

−zb2
zx

u

f − zb2
zt

− α b( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (24)

The above system of equations always has a unique solution
except when g(x)u zb1(x,t)

zx and g(x)u zb2(x,t)
zx are linearly

dependent. In the case that g(x)u zb1(x,t)
zx � γ g(x)u zb2(x,t)

zx
with γ ≥ 0, one can still substitute k2 = 0 in (23), plug in (22)

(with equality instead of inequality), and solve for k1
picking the largest possible value for it. In the case2 where
g(x)u zb1(x,t)

zx � −γ g(x)u zb2(x,t)
zx , one may ultimately resort to

solving the QP [cf. (Glotfelter et al., 2017)]:

min‖û‖2 such that
zbj x,t( )

zx

u

f x( )+g x( )u[ ]+zbj x,t( )
zt

≥−α b x,t( )( ) , ∀j∈J.
(25)

Note that the solution to the above QP coincides with the input
derived from (5–8) and Theorem 2.

The case when J contains two members does not generalize
to instances where more than two component CBFs agree with
the value of b simultaneously. A counter example can
be constructed for x ∈ R2 and J (x, t) = {1, 2, 3}, in
which case the algebraic system of the form (24) (but now
with three unknowns k1, k2, and k3) can be shown to
either have infinitely many, or no solutions at all. In such rare
cases (see Section 5.1), one is still forced to solve (25).

Note that (19), (22) and the optimization constraint in (25)
are all equivalent versions of (9) for the cases when J = {1}, J = {1,
2} and general form of J, respectively. According to Theorem 2,
then the barrier function will be valid and consequently by
Definition 2, it means that if the system starts where b(x, t)≥ 0 it
will always remain in regions that b(x, t)≥ 0 for all control
inputs as (18), (23) or (25).

Note that the existing closed-form solutions to the CBF-
based QP only apply to time-invariant safe sets (Ames et al.,
2016). This time-invariance is not conducive to STL
planning, that often requires that safe sets to change over
time. This is why the existing CBF-based STL planning
methods (Glotfelter et al., 2017; Lindemann and
Dimarogonas, 2018) discretize time and employ QP
iteratively in the control loop with an additional
assumption [Assumption 3 in Lindemann and Dimarogonas
(2018)] on the barrier function to explicitly accommodate safe
sets that shrink over time. In contrast, and excluding the
singular cases that are dealt by (25), the general process for
determining the CBF-based control law outlined above,
provides computational benefits because it obviates (25) in

TABLE 1 | Geometric characteristics of regions of interest for an STL motion
planning task.

Predicate Center position coordinates Region radius

μ1 (−0.1,0)u 0.3
μ2 (−0.4,0)u 0.3
μ3 (−0.6,0.2)u 0.3
μ4 (−0.35,−0.3)u 0.2
μ5 (−0.4,−0.6)u 0.2

2For this to happen, the two clauses of the STL formula corresponding to b1(x, t)
and b2(x, t) will appear to be in conflict and each require that the system moves in
exactly opposite directions; e.g., on the line x = 0 with, say, b1 � e−t + (x−a)2+y2

1+(x−a)2+y2,
and b2 � e−1 + (x+a)2+y2

1+(x+a)2+y2.
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all but a very small subset of time steps where the CBF is not
differentiable (see Section 5.1).

The following proposition (Proposition 1) states that the
control law designs of (18) and (23) are in fact the minimum-
norm input that satisfied the required conditions (19) or (22),
and thus coincide with the solution of (25). Consequently,
when the solutions given by (18) or (23) fail to satisfy an
actuation bound, this in fact means that the problem is
infeasible in this CBFs framework, given the actuation
constraints.

PROPOSITION 1. The control laws (18) and (23) give the
minimum-norm inputs that satisfy (19) and (22), respectively.

PROOF. We prove the claim for (18); the process for (23) is a
mirror image. Let u* be the minimum-norm control input that
satisfies (19). By contradiction: assume that u of (18) is such that
‖u‖ > ‖u*‖. Then both the following conditions should be
satisfied:

zb1
zx

u

g u � −α b( ) − zb1
zt

− zb1
zx

f

zb1
zx

u

g u*≥ − α b( ) − zb1
zt

− zb1
zx

f

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (26)

The first equation is the consequence of choosing coefficient
k according to (20). Given now that u is by construction aligned
to the vector zb1

zx g
u, and since ‖u‖ > ‖u*‖, the inner product

(zb1zx

u
g) u must always be bigger than (zb1zx

u
g) u*,

i.e., (zb1zx

u
g) u> (zb1zx

u
g) u*. This contradicts (26).

5 SIMULATION RESULTS

This section is organized in three parts. The objective of the first
part, which is Section 5.1, is to demonstrate the capabilities of the
reported nonsmooth CBF utilizing a relatively complex STL
specification. The second part, i.e., Section 5.2, is to show the
less-conservatism of the offered method in comparison to

FIGURE 1 | Path of the robot as it is controlled to satisfy STL task specification φ1 (27) with snapshots at different time instances; the time instant is indicated at the
top of each subfigure.
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Lindemann and Dimarogonas (2018). The third part, Section 5.3,
is to illustrate how the reported technology can be applied in the
context of robot-child interaction for pediatric motor
rehabilitation purposes within an enriched environment where
robots socially interact with infants, thus linking back to the
motivating application that opened up Section 1.

5.1 Robot Motion Planning With Complex
STL Specifications
Consider a robot in a 2D spherical workspace of radius 1, initially
positioned at a configuration with coordinates x0 = (0.9,0.2)u and
with dynamic _x � u. The workspace contains a static spherical
obstacle of radius 0.2236, centered at (0.5,0)u. The obstacle
region is obviously an area that the robot should always avoid.

In addition to avoiding obstacles, the robot has an array ofmission
objectives associated with different (spherical) regions of interest in its
workspace. These mission objectives will naturally be expressed in
STL In general, we will denote μi the predicate that is associated with
the ith region of interest. Table 1 collects the topological information
of the different regions of interest for the robot.

The STL task specification that the robot needs to satisfy is
given in the following form:

φ1 � □ 3,7[ ] μ1 ∨ μ2( ) ∨ > 2,4[ ]μ3( ) ∧ > 4,5[ ] μ2 ∧ μ3( )( )
∧ μ4U 6,10[ ]μ5( ) . (27)

Using the construction process outlined in Sections 4.1.1–4.1.3,
the barrier function for (27) is as follows:

b � min max max b1, b2{ }, b3{ }, min b2′, b3′{ }, min b4, b5{ }{ } .

(28)
Note that while b2 (or b3) and b2′ (or b3′) are constructed for the
same region μ2 (or μ3), but due to the different time intervals
associated with the temporal operators that contain μ2 (or μ3),
they are in fact different barrier functions, as a result of using a
different c(t) in their construction (see Section 4.1.1).

Figure 1 gives successive snapshots of the robot’s path through
the workspace, as it is steered by the control law computed based
on the process outlined in Section 4.2. The time instances
associated with the snapshots showcased correspond to
representative moments in relation to the temporal operators
appearing in the STL specification φ1 in (27). First of all, as a
result of maximum operator, visiting (μ1 ∨ μ2) at t = 3 is preferred
over visiting μ3 since the former is much closer to the initial
location of the robot. For the same reason, between μ1 and μ2, the
former is selected to be visited at time t = 3. It should continue to
remain inside the union of μ1 and μ2 (to ensure (μ1 ∨ μ2) remains
true) from t = 3 until t = 7, which is verified in the sequence of
subsequent snapshots at times t = 3, t = 5, t = 6, and t = 7.
Meanwhile, however, and sometime in the [4, 5] time interval, the
intersection of μ2 and μ3 must be visited (tomake (μ2 ∧ μ3) true), a
fact that is evident in the top left snapshot for t = 5 where the

FIGURE 2 | The control input signal (ux left, uy right) that realized the STL task specification φ1 expressed in (27).

FIGURE 3 | Control barrier function b(x, t) for STL task specification φ1
(27). The 17 non-differentiable points are corresponds to time steps with J (x, t)
containing two members for which the control law (23) still works.
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robot is shown to make a maneuver to the left to reach the
intersection of μ2 and μ3. Then, the specification φ1 indicates that
in the [6, 10] time interval predicate μ4 should first be satisfied
before predicate μ5 becomes true. Indeed, the robot is shown at t =
6 to have touched the boundary of μ4; following that, at time
instant t = 10 the robot is shown to have touched the boundary of
μ5. While all these maneuvers take place, the robot always stays
clear of the static obstacle, marked in Figure 1 with the solid
red disk.

Figure 2 presents graphs that show the evolution of the two-
dimensional control input u (x, t) that implements the STL task
specification (27). As Figure 2 indicates, the control inputs
experience discontinuities. Not surprisingly, several jumps

occur at time instants coinciding with non-differentiable
points of the barrier function.

To see better the computational savings of this method
compared to approaches that required the repeated solution
of the QP program for the determination of the control
law, the time interval [0, 10] of the STL task (27) was
discretized to 1,000 time steps. Among those, only 17
featured J (x, t) with cardinality two, while there were zero
instances where |J (x, t)| > 2. Of those 17 time steps, which
show as the non-differentiable points of the barrier function
depicted in Figure 3, none of them marked a singular case;
consequently, (23) applies to them all, and (18)
used everywhere else. Therefore, in handling the STL task
(27), the reported method never resorted to solving a QP
problem.

5.2 Evidence of Conservatism Relaxation
This section includes an illustrative example that demonstrates
how less conservative the presented solution can be [even for the
smaller STL class considered by Lindemann and Dimarogonas
(2018)] when satisfying STL specifications, specifically in cases

TABLE 2 | Geometric characteristics of regions of interest for an STL motion
planning task.

Predicate Region center position Radius

μ1 (0,0)u 1
μ2 (1.5,0)u 1

FIGURE 4 | Trajectory of the robot for STL task φ2 (29) at different time instances, with time label at the top of each figure.
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where smooth formulations do not permit the satisfaction of
these specifications.

Consider a robot in a 2D spherical workspace of radius 3,
initially positioned at a configuration with coordinates x0 =
(−2,1)u. The STL specification of the robot’s mission in this
workspace involves visiting two regions of interest whose
topological information is presented in Table 2.

The STL task specification that the robot needs to satisfy is
given in the following form:

φ2 � □ 1,3[ ] μ1( )( ) ∧ □ 2,4[ ] μ2( )( ) . (29)
Within a smooth STL composition framework, planning for
satisfaction of (29) proceeds as follows (Lindemann and
Dimarogonas, 2018): 1) first one defines predicate functions h1
= 1 − ‖x‖ and h2 = 1 − ‖x − (1.5,0)u‖ for regions μ1 and μ2
respectively; 2) then the barrier function for each sub-formula of
(29) is constructed as b1 � γ1(t) − ‖x‖ and
b2 � γ2(t) − ‖x − (1.5, 0)u‖; 3) then one selects γ1(t) such that
b1 ≤ h1 for t ∈ [1, 3], and γ2(t) such that b2 ≤ h2 for t ∈ [2, 4]; 4)
finally, the composite barrier function is formed as b �
−ln(exp(−b1) + exp(−b2)).

This process renders (29) not satisfiable. To see this, focus
on the time interval t ∈ [2, 3] when the robot needs to visit and
remain in the intersection of μ1 and μ2. Note that in this time
interval, there must be γ1(t) ≤ 1 and γ2(t) ≤ 1 to ensure b1 ≤ h1
and b2 ≤ h2, respectively. However, since the robot needs to be
located somewhere in the intersection of μ1 and μ2, it must be
γ1(t) ≥ 0.5 and γ2(t) ≥ 0.5 to ensure that b1 ≥ 0 and b2 ≥ 0. As a
result, for a any legitimate choice of γ1(t) and γ2(t), there will
be 0≤ b1 ≤ 0.5 and 0≤ b2 ≤ 0.5. This results in a composite

barrier function b< 0 in t ∈ [2, 3] for all legitimate choices of
γ1(t) and γ2(t). While there exist solutions to satisfy the
specification (keep each b1 and b2 non-negative), the
conservatism introduced by the under-approximation of
the minimum operator (corresponds to the conjunction in
the STL formula) by the smooth exponential summation does
not permit the satisfaction of (29). In contrast, the non-
smooth formulation of this paper can handle (29)
successfully. Figure 4 depicts snapshots of the robot’s path
generated by the control design of Section 4.2, satisfying the
STL task of (29). Having said that, it can be noted that there
can be ways for this satisfiability gap to be reduced, as part of
the QP problem—although, theoretically, it can never be
completely eliminated.

5.3 Application to Robot-Child Interaction
This section demonstrates how the nonsmooth CBF theory can
be applied in the context of early pediatric motor rehabilitation,
to regulate play-based social interaction between infants and
mobile robots. The primary clinical objective of these mobile
robots is to encourage infant mobility through interactive
gameplay. Figure 5 shows an (enriched, in terms of stimuli)
robot-assisted motor rehabilitation environment for infants
involving two robots engaged in free-play activities with an
infant.

The robots shown Figure 5 have been remotely controlled
during the studies conducted, with the operators following a pre-
determined look-up table of appropriate robot responses to infant
reactions. Similar to other instances of Human Robot Interaction
(HRI) application reported in literature (McGhan et al., 2015;
Zehfroosh et al., 2017), a Markovian model is used to model the
interaction at the high level. The parameters of this Markovian
model are learned through observations in sessions with human
subjects (Zehfroosh et al., 2017). Synchronized video from a
network of surrounding cameras provided input to action
recognition machine learning algorithms capable of identifying
certain infant behaviors of interest, such as walking, crawling,
standing, sitting, etc., as well as transitions between them

FIGURE 5 | Instance of play-based child-robot social interaction. Two
robots are visible in the scene: a small humanoid NAO, and a differential-drive
small mobile robot toy DASH.

FIGURE 6 | Schematic of DASh’s robot workspace.
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(Kokkoni et al., 2020). In an envisioned fully automated version
of this robot-assisted rehabilitation environment, robots could
receive direct feedback regarding the child’s reactions and adapt
their gameplay behavior accordingly in order to further
encourage infant mobility.

In specific gameplay scenarios involved in the HRI protocol
followed, infants and robots were playing a game of tag, in which
the robot had a small set of options with regards to its play-based
interaction with the child: close the distance to the infant; increase
the distance to the infant; stand still (Kokkoni et al., 2020).
Analysis of session data from a small number of subjects

seemed to point to a new hypothesis according to which the
type of robot behavior that usually triggers infant motor
responses rarely involves single atomic actions, but is rather
more complex involving several actions in temporal
succession. For instance, it looked as if the robot could convey
a social non-verbal cue such as “follow me” if it initially
approached the child within about 1 m in distance, stood still
for a short time interval, then attempted to increase the distance
slightly, before repeating in a back-and-forth moving pattern.
Motivated by these observations, we have subsequently
conjectured that robot responses modeled in an LTL
framework may be more effective in triggering the desired
subject responses (Zehfroosh and Tanner, 2019). The
STL framework described in this paper allows us to
bring this HRI method to a new level, including timing
constrains.

To see how this could work in the context of the HRI scenario of
Figure 5, consider a circular 2D robot workspace for DASH at the
time when the “follow me” social cue is to be given (see Figure 6).

TABLE 3 | Geometric characteristics of regions of interest for a child-robot
interaction scenario. μ1 and μ3 are inside r1 and μ2 is inside r2.

Predicate Region center position Radius

μ1 (0,−0.75)u 0.1
μ2 (−1,−1)u 0.1
μ3 (0.75,0)u 0.1

FIGURE 7 | Trajectory of the Dash for STL task φ3 (30) at different time instances, with time label at the top of each figure.
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Divide this workspace into three labeled regions R = {r1, r2, r3}, with
the robot initialized in region r2. The desired back-and-forth
moving pattern for the “follow me” task can be encoded by a
random selection of some specific subregions of interest inside r1
and inside r2. Construct now an STL specification that requires the
robot to visit those regions in order and with appropriate timing.
For example, for three regions defined geometrically as in
Table 3,the following STL behavior specification (in the form of
formula φ3) for the robot can be defined as a way to signal “follow
me” within 10 s to its human playmate:

φ3 � □ 2,4[ ]μ1( ) ∧ > 5,6[ ]μ2( ) ∧ □ 8,10[ ]μ3( ) . (30)
Figure 7 presents DASH’s trajectory for STL formula φ3 given in
(30), realized through the nonsmooth control barrier
navigation function methodology of Section 4. Just like the
motion planning scenario of Section 5.1, the robot path is
shown in terms of snapshots at important time instances
that attempt to illustrate the satisfaction of the STL
specification (30).

6 CONCLUSION

By now it is known that motion planning and control
synthesis STL can be facilitated through the use of the
concept of the control barrier function (CBF). This process
obviates the need for model checking as a means of obtaining
control laws that implement an STL specification, but still
comes at the cost of utilizing a restricted fragment of STL and
having to solve a QP problem in each cycle of the control loop.
The incorporation of navigation functions as the base for the
construction of CBFs, as advocated in this paper, is shown here
to be advantageous because it alleviates the computational cost
of utilizing CBFs in STL control synthesis. What is more, when
the CBFs are combined through nonsmooth mappings as a

means of encoding Boolean logic, the construction not only
allows for covering larger class of STL specifications in
comparison with the existing barrier-function STL planning
methods, but also relaxes the conservativeness of existing
smooth compositional formulations, and allows the
resulting control laws to inherit some of the performance
guarantees in terms of convergence and safety afforded by
feedback motion plans based on navigation functions. Finally,
the nonsmooth approach to combining navigation CBFs
allows to expand the fragment of STL covered so that
includes disjunctions at no apparent computational cost.
The methodology described in this paper can prove useful
in applications where robots are called to perform complex and
temporally-dependent tasks. An example of such an
application, which this paper highlights, is found in the
context of pediatric robot-assisted motor rehabilitation.
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